Skip to main content

Case Scenario for Fluid Therapy in Septic Shock

  • Chapter
  • First Online:
Perioperative Fluid Management

Abstract

Septic shock represents a profound systemic inflammatory derangement with components of functional hypovolemia, altered oxygen delivery, myocardial dysfunction, peripheral vasoplegia, and diffuse capillary leak. In this case scenario, a patient exhibits all of the aforementioned findings with lactic acidosis, elevated troponin, persistent hypotension despite vasopressor use, acute kidney injury, and acute lung injury due to septic shock. In addition to source control and early antibiotic administration, the goals of treatment are early and aggressive fluid resuscitation, maintenance of tissue perfusion, and judicious and balanced application of vasopressor support. As excess fluid balance is associated with worse outcomes, it is the job of the clinician to evaluate the patient’s response to fluid therapy with one of several tools. After adequate fluid resuscitation has been achieved, additional support may be required with vasopressors. As the patient’s clinical course improves the physician should aim to gently ‘de-resuscitate’ excess fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644–55. https://doi.org/10.1378/chest.101.6.1644.

    Article  CAS  PubMed  Google Scholar 

  2. Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock. JAMA. 2016;315(8):775. https://doi.org/10.1001/jama.2016.0289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lopes MR, Auler JOC Jr, Michard F. Volume management in critically ill patients: new insights. Clinics. 2006;61(4):345–50. https://doi.org/10.1590/s1807-59322006000400012.

    Article  PubMed  Google Scholar 

  4. Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality{\ast}. Crit Care Med. 2011;39(2):259–65. https://doi.org/10.1097/ccm.0b013e3181feeb15.

    Article  PubMed  Google Scholar 

  5. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77. https://doi.org/10.1056/nejmoa010307.

    Article  CAS  PubMed  Google Scholar 

  6. Levy MM, Pronovost PJ, Dellinger RP, et al. Sepsis change bundles: converting guidelines into meaningful change in behavior and clinical outcome. Crit Care Med. 2004;32(Supplement):S595–7. https://doi.org/10.1097/01.ccm.0000147016.53607.c4.

    Article  PubMed  Google Scholar 

  7. Schorr C. Performance improvement in the Management of Sepsis. Crit Care Nurs Clin North Am. 2011;23(1):203–13. https://doi.org/10.1016/j.ccell.2010.12.012.

    Article  PubMed  Google Scholar 

  8. Yealy D, Kellum J, Huang D, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;47(2):256–7. https://doi.org/10.1016/j.jemermed.2014.06.009.

    Article  Google Scholar 

  9. Peake SL, Bailey M, Bellomo R, et al. Australasian resuscitation of sepsis evaluation ({ARISE}): a multi-Centre, prospective, inception cohort study. Resuscitation. 2009;80(7):811–8. https://doi.org/10.1016/j.resuscitation.2009.03.008.

    Article  PubMed  Google Scholar 

  10. Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11. https://doi.org/10.1056/NEJMoa1500896.

    Article  CAS  PubMed  Google Scholar 

  11. Rhodes A, Evans L, Alhazzani W, Levy M, Massimo A. The surviving sepsis campaign. Crit Care Med. 2017;45(3):486–552. https://doi.org/10.1097/CCM.0000000000002255.

    Article  PubMed  Google Scholar 

  12. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 Update. Crit Care Med. 2018;46(6):997–1000. https://doi.org/10.1097/CCM.0000000000003119.

    Article  PubMed  Google Scholar 

  13. Spiegel R, Farkas JD, Rola P, et al. The 2018 surviving sepsis Campaign’s treatment Bundle: when guidelines outpace the evidence supporting their use. Ann Emerg Med. 2018;73(4):356–8. https://doi.org/10.1016/J.ANNEMERGMED.2018.06.046&KEY=10.1164/RCCM.201507-1489OC&CF.

    Article  PubMed  Google Scholar 

  14. Whiles BB, Deis AS, Simpson SQ. Increased time to initial antimicrobial administration is associated with progression to septic shock in severe sepsis patients. Crit Care Med. 2017;45(4):623–9. https://doi.org/10.1097/CCM.0000000000002262.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Levy MM, Rhodes A, Phillips GS, et al. Surviving sepsis campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med. 2015;43(1):3–12. https://doi.org/10.1097/CCM.0000000000000723.

    Article  PubMed  Google Scholar 

  16. Levy MM, Gesten FC, Phillips GS, et al. Mortality changes associated with mandated public reporting for sepsis. The results of the New York state initiative. Am J Respir Crit Care Med. 2018;198(11):1406–12. https://doi.org/10.1164/rccm.201712-2545OC.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kehlet H, Bundgaard-Nielsen M. Goal-directed perioperative fluid management. Anesthesiology. 2009;110(3):453–5. https://doi.org/10.1097/ALN.0b013e3181984217.

    Article  PubMed  Google Scholar 

  18. Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18(5):584. https://doi.org/10.1186/s13054-014-0584-z.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaufmann T, Clement RP, Scheeren TWL, Saugel B, Keus F, van der Horst ICC. Perioperative goal-directed therapy: a systematic review without meta-analysis. Acta Anaesthesiol Scand. 2018;62(10):1340–55. https://doi.org/10.1111/aas.13212.

    Article  PubMed  Google Scholar 

  20. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock{\ast}. Crit Care Med. 2006;34(6):1589–96. https://doi.org/10.1097/01.ccm.0000217961.75225.e9.

    Article  PubMed  Google Scholar 

  21. Khanna AK, Maheshwari K, Mao G, et al. Association between mean arterial pressure and acute kidney injury and a composite of myocardial injury and mortality in postoperative critically ill patients. Crit Care Med. April 2019;47(7):910–7. https://doi.org/10.1097/CCM.0000000000003763.

    Article  CAS  PubMed  Google Scholar 

  22. Maheshwari K, Nathanson BH, Munson SH, et al. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med. 2018;44(6):857–67. https://doi.org/10.1007/s00134-018-5218-5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chawla LS, Ostermann M, Forni L, Tidmarsh GF. Broad spectrum vasopressors: a new approach to the initial management of septic shock? Crit Care. 2019;23(1):124. https://doi.org/10.1186/s13054-019-2420-y.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brown SM, Lanspa MJ, Jones JP, et al. Survival after shock requiring high-dose vasopressor therapy. Chest. 2013;143(3):664–71. https://doi.org/10.1378/chest.12-1106.

    Article  CAS  PubMed  Google Scholar 

  25. Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95(5):1122–5. https://doi.org/10.1161/01.CIR.95.5.1122.

    Article  CAS  PubMed  Google Scholar 

  26. Khanna A, English SW, Wang XS, et al. Angiotensin II for the treatment of Vasodilatory shock. N Engl J Med. 2017;377(5):419–30. https://doi.org/10.1056/NEJMoa1704154.

    Article  CAS  PubMed  Google Scholar 

  27. Jones AE, Brown MD, Trzeciak S, et al. The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: a meta-analysis{\ast}. Crit Care Med. 2008;36(10):2734–9. https://doi.org/10.1097/ccm.0b013e318186f839.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marchick MR, Kline JA, Jones AE. The significance of non-sustained hypotension in emergency department patients with sepsis. Intensive Care Med. 2009;35(7):1261–4. https://doi.org/10.1007/s00134-009-1448-x.

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Witt B, Joshi R, Meislin H, Mosier JM. Optimizing oxygen delivery in the critically ill: assessment of~volume responsiveness in the septic patient. J Emerg Med. 2014;47(5):608–15. https://doi.org/10.1016/j.jemermed.2014.06.015.

    Article  PubMed  Google Scholar 

  30. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature{\ast}. Crit Care Med. 2009;37(9):2642–7. https://doi.org/10.1097/ccm.0b013e3181a590da.

    Article  PubMed  Google Scholar 

  31. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28. https://doi.org/10.1097/00000542-200508000-00026.

    Article  PubMed  Google Scholar 

  32. Cannesson M, Vallet B, Michard F. Pulse pressure variation and stroke volume variation: from flying blind to flying right? Br J Anaesth. 2009;103(6):896–9. https://doi.org/10.1093/bja/aep321.

    Article  CAS  PubMed  Google Scholar 

  33. Lee J, de Louw E, Niemi M, et al. Association between fluid balance and survival in critically ill patients. J Intern Med. 2014;277(4):468–77. https://doi.org/10.1111/joim.12274.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Srinivasa S, Tan ST. Postoperative fluid management in major elective plastic surgery. J Plast Reconstr Aesthetic Surg. 2010;63(6):992–5. https://doi.org/10.1016/j.bjps.2009.02.084.

    Article  Google Scholar 

  35. Acheampong A, Vincent J-L. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19(1):251. https://doi.org/10.1186/s13054-015-0970-1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ganter MT, Geisen M, Hartnack S, Dzemali O, Hofer CK. Prediction of fluid responsiveness in mechanically ventilated cardiac surgical patients: the performance of seven different functional hemodynamic parameters. BMC Anesthesiol. 2018;18(1):1–7. https://doi.org/10.1186/s12871-018-0520-x.

    Article  Google Scholar 

  37. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? Chest. 2008;134(1):172–8. https://doi.org/10.1378/chest.07-2331.

    Article  PubMed  Google Scholar 

  38. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81. https://doi.org/10.1097/CCM.0b013e31828a25fd.

    Article  PubMed  Google Scholar 

  39. Marik P, Bellomo R. A rational approach to fluid therapy in sepsis. Br J Anaesth. 2016;116(3):339–49. https://doi.org/10.1093/bja/aev349.

    Article  CAS  PubMed  Google Scholar 

  40. De Backer D, Vincent JL. Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. Crit Care. 2018;22(1):1–6. https://doi.org/10.1186/s13054-018-1959-3.

    Article  Google Scholar 

  41. Feissel M, Michard F, Faller J-P, Teboul J-L. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7. https://doi.org/10.1007/s00134-004-2233-5.

    Article  PubMed  Google Scholar 

  42. Si X, Xu H, Liu Z, et al. Does respiratory variation in inferior vena cava diameter predict fluid responsiveness in mechanically ventilated patients? A systematic review and meta-analysis. Anesth Analg. 2018;127(5):1157–64. https://doi.org/10.1213/ANE.0000000000003459.

    Article  PubMed  Google Scholar 

  43. Muller L, Bobbia X, Toumi M, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16(5):R188. https://doi.org/10.1186/cc11672.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30(9):1734–9. https://doi.org/10.1007/s00134-004-2361-y.

    Article  PubMed  Google Scholar 

  45. Broilo F, Meregalli A, Friedman G. Right internal jugular vein distensibility appears to be a surrogate marker for inferior vena cava vein distensibility for evaluating fluid responsiveness. Rev Bras Ter Intensiva. 2015;27(3):205–11. https://doi.org/10.5935/0103-507x.20150042.

    Article  PubMed  PubMed Central  Google Scholar 

  46. De Backer D, Fagnoul D. Intensive care ultrasound: VI. Fluid responsiveness and shock assessment. Ann Am Thorac Soc. 2014;11(1):129–36. https://doi.org/10.1513/AnnalsATS.201309-320OT.

    Article  PubMed  Google Scholar 

  47. Cavallaro F, Sandroni C, Marano C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36(9):1475–83. https://doi.org/10.1007/s00134-010-1929-y.

    Article  PubMed  Google Scholar 

  48. Monnet X, Marik P, Teboul J-L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1935–47. https://doi.org/10.1007/s00134-015-4134-1.

    Article  PubMed  Google Scholar 

  49. Muller L, Toumi M, Bousquet P-J, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness. Anesthesiology. 2011;115(3):541–7. https://doi.org/10.1097/ALN.0b013e318229a500.

    Article  CAS  PubMed  Google Scholar 

  50. Mallat J, Meddour M, Durville E, et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness †. Br J Anaesth. 2015;115(3):449–56. https://doi.org/10.1093/bja/aev222.

    Article  CAS  PubMed  Google Scholar 

  51. Mercado P, Maizel J, Beyls C, et al. Transthoracic echocardiography: an accurate and precise method for estimating cardiac output in the critically ill patient. Crit Care. 2017;21:136. https://doi.org/10.1186/s13054-017-1737-7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Horster S, Stemmler HJ, Sparrer J, Tischer J, Hausmann A, Geiger S. Mechanical ventilation with positive end-expiratory pressure in critically ill patients: comparison of {CW}-Doppler ultrasound cardiac output monitoring ({USCOM}) and thermodilution ({PiCCO}). Acta Cardiol. 2012;67(2):177–85. https://doi.org/10.1080/ac.67.2.2154208.

    Article  PubMed  Google Scholar 

  53. Michard F. Stroke volume variation: from applied physiology to improved outcomes{\ast}. Crit Care Med. 2011;39(2):402–3. https://doi.org/10.1097/ccm.0b013e318205c0a6.

    Article  PubMed  Google Scholar 

  54. Michard F. Volume management using dynamic parameters. Chest. 2005;128(4):1902–4. https://doi.org/10.1378/chest.128.4.1902.

    Article  PubMed  Google Scholar 

  55. Michard F. Using pulse Oximetry waveform analysis to guide fluid therapy: are we there yet? Anesth Analg. 2007;104(6):1606–7. https://doi.org/10.1213/01.ane.0000260640.60883.a6.

    Article  PubMed  Google Scholar 

  56. Kong R, Liu Y, Mi W, Fu Q. Influences of different vasopressors on stroke volume variation and pulse pressure variation. J Clin Monit Comput. 2016;30(1):81–6. https://doi.org/10.1007/s10877-015-9687-6.

    Article  PubMed  Google Scholar 

  57. Renner J, Meybohm P, Hanss R, Gruenewald M, Scholz J, Bein B. Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model. Paediatr Anaesth. 2009;19(7):688–94. https://doi.org/10.1111/j.1460-9592.2009.03017.x.

    Article  PubMed  Google Scholar 

  58. Nouira S, Elatrous S, Dimassi S, et al. Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med. 2005;33(10):2339–43. http://www.ncbi.nlm.nih.gov/pubmed/16215390. Accessed April 30, 2019

    Article  CAS  PubMed  Google Scholar 

  59. Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med. 1998;158(1):77–83. https://doi.org/10.1164/ajrccm.158.1.9707031.

    Article  CAS  PubMed  Google Scholar 

  60. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Circ Physiol. 2007;293(1):H583–9. https://doi.org/10.1152/ajpheart.00195.2007.

    Article  CAS  Google Scholar 

  61. Hayes MA, Yau EHS, Timmins AC, Hinds CJ, Watson D. Response of critically {III} patients to treatment aimed at achieving Supranormal oxygen delivery and consumption. Chest. 1993;103(3):886–95. https://doi.org/10.1378/chest.103.3.886.

    Article  CAS  PubMed  Google Scholar 

  62. Gattinoni L, Carlesso E. Supporting hemodynamics: what should we target? What treatments should we use? Crit Care. 2013;17(Suppl 1):1–8. https://doi.org/10.1186/cc11502.

    Article  Google Scholar 

  63. Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013;17(6):R294. https://doi.org/10.1186/cc13160.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter study of central venous oxygen saturation ({ScvO}2) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010;55(1):40–6. e1. https://doi.org/10.1016/j.annemergmed.2009.08.014.

    Article  PubMed  Google Scholar 

  65. MARIK PE. The demise of early goal-directed therapy for severe sepsis and septic shock. Acta Anaesthesiol Scand. 2015;59(5):561–7. https://doi.org/10.1111/aas.12479.

    Article  CAS  PubMed  Google Scholar 

  66. Polderman KH, Varon J. Do not drown the patient: appropriate fluid management in critical illness. Am J Emerg Med. 2015;33(3):448–50. https://doi.org/10.1016/j.ajem.2015.01.051.

    Article  PubMed  Google Scholar 

  67. Corcoran T, Rhodes JEJ, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery. Anesth Analg. 2012;114(3):640–51. https://doi.org/10.1213/ane.0b013e318240d6eb.

    Article  PubMed  Google Scholar 

  68. Jacob M, Chappell D, Rehm M. Perioperative fluid administration. Anesthesiology. 2011;114(3):483–4. https://doi.org/10.1097/aln.0b013e31820c2ed4.

    Article  PubMed  Google Scholar 

  69. Gan TJ, Soppitt A, Maroof M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–6. https://doi.org/10.1097/00000542-200210000-00012.

    Article  PubMed  Google Scholar 

  70. Lopes MR, Oliveira MA, Pereira V, Lemos I, Auler J, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11(5):R100. https://doi.org/10.1186/cc6117.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rocha LL, Pessoa CMS, Corrêa TD, Pereira AJ, de Assunção MSC, Silva E. Current concepts on hemodynamic support and therapy in septic shock. Brazilian J Anesthesiol. 2015;65(5):395–402. https://doi.org/10.1016/j.bjane.2014.11.006.

    Article  Google Scholar 

  72. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94. https://doi.org/10.1093/bja/aer515.

    Article  CAS  PubMed  Google Scholar 

  73. Bruegger D, Rehm M, Jacob M, et al. Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in Guinea pig hearts. Crit Care. 2008;12(3):R73. https://doi.org/10.1186/cc6913.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Muller L, Jaber S, Molinari N, et al. Fluid management and risk factors for renal dysfunction in patients with severe sepsis and/or septic shock. Crit Care. 2012;16(1):R34. https://doi.org/10.1186/cc11213.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Saugel B, Cecconi M, Wagner JY, Reuter DA. Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br J Anaesth. 2015;114(4):562–75. https://doi.org/10.1093/bja/aeu447.

    Article  CAS  PubMed  Google Scholar 

  76. Patel A, Laffan MA, Waheed U, Brett SJ. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349(jul22 10):g4561. https://doi.org/10.1136/bmj.g4561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis{\ast}. Crit Care Med. 2011;39(2):386–91. https://doi.org/10.1097/ccm.0b013e3181ffe217.

    Article  CAS  PubMed  Google Scholar 

  78. Jacob M, Rehm M, Loetsch M, et al. The endothelial Glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation. J Vasc Res. 2007;44(6):435–43. https://doi.org/10.1159/000104871.

    Article  CAS  PubMed  Google Scholar 

  79. Finfer S, McEvoy S, Bellomo R, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96. https://doi.org/10.1007/s00134-010-2039-6.

    Article  CAS  PubMed  Google Scholar 

  80. Raghunathan K, Shaw A, Nathanson B, et al. Association between the choice of {IV} crystalloid and in-hospital mortality among critically ill adults with sepsis{\ast}. Crit Care Med. 2014;42(7):1585–91. https://doi.org/10.1097/ccm.0000000000000305.

    Article  CAS  PubMed  Google Scholar 

  81. Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21. https://doi.org/10.1056/nejmoa1305727.

    Article  CAS  PubMed  Google Scholar 

  82. Nadim MK, Durand F, Kellum JA, et al. Management of the critically ill patient with cirrhosis: a multidisciplinary perspective. J Hepatol. 2016;64(3):717–35. https://doi.org/10.1016/j.jhep.2015.10.019.

    Article  PubMed  Google Scholar 

  83. Sort P, Navasa M, Arroyo V, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341(6):403–9. https://doi.org/10.1056/nejm199908053410603.

    Article  CAS  PubMed  Google Scholar 

  84. Wilkes MM. Colloid use in the critically ill. Ann Intern Med. 2002;137(5_Part_1):370. https://doi.org/10.7326/0003-4819-137-5_part_1–200209030-00024.

  85. Malbrain MLNG, Marik PE, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anestezjol Intens Ter. 2014;46(5):361–80. https://doi.org/10.5603/ait.2014.0060.

    Article  Google Scholar 

  86. Annane D. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock. JAMA. 2013;310(17):1809. https://doi.org/10.1001/jama.2013.280502.

    Article  CAS  PubMed  Google Scholar 

  87. Perel P, Roberts I, Ker K, Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients ( review ) colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Collab. 2013;3:1–71. https://doi.org/10.1002/14651858.CD000567.pub6.Copyright.

    Article  Google Scholar 

  88. Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11. https://doi.org/10.1056/nejmoa1209759.

    Article  CAS  PubMed  Google Scholar 

  89. Marik PE. Surviving sepsis guidelines and scientific evidence? J Intensive Care Med. 2011;26(3):201–2. https://doi.org/10.1177/0885066610387997.

    Article  PubMed  Google Scholar 

  90. Sloan EP, Koenigsberg MD, Philbin NB, Gao W. Diaspirin cross-linked hemoglobin infusion did not Influence Base deficit and lactic acid levels in two clinical trials of traumatic hemorrhagic shock patient resuscitation. J Trauma Inj Infect Crit Care. 2010;68(5):1158–71. https://doi.org/10.1097/ta.0b013e3181bbfaac.

    Article  Google Scholar 

  91. Moore EE, Moore FA, Fabian TC, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the {USA} multicenter trial. J Am Coll Surg. 2009;208(1):1–13. https://doi.org/10.1016/j.jamcollsurg.2008.09.023.

    Article  PubMed  Google Scholar 

  92. Finfer S, Liu B, Taylor C, et al. Resuscitation fluid use in critically ill adults: an international cross sectional study in 391 intensive care units. Crit Care. 2010;14(5):R185. https://doi.org/10.1186/cc9293.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2014;41(2):257–64. https://doi.org/10.1007/s00134-014-3593-0.

    Article  CAS  PubMed  Google Scholar 

  94. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-Liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566. https://doi.org/10.1001/jama.2012.13356.

    Article  CAS  PubMed  Google Scholar 

  95. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–35. https://doi.org/10.1172/jci110820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Semler MW, Self WH, Wanderer JP, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–39. https://doi.org/10.1056/NEJMoa1711584.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pfortmueller CA, Funk G-C, Reiterer C, et al. Normal saline versus a balanced crystalloid for goal-directed perioperative fluid therapy in major abdominal surgery: a double-blind randomised controlled study. Br J Anaesth. 2018;120(2):274–83. https://doi.org/10.1016/j.bja.2017.11.088.

    Article  CAS  PubMed  Google Scholar 

  98. Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery. Ann Surg. 2012;255(5):821–9. https://doi.org/10.1097/sla.0b013e31825074f5.

    Article  PubMed  Google Scholar 

  99. Yunos N, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14(4):226. https://doi.org/10.1186/cc9052.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR. Normal saline versus lactated Ringer’s solution for intraoperative fluid Management in Patients Undergoing Abdominal Aortic Aneurysm Repair: an outcome study. Anesth Analg. 2001;93(4):817–22. https://doi.org/10.1097/00000539-200110000-00004.

    Article  CAS  PubMed  Google Scholar 

  101. Phillips CR, Vinecore K, Hagg DS, et al. Resuscitation of haemorrhagic shock with normal saline vs. lactated ringer{\textquotesingle}s: effects on oxygenation, extravascular lung water and haemodynamics. Crit Care. 2009;13(2):R30. https://doi.org/10.1186/cc7736.

    Article  PubMed  PubMed Central  Google Scholar 

  102. O’Malley CMN, Frumento RJ, Hardy MA, et al. A randomized, double-blind comparison of lactated ringer???S solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100(5):1518–24. https://doi.org/10.1213/01.ANE.0000150939.28904.81.

    Article  CAS  PubMed  Google Scholar 

  103. Khajavi MR, Etezadi F, Moharari RS, et al. Effects of Normal saline vs. lactated Ringer’s during renal transplantation. Ren Fail. 2008;30(5):535–9. https://doi.org/10.1080/08860220802064770.

    Article  CAS  PubMed  Google Scholar 

  104. Yang J. Liver injury during acute pancreatitis, , the role of pancreatitis-associated Ascitic fluid ({PAAF}), p38-{MAPK}, and Caspase-3 in inducing hepatocyte apoptosis. J Gastrointest Surg. 2003;7(2):200–8. https://doi.org/10.1016/s1091-255x(02)00134-8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish K. Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanna, A.K., Font, M.D., Mathur, P. (2020). Case Scenario for Fluid Therapy in Septic Shock. In: Farag, E., Kurz, A., Troianos, C. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-030-48374-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48374-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48373-9

  • Online ISBN: 978-3-030-48374-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics