Skip to main content

Chickpea Breeding for Abiotic Stress: Breeding Tools and ‘Omics’ Approaches for Enhancing Genetic Gain

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 3

Abstract

Chickpea production is seriously challenged by various biotic and abiotic stresses globally. Among the various abiotic stresses, drought, heat, salinity and cold stresses are the major factors that restrict sustainable global chickpea production. Considerable progress has been made in developing drought, heat, cold and salinity stress-tolerant chickpea genotypes through conventional breeding approaches in concert with advanced breeding methods. Concurrently, current progress of molecular marker technology and availability of high-density genetic maps allowed genetic dissection of various abiotic stresses through biparental QTL mapping approach in chickpea. Subsequently, release of draft chickpea genome sequences greatly enriched chickpea genomic repertoire that provided us great opportunity for exploring the novel genetic determinants/haplotypes controlling these stresses across the whole genome level through genome-wide association study (GWAS). In parallel, current efforts of re-sequencing of global chickpea germplasm hold great promise for exploring ‘haplotype assembly’ carrying allelic variations for various abiotic stresses. Likewise, rapid advances in functional genomic approaches have enabled in unfolding the candidate gene(s) underlying the QTLs controlling these abiotic stresses, providing novel insights into the key molecular players participating in the complex mechanisms to acclimatize chickpea against various abiotic stress stimuli. In this chapter, we cover the effects of various abiotic stresses in chickpea, scope of diverse gene pool enabling in tailoring abiotic stress-tolerant chickpea genotypes and the role of rapidly growing genomics and emerging phenomics approaches to measure precise spatio-temporal response of plant under abiotic stresses for bridging genotyping and phenotyping gap. Finally, we conclude the chapter by discussing feasibility and scope of novel breeding techniques including genomic selection, ‘speed breeding’ and genome editing tool that could help in accelerating desired genetic gain to ensure protein-based nutritional food security under the fluctuating global climate scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbo S, Lev-Yadun S, Galwey N (2002) Vernalization response of wild chickpea. New Phytol 154:695–701

    Article  PubMed  CAS  Google Scholar 

  • Agarwal G, Garg V, Kudapa H, Doddamani D, Pazhamala LT, Khan AW, Thudi M, Lee SH, Varshney RK (2016) Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol J 14:1563–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amalraj A, Taylor J, Sutton T (2019) A hydroponics based high throughput screening system for Phytophthora root rot resistance in chickpea (Cicer arietinum L.). Plant Methods 15:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arslan O, Eyidogan F, Ekmekci Y (2018) Freezing tolerance of chickpea: biochemical and molecular changes at vegetative stage. Biol Plant 62:140–148

    Article  CAS  Google Scholar 

  • Ashraf M, Waheed A (1998) Components of genetic variation of salt tolerance in chickpea (Cicer arietinum L.). Arch Agron Soil Sci 42:415–424

    Article  CAS  Google Scholar 

  • Atieno J, Li Y, Langridge P, Dowling K, Brien C, Berger B, Varshney RK, Sutton T (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Report 7:1300

    Article  CAS  Google Scholar 

  • Badhan S, Kole P, Ball A, Mantri N (2018) RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance. Plant Physiol Biochem 129:295–304

    Article  CAS  PubMed  Google Scholar 

  • Berger JD, Buck R, Henzell JM, Turner NC (2005) Evolution in the genus Cicer-vernalisation response and low temperature pod set in chickpea (Cicer arietinum L.) and its annual wild relatives. Aust J Agric Res 56:1191–1200

    Article  Google Scholar 

  • Berger JD, Kumar S, Nayyar H, Street KA, Sandhu JS, Henzell JM, Kaur J, Clarke HC (2012) Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crop Res 126:119–129

    Article  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodner G, Alsalem M, Nakhforoosh A, Arnold T, Leitner D (2017) RGB and spectral root imaging for plant phenotyping and physiological research: experimental setup and imaging protocols. J Vis Exp (126). https://doi.org/10.3791/56251

  • Canci H, Toker C (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 19:47–54

    Article  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    Article  CAS  Google Scholar 

  • Chen Y, Ghanem ME, Siddique KHM (2017) Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. J Exp Bot 68:1987–1999

    CAS  PubMed  Google Scholar 

  • Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crop Res 90:323–334

    Article  Google Scholar 

  • Clarke HJ, Khan TN, Siddique KHM (2004) Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica 139:65–74

    Article  Google Scholar 

  • Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil M, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devasirvatham V, Tan D (2018) Impact of high temperature and drought stresses on chickpea production. Agronomy J8:1–9

    Google Scholar 

  • Devasirvatham V, Gaur P, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018

    Article  PubMed  Google Scholar 

  • Devasirvatham V, Gaur P, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2013) Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Res 142:9–19

    Article  Google Scholar 

  • Devasirvatham V, Gaur PM, Raju TN, Trethowan RM, Tan DKY (2015) Field response of chickpea (Cicer arietinum L.) to high temperature. Field Crops Res 172:59–71

    Article  Google Scholar 

  • Dua RP (2001) Genotypic variations for low and high temperature tolerance in gram (Cicer arietinum). Indian J Agric Sci 71:561–566

    Google Scholar 

  • Farooq M, Hussain M, Nawaz A, Lee DJ, Alghamdi SS, Siddique KH (2017) Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiol Biochem 111:274–283

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Ullah A, Lee DJ, Alghamdi SS, Siddique KH (2018) Desi chickpea genotypes tolerate drought stress better than kabuli types by modulating germination metabolism, trehalose accumulation, and carbon assimilation. Plant Physiol Biochem 126:47–54

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:17–345

    Article  Google Scholar 

  • Farshadfar E, Sabaghpour SH, Khaksar N (2008) Inheritance of drought tolerance in chickpea (Cicer arietinum L.) using joint scaling test. J Appl Sci 8:3931–3937

    Article  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:636–644

    Google Scholar 

  • Garg R, Bhattacharjee A, Jain M (2015) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Rep 33:388–400

    Article  CAS  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Article  Google Scholar 

  • Gaur PM, Jukanti AK, Samineni S, Chaturvedi SK, Basu PS, Babbar A, Jayalakshmi V, Nayyar H, Devasirvatham V, Mallikarjuna N, Krishnamurthy L (2013) Climate change and heat stress tolerance in chickpea. climate change and plant abiotic stress tolerance. Wiley Blackwell, Weinheim, pp 837–856

    Book  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamwieh A, Imtiaz M (2015) Identifying water-responsive and drought-tolerant chickpea genotypes. Crop Pasture Sci 66:1003–1011

    Article  CAS  Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra RS (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arietinum L.). Theor Appl Genet 126:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME(2009) Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Google Scholar 

  • Hickey LTN, Hafeez A, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M et al (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavikishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  CAS  PubMed  Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  • Ismail AM, Horie T (2017) Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol 68:19.1–19.30

    Article  CAS  Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290:559–571

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  • James RA, Sirault XR (2012) Infrared thermography in plant phenotyping for salinity tolerance. Methods Mol Biol 913:173–189

    CAS  PubMed  Google Scholar 

  • Jha UC (2018) Current advances in chickpea genomics: applications and future perspectives. Plant Cell Rep 37:947–965

    Article  CAS  PubMed  Google Scholar 

  • Jha UC, Shil S (2015) Association analysis of yield contributing traits of chickpea genotypes under high temperature condition. Trends Biosci 8:2335–2341

    Google Scholar 

  • Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS, Barh D (2014a) Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133:163–178

    Article  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014b) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Jha UC, Basu PS, Singh DK (2015) Genetic variation and diversity analysis of chickpea genotypes based on quantitative traits under high temperature stress. Int J Bio-Resour Stress Manag 6:700–706

    Article  Google Scholar 

  • Jha UC, Bohra A, Jha R, Parida S (2017) Integrated ‘omics’ approaches to sustain major global grain legume productivity under heat stress. Plant Breed 136:437–459

    Article  CAS  Google Scholar 

  • Jha UC, Jha R, Singh NP, Shil S, Kole PC (2018a) Heat tolerance indices and their role in selection of heat stress tolerant chickpea (Cicer arietinum L) genotypes. Indian J Agric Sci 88:260–267

    Google Scholar 

  • Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP (2018b) Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.). 3 Biotech 8:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha UC, Kole PC, Singh NP (2018c) Genetic variability and marker trait association analysis of various phenological and yield related traits for heat tolerance in chickpea (Cicer arietinum L.). Int J Bioresour Stress Manag 9:345–352

    Article  Google Scholar 

  • Jha UC, Bohra A, Jha R, Parida SK (2019a) Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep 38:255–277

    Article  CAS  PubMed  Google Scholar 

  • Jha UC, Kole PC, Singh NP (2019b) Nature of gene action and combining ability analysis of yield and yield related traits in chickpea (Cicer arietinum L.) under heat stress. Indian J Agric Sci 89:500–508

    CAS  Google Scholar 

  • Jha UC, Kole PC, Singh NP (2019c) QTL mapping for heat stress tolerance in chickpea (Cicer arietinum L.). Legume Res. https://doi.org/10.18805/LR-4121

  • Jha UC, Bohra A, Nayyar H (2019d) Advances in “omics” approaches to tackle drought stress in grain legumes. https://doi.org/10.1111/pbr.12761

  • Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health bene ts of chickpea (Cicer arietinum L.): a review. Br J Nutr 1:S11–S26

    Article  CAS  Google Scholar 

  • Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N (2018) Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep 8:4855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaiser WM, Kaiser G, Prachuab PK, Wildman SG, Heber U (1981) Photosynthesis under osmotic stress: inhibition of photosynthesis of intact chloroplasts, protoplasts and leaf slices at high osmotic potentials. Planta 153:416–422

    Article  CAS  PubMed  Google Scholar 

  • Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V, Kishor PB, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 5:15296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanouni H, Kazemi HA, Moghadam M, Neyshabouri MR (2002) Selection of Chickpea (Cicer arietinum L.) entries for drought resistance. J Agric Sci 12:109–121

    Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V, Serraj R (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146:213–222

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Crouch JH, Serraj R (2006a) Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res 95:171–181

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Singh S, Gaur PM, Upadhyaya HD, Panwar JDS, Basu PS, Ito O, Tobita S (2006b) Relationship between transpiration efficiency and carbon isotope discrimination in chickpea (Cicer arietinum L.). J SAT Agric Res 2:1–3

    Google Scholar 

  • Kashiwagi J, Krishnamurty L, Gaur PM, Chandra S, Upadhyaya HD (2008) Estimation of gene effects of the drought avoidance root characteristics in chickpea (Cicer arietinum L.). Field Crops Res 105:64–69

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Purushothaman R, Upadhyaya HD, Gaur PM, Gowda CLL, Ito O, Varshney RK (2015) Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Res 170:47–54

    Article  Google Scholar 

  • Kaur D, Grewal SK, Kaur J, Singh S (2017) Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biol Plant 61:359–366

    Article  CAS  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur PM, Siddique KHM, Nayyar H (2013) Heat-stress- induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Khan HA, Siddique KHM, Munir R, Colmer TD (2015) Salt sensitivity in chickpea: growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. J Plant Physiol 182:1–12

    Google Scholar 

  • Khan HA, Siddique KH, Colmer TD (2016) Salt sensitivity in chickpea is determined by sodium toxicity. Planta 244:623–637

    Article  CAS  PubMed  Google Scholar 

  • Khan HA, Siddique KHM, Colmer TD (2017) Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. J Expt Bot 68:2001–2011

    Google Scholar 

  • Kiran A, Kumar S, Nayyar H, Sharma KD (2019) Low temperature induced aberrations in male and female reproductive organ development cause flower abortion in Chickpea. Plant Cell Environ 42:2075

    Article  CAS  PubMed  Google Scholar 

  • Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S, Srinivasan R, Jain PK (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS One 9:e108851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotula L, Khan HA, Quealy J, Turner NC, Vadez V, Siddique KH, Clode PL, Colmer TD (2015) Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes. Plant Cell Environ 38:1565–1577

    Article  CAS  PubMed  Google Scholar 

  • Kotula L, Clode PL, Jimenez JDLC, Colmer TD (2019) Salinity tolerance in chickpea is associated with the ability to ‘exclude’ Na from leaf mesophyll cells. J Exp Bot. https://doi.org/10.1093/jxb/erz241

  • Krishnamurthy L, Johansen C, Sethi SC (1999) Investigation of factors determining genotypic differences in seed yield of non-irrigated and irrigated chickpeas using a physiological model of yield determination. J Agron Crop Sci 183:9–17

    Article  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Serraj R (2003) Genetic diversity of drought avoidance root traits in the mini-core germplasm collection of chickpea. Int Chickpea Pigeonpea Newslett 10:21–24

    Google Scholar 

  • Krishnamurthy L, Vadez V, Jyotsna Devi M, Serraj R, Nigam SN, Sheshshayee MS, Chandra S, Aruna R (2007) Variation in transpiration efficiency and its related traits in a groundnut (Arachis hypogaea L) mapping population. Field Crops Res 13:189–197

    Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Gaur PM, Upadhyaya HD, Vadez V (2010) Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicoregermplasm. Field Crops Res 119:322–330

    Article  Google Scholar 

  • Krishnamurthy L, Gaur PM, Basu PS, Chaturvedi SK, Tripathi S, Vadez V, Rathore A, Varshney RK, Gowda CLL (2011) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet Res 9:59–69

    Article  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Gowda CLL, Gaur PM, Singh S et al (2013a) Partitioning coefficienta trait that contributes to drought tolerance in chickpea. Field Crops Res 149:354–365

    Article  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Tobita S, Ito O, Upadhyaya HD, Gowda CLL, Gaur PM, Sheshshayee MS, Singh S, Vadez V, Varshney RK (2013b) Variation in carbon isotope discrimination and its relationship with harvest index in the reference collection of chickpea germplasm. Funct Plant Biol 40:1350–1361

    Article  CAS  PubMed  Google Scholar 

  • Kudapa H, Garg V, Chitikineni A, Varshney RK (2018) The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. Plant Cell Environ. https://doi.org/10.1111/pce.13210

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semi arid environments. Adv Agron 72:107–138

    Article  CAS  Google Scholar 

  • Kumar J, Rao BV (1996) Super early chickpea developed at ICRISAT Asia center. Int Chickpea Pigeonpea Newslett 3:17–18

    Google Scholar 

  • Kumar S, Malik J, Thakur P, Kaistha S, Sharma KD, Upadhyaya HD, Berger JD, Nayyar H (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 33:779–787

    Article  CAS  Google Scholar 

  • Kumar M, Chauhan AS, Kumar M, Yusuf MA, Sanyal A, Chauhan PS (2019) Transcriptome sequencing of chickpea (Cicer arietinum L.) genotypes for identification of drought-responsive genes under drought stress condition. Plant Mol Biol Rep 17:186–203

    Article  CAS  Google Scholar 

  • L’taief B, Si B, Zaman-Allah M, Drevon JJ, Lachaâl M (2007) E ect of salinity on root-nodule conductance to the oxygen di usion in the Cicer arietinum-Mesorhizobium ciceri symbiosis. J Plant Physiol 164:1028–1036

    Article  PubMed  CAS  Google Scholar 

  • Lauter DJ, Munns DN (1986) Salt resistance of chickpea genotypes in solutions salinized with NaCl or Na2SO4. Plant Soil 95:271–279

    Article  CAS  Google Scholar 

  • Leport L, Turner NC, French RJ, Barr MD, Duda R, Davies SL, Siddique KHM (1999) Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Eur J Agron 11:279–291

    Article  Google Scholar 

  • Leport L, Turner NC, Davies SL, Siddique KHM (2006) Variation in pod production and abortion among chickpea cultivars under terminal drought. Eur J Agron 24:236–246

    Article  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast‐forwarding genetic gain. Trends Plant Sci 23:183–186

    Google Scholar 

  • Ma Q, Behboudian MH, Turner NC, Palta JA (2001) Gas exchange by pods and subtending leaves and internal recycling of internal CO2 by pods of chickpea (Cicer arietinum L.) subjected to water stress. J Exp Bot 52:123–131

    CAS  PubMed  Google Scholar 

  • Macar TK, Ekmekci Y (2009) Alterations in photochemical and physiological activities of Chickpea (Cicer arietinum L.) cultivars under drought stress. J Agron Crop Sci 195:335–346

    Article  CAS  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4:580–585

    CAS  Google Scholar 

  • Mahdavi Mashaki K, Garg V, NasrollahnezhadGhomi AA, Kudapa H, Chitikineni A, Zaynali, Nezhad K et al (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One 13:e0199774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malhotra RS, Singh KB (1991) Gene action for cold tolerance in chickpea. Theor Appl Genet 5:598–601

    Article  Google Scholar 

  • Maliro MFA, MacNeil D, Redden B, Kollmorgen JF, Pittock C (2008) Sampling strategies and screening of chickpea (Cicer arietinum L.) germplasm for salt tolerance. Genet Resour Crop Evol 55:53–63

    Article  Google Scholar 

  • Mannur DM, Salimath PM, Mishra MN (2009) Evaluation of segregating populations for drought related morphological and physiological traits in chickpea. J Food Legume 22:233–238

    Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang EC (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303

    Google Scholar 

  • Merga B, Haji J, Yildiz F (2019) Economic importance of chickpea: production, value, and world trade. Cogent Food Agric 5:1615718

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon JJ, Winter P, Kahl G (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mugabe D, Coyne CJ, Piaskowski J, Zheng P, Ma Y, Landry E, et al. (2019) Quantitative trait loci for cold tolerance in chickpea. Crop Sci 59:573–582

    Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 53:39–47

    Article  CAS  Google Scholar 

  • Nayyar H, Kaur G, Kumar S, Upadhyaya HD (2007) Low temperature effects during seed filling on chickpea genotypes (Cicer arietinum L.): probing mechanisms affecting seed reserves and yield. J Agron Crop Sci 193:336–344

    Article  Google Scholar 

  • Newell MA, Jannink JL (2014) Genomic selection in plant breeding. Methods Mol Biol 1145:117–130

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Turner NC, Du YL, Colmer TD, Siddique KHM (2017a) Pattern of water use and seed yield under terminal drought in chick- pea genotypes. Front Plant Sci 8:1375

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang J, Turner NC, Khan T, Du YL, Xiong JL, Colmer TD et al (2017b) Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. J Exp Bot 68:1973–1985

    CAS  PubMed  Google Scholar 

  • Paul PJ, Samineni S, Sajja SB, Rathore A, Das RR, Khan AW, Chaturvedi SK et al (2018a) Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica 214:27

    Article  CAS  Google Scholar 

  • Paul PJ, Samineni S, Thudi M, Sajja SB, Rathore A, Das RR, Khan AW, Chaturvedi SK, Lavanya GR, Varshney RK, Gaur PM (2018b) Molecular mapping of QTLs for heat tolerance in chickpea. Int J Mol Sci 19(8):pii:E2166

    Article  CAS  Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341:833–836

    Article  CAS  PubMed  Google Scholar 

  • Pouresmael M, Khavari-Nejad RA, Mozafari J, Najafi F, Moradi F (2013) Efficiency of screening criteria for drought tolerance in chickpea. Arch Agron Soil Sci 59:1675—1693

    Google Scholar 

  • Purushothaman R, Thudi M, Krishnamurthy L, Upadhaya HD, Kashiwagi J, Gowda CLL, Varshney RK (2015) Association of mid-reproductive stage canopy depression with the molecular markers and grain yield of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Res 174:1–11

    Article  Google Scholar 

  • Purushothaman R, Krishnamurthy L, Upadhyaya HD, Vadez V, Varshney RK (2016) Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crop Res 197:10–27

    Article  Google Scholar 

  • Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KH, Colmer TD, Turner NC, Varshney RK, Vadez V (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol 15:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, Rao MV, Vadez V (2016) Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. J Agron Crop Sci 202:125–138

    Article  CAS  Google Scholar 

  • Rani A, Devi P, Jha UC, Sharma KD, Siddique KHM, Nayyar H (2020) Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front Plant Sci 10

    Google Scholar 

  • Rehman AU, Malhotra RS, Bett K, Taran B, Bueckert R, Warkentin TD (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51:450–463

    Article  Google Scholar 

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM, Lorenz A, Sutton T, Crossa J, Jannink JL, Varshney RK (2016) Genomeenabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    Google Scholar 

  • Roorkiwal M, Jarquin D, Singh MK, Gaur PM, Bharadwaj C, Rathore A, Howard R et al (2018) Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in Chickpea. Sci Rep 8:11701

    Google Scholar 

  • Reynolds M, Langridge P (2016) Physiological breeding. Curr Opin Plant Biol 31:162–171

    Article  PubMed  Google Scholar 

  • Samineni S, Thudi M, Sajja S, Varshney RK, Gaur PM (2017) Impact of genomics on Chickpea breeding. In: The Chickpea genome. Compendium of plant genomes book series (CPG). Springer, pp 125–134

    Google Scholar 

  • Samineni S, Sen M, Sajja SB, Gaur PM (2019) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J. https://doi.org/10.1016/j.cj.2019.08.003

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Chandra S, Crouch JH (2004a) Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res 88:115–127

    Article  Google Scholar 

  • Serraj R, Krishnamurthy L, Upadhyaya HD (2004b) Screening chickpea minicore germplasm for tolerance to soil salinity. Int Chickpea Pigeonpea Newslett 11:29–32

    Google Scholar 

  • Sharma KD, Nayyar H (2014) Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.). BMC Res Notes 7:717

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddique KHM, Sedgley RH (1986) Chickpea (Cicer arietinum L.), a potential grain legume for South-Western Australia: seasonal growth and yield. Aust J Agric Res 37:245–261

    Article  Google Scholar 

  • Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of South-Western Australia. Aust J Agric Res 50:375–388

    Article  Google Scholar 

  • Singh KB, Malhotra RS, Saxena MC, Bejiga G (1997) Superiority of winter sowing over traditional spring sowing of chickpea in the Mediterranean region. Agron J 89:112–118

    Article  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholova J, Halime MH, Jaganathan D, Baddam R, Thirunalasundari T, Gaur PM, Varshney RK, Vadez V (2017) High throughput phenotyping and advanced genotyping reveals QTLs for plant vigor and water saving traits in a “QTL-hotspot”: new opportunities for enhancing drought tolerance in chickpea. In: InterDrought-V, February 21–25, 2017, Hyderabad, India

    Google Scholar 

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, Jaganathan D, Baddam R, Thirunalasundari T, Gaur PM, Varshney RK, Vadez V (2018) Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol 18:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srinivasan A, Takeda H, Senboku T (1996) Heat tolerance in food legumes as evaluated by cell membrane thermo stability and chlorophyll fluorescence techniques. Euphytica 88:35–45

    Article  Google Scholar 

  • Srinivasan A, Johansen C, Saxena NP (1998) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.). Characterization of stress and genetic variation in pod set. Field Crops Res 57:181–193

    Article  Google Scholar 

  • Srinivasan A, Saxena NP, Johansen C (1999) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.), genetic variation in gamete development and function. Field Crops Res 60:209–222

    Article  Google Scholar 

  • Srivastava R, Bajaj D, Malik A, Singh M, Parida SK (2016) Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 6:1–17

    Article  CAS  Google Scholar 

  • Talebi R, Ensafi MH, Baghebani N, Karami E, Mohammadi K (2013) Physiological responses of chickpea (Cicer arietinum) genotypes to drought stress. Environ Exp Biol 11:9–15

    Google Scholar 

  • Tejera NA, Soussi M, Lluch C (2006) Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ Exp Bot 58:17–24

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NV, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thudi M, Khan AW, Kumar V, Gaur PM, Katta K, Garg V, Roorkiwal M, Samineni S, Varshney RK (2016) Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biol 1:10

    Google Scholar 

  • Toker C, Canci H, YildirimT (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54:1781–1786

    Google Scholar 

  • Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L, Kaur J, Singh G, Siddique KHM, Vadez V (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365:347–361

    Google Scholar 

  • Upadhyaya HD, Kashiwagi J, Varshney RK, Gaur PM, Saxena KB, Krishnamurthy L, Gowda CLL, Pundir RPS, Chaturvedi SK, Basu PS, Singh IP (2012) Phenotyping chickpeas and pigeonpeas for adaptation to drought. Front Physiol 3:1–10

    Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hois-ington DA, Varshney RK, Turner NC, Siddique KHM (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res 104:123–129

    Article  Google Scholar 

  • Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC, Siddique KHM, Gaur PM, Varshney RK (2012) Assessment of ICCV 2 9 JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30:9–21

    Article  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10:523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013a) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013b) Fast-track introgression of ‘QTL-hotspot’ for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome. https://doi.org/10.3835/plantgenome2013.07.0022

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W, Bajaj P, Cubry P, Rathore A, Jian J et al (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet 51:857–864

    Article  CAS  PubMed  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129:653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H, Xu B, Yang X, Zhu D, Zhang X et al (2017) Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front Plant Sci 8:1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186

    Article  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011) A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. J Exp Bot 62:4239–4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Chen W, Sankaran S (2019) High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Prot 125:104885

    Article  Google Scholar 

  • Zhao C, Zhang Y, Du J, Guo X, Wen W, Gu S et al (2019) Crop phenomics: current status and perspectives. Front Plant Sci 10:714

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

UCJ acknowledges support from National Innovations on Climate Resilient Agriculture project, ICAR, New Delhi for writing this book chapter.

Conflict of Interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, U.C., Nayyar, H., Jha, R., Nath, C.P., Datta, D. (2020). Chickpea Breeding for Abiotic Stress: Breeding Tools and ‘Omics’ Approaches for Enhancing Genetic Gain. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-47306-8_8

Download citation

Publish with us

Policies and ethics