Skip to main content

Principles and Techniques for Rapid Improvement of Muskmelon for Yield, Fruit Quality and Resistance to Biotic Stresses

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

Muskmelon (Cucumis melo L.) is a highly polymorphic taxon encompassing a large number of botanical and horticultural varieties or groups exhibiting a wide range of variability in morphological, physiological and biochemical traits that govern their preferences. It shows enormous variation in fruit traits such as size, shape, colour, taste, texture and nutrient composition. Improvement in yield, quality and resistance to biotic stresses is normally achieved by selecting genotypes with desirable character combinations existing in the nature or by hybridization, but it may be a time-consuming approach. Genomic-assisted breeding and plant transformation techniques to introduce new or foreign genes into commercial varieties for improvement of specific traits especially disease resistance and fruit quality traits facilitate rapid improvement. Genetic mapping of QTLs for important horticultural traits including fruit quality has been an important component of the melon breeding programmes. Advances in next-generation sequencing technologies (NGS) facilitated the rapid decrease in cost of sequencing and enabled the cost-effective application of genomics in many crop improvement programmes. Identification of large numbers of SNPs through re-sequencing has made it possible to locate and refine candidate genomic regions for fruit quality traits in melon more efficiently compared to traditional QTL mapping approaches. Many QTLs associated with different fruit quality traits, ripening behaviour and carotene content have been identified, and possible candidate genes responsible for those traits could also been located in the associated genomic regions. Marker-assisted selection has been successfully utilized for introgression of disease resistance genes from other related melon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC (1996) Expression of an antisense ACC oxidase gene inhibits ripening in cantaloupe melons fruits. Nat Biotechnol 14:862–866

    CAS  PubMed  Google Scholar 

  • Bhimappa BB, Choudhary H, Sharma VK, Behera TK (2018) Genetic diversity analysis for fruit quality traits and nutrient composition in different horticultural groups of muskmelon (Cucumis melo L.). Indian J Hortic 75(1):58–63. https://doi.org/10.5958/0974-0112.2018.00010.5

    Article  Google Scholar 

  • Bhimappa BB, Choudhary H, Behera TK, Sharma VK, Hussain Z, Tomar BS (2019) Study of genetic diversity in muskmelon (Cucumis melo) from different horticultural groups. Indian J Agric Sci 89:1293–1297

    Google Scholar 

  • Bohn GW, Kishaba AN, Principe JA, Toba HH (1973) Tolerance to melon aphid in Cucumis melo L. J Am Soc Hortic Sci 98:37–40

    Google Scholar 

  • Boissot N, Lafortune D, Pavis C, Sauvion N (2003) Field resistance to Bemisia tabaci in Cucumis melo. HortScience 38:77–80

    Google Scholar 

  • Burger Y, Sa’ar U, Katzir N, Paris HS, Yeselson Y, Levin I, Schaffer AA (2002) A single recessive gene for sucrose accumulation in Cucumis melo fruit. J Am Soc Hortic Sci 127:938–943

    CAS  Google Scholar 

  • Burger Y, Sa’ar U, Distelfeld A, Katzir N,Yeselson Y, Shen A, Schaffer AA (2003) Development of sweet melon (Cucumis melo L.) genotypes combining high sucrose and organic acid contentJ. Amer. Soc. Hort. Sci.128537540

    Google Scholar 

  • Chayut N, Yuan H, Ohali S, Meir A, Yeselson Y, Portnoy V, Zheng Y, Fei Z, Lewinsohn E, Katzir N et al (2015) A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit b-carotene accumulation in melon fruit. BMC Plant Biol 15:274

    PubMed  PubMed Central  Google Scholar 

  • Chayut N, Yuan H, Ohali S et al (2017) Distinct mechanisms of the ORANGE protein in controlling carotenoid flux. Plant Physiol 173:376–389. https://doi.org/10.1104/pp.16.01256

    Article  CAS  PubMed  Google Scholar 

  • Choudhary H, Ram HH, Singh DK (2011) Genetic variability study in muskmelon. Progress Hortic 43(2):231–233

    Google Scholar 

  • Choudhary H, Dhar S, Kalia P (2013) Identification of new sources of resistance for Fusarium wilt of muskmelon. In: Book of abstract of national symposium on abiotic and biotic stress management in vegetable crops. IIVR, Varanasi, India, p 23

    Google Scholar 

  • Choudhary H, Beesanakoppa BB, Behera TK, Dhar S, Shanmugam V (2015) Genetic characterization of novel source of resistance against Fusarium wilt of muskmelon and validation of Fom-2 gene. In: Book of abstract of national symposium on Germplasm to gene: harnessing biotechnology for food security and health, New Delhi, India

    Google Scholar 

  • Choudhary HS, Kalia P (2013) Identification of new sources of resistance for Fusarium wilt of muskmelon. In: Book of abstract of national symposium on abiotic and biotic stress management in vegetable crops. IIVR, Varanasi, p 23

    Google Scholar 

  • Choudhary H, Beesanakoppa BB, Dhar S, Tomar BS (2019a) Potential of genomics assisted breeding for introgression of resistance gene and fruit quality improvement in melon. In: Book of abstract of 1st vegetable science congress on emerging challenges in vegetable research & education, Jodhpur, 1–3 Feb, p 86

    Google Scholar 

  • Choudhary H, Behera TK, Munshi AD (2019b) Breeding approaches and achievements in vegetable crops for protected cultivation. In: Singh SK, Patel VB, Goswami AK, Prakash, JP, Kumar C (eds) Breeding of perennial horticultural crops. Biotech Books, New Delhi

    Google Scholar 

  • Clendennen SK, Kellogg JA, Wolff KA, Matsumura W, Peters S, Vanwinkle JE, Copess B, Pieper W, Kramer MG (1999) Genetic engineering of cantaloupe to reduce ethylene biosynthesis and control ripening. In: Kanellis AK, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene. Kluwer, Dordrecht, pp 371–379

    Google Scholar 

  • Clough GH, Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe. Plant Dis 79:1107–1109

    CAS  Google Scholar 

  • Coudriet DL, Kishaba AN, Bohn GW (1981) Inheritance of resistance to muskmelon necrotic spot virus in a melon aphid resistance breeding lines of muskmelon. J Am Soc Hortic Sci 106:789–791

    Google Scholar 

  • Crosby K, Wolff D, Miller M (2000) Comparisons of root morphology in susceptible and tolerant melon cultivars before and after infection by Monosporascus cannonballus. Hortic Sci 35:681–683

    Google Scholar 

  • Cui ML, Takada K, Ma B, Ezura H (2004) Over-expression of a mutated melon ethylene receptor gene CmETR1/H69A confers reduced ethylene sensitivity in a heterologous plant, Nemesia strumosa. Plant Sci 167:253–258

    CAS  Google Scholar 

  • Cuevas HE, Staub JE, Simon PW, McCreight JD, Zalapa JE (2008) Mapping of genetic loci that regulate accumulation of Beta-Carotene in fruit of U.S. Western shipping melon (Cucumis melo L.) and their association with putative carotenoid biosynthesis genes. Theor Appl Genet 117:1345–1359

    CAS  PubMed  Google Scholar 

  • Cuevas HE, Staub JE, Simon PW (2010b) Inheritance of beta-carotene-associated mesocarp color and fruit maturity of melon (Cucumis melo L.). Euphytica 173:129–140

    CAS  Google Scholar 

  • Danin-Poleg Y, Paris HS, Cohen S, Rabinowithc HD, Karchi Z (1997) Oligogenic inheritance of resistance to zucchini yellow mosaic virus in melons. Euphytica 93:331–337

    Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384

    CAS  Google Scholar 

  • Daryono BS, Somowiyarjo S, Natsuaki KT (2005) Screening for resistance to Kyuri green mottle mosaic virus in various melons. Plant Breed 124:487–490

    Google Scholar 

  • Dhillon NPS, Monforte AJ, Pitrat M, Pandey S, Singh PK et al (2012) Melon landraces of India: contributions and importance. Plant Breeding Rev 35:85–150

    Google Scholar 

  • Dias RDS, Pico B, Espinos A, Nuez F (2004) Resistance to melon vine decline derived from Cucumis melo spp. agrestis: genetic analysis for root structure and root response. Plant Breed 123:66–72

    Google Scholar 

  • Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, Monforte AJ (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Pendon JA, Fernandez-munoz R, Gomez-Guillamon ML, Moriones E (2005) Inheritance of resistance to watermelon mosaic virus in Cucumis melo that impairs virus accumulation, symptom expression and aphid transmission. Phytopathology 95:840–846

    PubMed  Google Scholar 

  • Diaz A, Forment J, Argyris J, Fukino N, Tzuri G, Harel-Beja R, Katzir N, Garcia-Mas J, Monforte A (2015) Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breed 35:1–7

    CAS  Google Scholar 

  • Dogimont C, Bussemakers A, Martin J, Slama S, Lecoq H, Pitrat M (1997) Two complementary recessive genes conferring resistance to cucurbit aphid borne yellows luteovirus in an Indian melon line (Cucumis melo L.). Euphytica 96:391–395

    Google Scholar 

  • Dogimont C, Bordat D, Pages C, Boissot N, Pitrat M (1999) One dominant gene conferring the resistance to the leafminer Liriomyza trifolii (Burgess) Diptera: Agromyzidae in melon (Cucumis melo L.). Euphytica 105:63–67

    Google Scholar 

  • Dogimont C, Lecotmte L, Perin C, Thabuis A, Lecoq H, Pitrat M (2000) Identification of QTLs contributing to resistance to different strains of cucumber mosaic cucumovirus in melon. In: Cucurbitaceae 2000, 7th EUCARPIA meeting on cucurbit genetics and breeding, pp 391–398

    Google Scholar 

  • Dwivedi NK, Bhandari DC, Neelam B (1998) Collecting wild species of some crop plants from Aravalli hills, Rajasthan, India. Indian J Pl Genet Resour 11(1):41–48

    Google Scholar 

  • Dwivedi NK, Dhariwal OP, Gopala Krishnan S, Bhandari DC (2010) Distribution and extent of diversity in Cucumis species in the Aravalli ranges of India. Genet Resour Crop Evol 57:443–452

    Google Scholar 

  • Epinat C, Pitrat M (1994a) Inheritance of resistance to downy mildew (Pseudopernospora cubensis) in muskmelon (Cucumis melo L.). I. Analysis of a 8×8 diallel table. Agronomie 14:239–248

    Google Scholar 

  • Epinat C, Pitrat M (1994b) Inheritance of resistance to downy mildew (Pseudopernospora cubensis) in muskmelon (Cucumis melo L.). II. Generation means analysis of 5 genitors. Agronomie 14:249–257

    Google Scholar 

  • Ezura H, Owino WO (2008) Melon, an alternative model plant for elucidating fruit ripening. Plant Sci 175:121–129

    CAS  Google Scholar 

  • Fang GW, Grumet R (1993) Genetic-engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic-virus coat protein gene. Mol Plant-Microbe Interact 6:358–367

    CAS  PubMed  Google Scholar 

  • Fleshman MK, Lester GE, Reidl KM, Kopec RE, Narayanasamy S, Curley RW, Schwartz SJ, Harrison EH (2011) Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability. J Agric Food Chem 599:4448–4454

    Google Scholar 

  • Frantz JD, Jahn MM (2004) Five independent loci each control monogenic resistance to gummy stem blight in melon (Cucumis melon L.). Theor Appl Genet 108:1033–1038

    CAS  PubMed  Google Scholar 

  • Fuchs M, McFerson, JR, Tricoli D, McMaster JR, Deng RZ, Boeshore ML, Reynolds JF, Russell PF, Quemada HD, Gonsalves D (1997) Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol Breed 3:279–290

    Google Scholar 

  • Gao Y, Xue Q, Wang D, Du M, Zhang Y, Gao S (2015) miR-873 induces lung adenocarcinoma cell proliferation and migration by targeting SRCIN1. Am J Transl Res 7:2519–2526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin M, Zelcer A, Kenigsbuch D (2003) High competence for adventitious regeneration in the BU-21/3 melon genotype is controlled by a single dominant locus. HortScience 38:1167–1168

    CAS  Google Scholar 

  • Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology – the importance of virus resistance. In Vitro Cell Dev Biol-Plant 40:346–358

    CAS  Google Scholar 

  • Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S et al (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq based high-resolution QTL and e QTL mapping. Plant J 94:169–191. https://doi.org/10.1111/tpj.13838

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109:11872–11877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert RZ, Kyle MM, Munger HM, Gray SM (1994) Inheritance of resistance to watermelon mosaic virus in Cucumis melo L. Hortic Sci 29:107–110

    Google Scholar 

  • Gonsalves C, Xue B, Yepes M, Fuchs M, Ling KS, Namba S, Chee P, Slightom JL, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J Am Soc Hortic Sci 119:345–355

    CAS  Google Scholar 

  • Gonzalo MJ, Claveria E, Monforte AJ, Sanjuan RD (2011) Parthenogenic haploids in melon: generation and molecular characterization of a doubled haploid line population. J Am Soc Hortic Sci 136(2):145–154. https://doi.org/10.21273/JASHS.136.2.145

    Article  CAS  Google Scholar 

  • González M et al (2011) Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res Notes 4:289

    PubMed  PubMed Central  Google Scholar 

  • Gonzalo MJ, Aurora D, Dhillon NPS, Reddy UK et al (2019) Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping by-sequencing analysis. BMC Genomics 20:448. https://doi.org/10.1186/s12864-019-5784-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray DJ, McColley DW, Compton ME (1993) High frequency somatic embryogenesis from qui-escent seed cotyledons of Cucumis melo cultivars. J Am Soc Hortic Sci 118:425–432

    Google Scholar 

  • Guis M, Botondi R, Ben Amor M, Ayub R, Bouzayen M, Pech JC, Latché A (1997) Ripening- associated biochemical traits of cantaloupe charentais melons expressing an antisense ACC oxidase transgene. J Am Soc Hortic Sci 122:748–751

    CAS  Google Scholar 

  • Guillaume R, Boissot N (2001) Resistance to Diaphania hyalinata (Lepidoptera: Crambidae) in Cucumis species. J Econ Entomol 94:719–723

    CAS  PubMed  Google Scholar 

  • Jagger IC, Whitaker TW, Porter DR (1938) A new biotic form of powdery mildew on muskmelon in the Imperial valley of California. Plant Dis Rep 22:275–276

    Google Scholar 

  • Jahn M, Munger HM, McCreight JD (2002) Breeding cucurbit crops for powdery mildew resistance. In: The powdery mildews. John wiley, location USA, A comprehensive treatise, pp 239–242

    Google Scholar 

  • Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297

    CAS  PubMed  Google Scholar 

  • Kaan JF (1973) Recherché sur la resistance du melon aux maladies, notamment a la mosaique de la pasteque et au Pseudopernospora, appliqués au type varietal “Cantaloup”. In: Rsser G (eds) EUCARPIA meeting on melon, Saint Paul, MN: APS Press, pp 41–49

    Google Scholar 

  • Karchi Z, Cohen S, Govers A (1975) Inheritance of resistance to cucumber mosaic virus in melons. Phytopathology 65:479–481

    Google Scholar 

  • Kenigsbuch D, Cohen Y (1989) Inheritance of resistance to downy mildew in a gynocious muskmelon. Plant Dis 73:994–996

    Google Scholar 

  • Kenigsbuch D, Cohen Y (1992) Inheritance of resistance to downy mildew in Cucumis melo PI 124112 and commonality of resistance genes with PI 124111F. Plant Dis 76:615–617

    Google Scholar 

  • Kennedy GG, Bohn GW, Stonar AK, Webb RE (1978) Leafminer resistance in muskmelon. J Am Soc Hortic Sci 103:571–574

    Google Scholar 

  • Kishaba AN, Bohn GW, Toba HH (1971) Resistance of Aphis gossypii in muskmelon. J Econ Entomol 64:935–937

    Google Scholar 

  • Lecoq H (2003) Cucurbits. In: Loebenstein G, Thottappilly G (eds) Virus and virus-like diseases of major crops in developing countries. Kluwer Academic Publishers, Dordrecht, pp 665–688

    Google Scholar 

  • Lecoq H, Cohn S, Pitrat M, Labonne G (1979) Resistance to cucumber mosaic virus transmission by aphids in Cucumis melo. Phytopathology 69:1223–1225

    Google Scholar 

  • Lecoq H, Labonne G, Pitrat M (1980) Specificity of resistance to virus transmission by aphids in Cucumis melo. Ann Phytopathol 12:139–144

    Google Scholar 

  • Liou PC, Chang YM, Hsu WS, Cheng YH, Chang HR, Hsiao CH (1998) Construction of a linkage map in Cucumis melo (L.) using random amplified polymorphic DNA markers. In: Drew RA (ed) Proceedings of the international symposium in biotechnology: tropical and subtropical species, pp 123–131

    Google Scholar 

  • Lopez-Sese AI, Gomez-Guillamon ML (2000) Resistance to cucurbit yellowing stunting disorder virus (CYSDV) in Cucumis melo L. Hortic Sci 35:110–113

    Google Scholar 

  • Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267. https://doi.org/10.3389/fpls.2015.00267

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallor C, Alvarez JM, Luis-artiga M (2003) Inheritance of resistance to systemic symptoms expression of melon necrotic spot virus (MNSV) in Cucumis melo L. ‘Doublon’. Euphytica 134:319–324

    Google Scholar 

  • McCreight JD (2000) Inheritance of resistance to lettuce infectious yellows virus in melon. Hortic Sci 35:1118–1120

    Google Scholar 

  • McCreight JD (2003) Genes for resistance to powdery mildew races 1 and 2 U.S. in melon PI 313970. Hortic Sci 38:591–594

    Google Scholar 

  • McCreight JD (2006) Melon-powdery mildew interactions reveal variation in melon cultigens and Podosphaera xanthii races 1 and 2. J Am Soc Hortic Sci 131:59–65

    Google Scholar 

  • McCreight JD, Fashing-Burdette P (1996) Resistance of PI 124112 and ‘Eldoardo-300’ melons (Cucumis melo L.) to papaya ring spot virus watermelon strain. In: Cucurbits toward 2000. VIth EUCARPIA meeting on cucurbit in genetic and breeding, pp 298–301

    Google Scholar 

  • Molina RV, Nuez F (1997) Sexual transmission of the in vitro regeneration capacity via caulogen- esis of Cucumis melo L. in a medium with a high auxin/cytokinin ratio. Sci Hort 70:237–241

    Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theoretical and Applied Genetics 108:750–758. https://doi.org/10.1007/s00122-003-1483-x

    Article  CAS  PubMed  Google Scholar 

  • More TA (2001) Enhancement of muskmelon resistance to disease via breeding and transformation. In: Proceedings of the second international symposium, pp 205–211

    Google Scholar 

  • Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602

    CAS  PubMed  Google Scholar 

  • Munshi AD, Choudhary H (2014) Muskmelon. In Handbook of Vegetables Volume III (eds. K.V. Peter and P. Hazra), Studium Press, New Delhi 271–310

    Google Scholar 

  • Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 14:43–44

    Google Scholar 

  • Napier AB (2006) Identification and confirmation of molecular markers and orange flesh color associated with major QTL for high beta-carotene content in muskmelon. M.Sc. Thesis, Texas A&M University

    Google Scholar 

  • Nishiyama K, Guis M, Rose JKC, Kubo Y, Bennett KA, Wangjin L, Kato K, Ushijima K, Nakano R, Inaba A, Bouzayen M, Latche A, Pech J-C, Bennett AB (2007) Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J Exp Bot 58:1281–1290

    CAS  PubMed  Google Scholar 

  • Nuez F, Pico B, Iglesias A, Esteva J, Juarez M (1999) Genetics of melon yellows virus resistance derived from Cucumis melo spp. agrestis. Eur J Plant Pathol 105:453–464

    Google Scholar 

  • Nunez-Palenius GH, Gomez-Lim M, Ochoa-Alejo N (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55

    CAS  PubMed  Google Scholar 

  • Oridate T, Atsumi H, Ito S, Araki H (1992) Genetic difference in somatic embryogenesis from seeds in melon (Cucumis melo L.). Plant Cell Tissue Organ Cult 29:27–30

    Google Scholar 

  • Oumouloud A, Mokhtari M, Chikh-Rouhou H, Arnedo-Andrés MS, González-Torres R, Álvarez JM (2012) Characterization of the Fusarium wilt resistance Fom-2 gene in melon. Mol Breed 30:325–334

    CAS  Google Scholar 

  • Paris KM, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic and elite US Western shipping germplasm. Mol Breed. https://doi.org/10.1007/S11032-008-9185-3

  • Pech JC, Bouzayen M, Latché A (2008) Climacteric fruit ripening: ethylene dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 175:114–120

    CAS  Google Scholar 

  • Perchepied L, Bardin M, Dogimont C, Pitrat M (2005a) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by QTL mapping. Phytopathology 95:556–565

    CAS  PubMed  Google Scholar 

  • Perchepied L, Dgimont C, Pitrat M (2005b) Strain-specific and recessive QTLs involved in control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet 111:65–74

    CAS  PubMed  Google Scholar 

  • Pereira L, Ruggieri V, Pérez S et al (2018) QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biol 18:324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech J, Latché A et al (2002) Molecular and genetic characterization of a non- climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perin C, Hagen LS, de Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002a) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    CAS  PubMed  Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002b) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L). Mol Gen Genomics 266:933–941

    CAS  Google Scholar 

  • Pitrat M (2016) Melon genetic resources: phenotypic diversity and horticultural taxonomy. Springer, New York, pp 1–36

    Google Scholar 

  • Pitrat M, Lecoq H (1983) Two alleles for watermelon mosaic virus 1 resistance in melon. Cucurbit Genet Coop Rep 6:52–53

    Google Scholar 

  • Pitrat M, Lecoq H (1984) Inheritance of Zucchini yellow mosaic virus resistance in Cucumis melo L. Euphytica 33:57–61

    Google Scholar 

  • Reddy ANK, Munshi AD, Behera TK, Kaur C (2005) Studies on genetic and biochemical parameters of introduced and indigenous germplasm in snap melon (Cucumis melo. L. var. momordica Duth. and Full.). Indian J Plant Genet Resour 18(1):91–93

    Google Scholar 

  • Rıos P, Argyris J, Vegas J, Leida C et al (2017) ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. Plant J 91:671–683

    PubMed  Google Scholar 

  • Risser G (1973) Etude de 1′heredite de la resistance du melon (Cucumis melo L.) aux races. 1 et 2 de Fusarium oxysporum f. sp. melonis. Ann Amelior Plantes 23:259–263

    Google Scholar 

  • Risser G, Banihashemi Z, Davis DW (1976) A proposed nomenclature of Fusarium oxysporum f sp. melonis races and resistance gene in Cucumis melo. Phytopathology 66:1105–1106

    Google Scholar 

  • Risser G, Pitrate M, Rode JC (1977) Etude de la resistance du melon (Cucumis melo. L.) au virus de la mosaique du concombre. Ann Amelior Plantes 27:509–522

    Google Scholar 

  • Robinson RW (1992) Genetic resistance in the Cucurbitaceae to insects and spider mites. In: Plant breeding reviews, John wiley, location USA, pp 309–360

    Google Scholar 

  • Robinson RW, Provvidvnti R (1975) Susceptibility to powdery mildew in Citrullus lanatus (Thunb.) Matsum and Nakai. J Am Soc Hortic Sci 100:328–300

    Google Scholar 

  • Saez C, Esteras C, Martinez C, Ferriol M, Dhillon NPS, Lopez C, Pico B (2017) Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep 36(10):1571–1584

    CAS  PubMed  Google Scholar 

  • Saladie M, Cañizares J, Phillips MA, Rodriguez-Concepcion M, Larrigaudiere C, Gibon Y, Stitt M, Lunn JE, Garcia-Mas J (2015) Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genom 16:440. https://doi.org/10.1186/s12864-015-1649-3

    Article  CAS  Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A 107:14269–14273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JA, da Costa TS, Luchetta L, Marini LJ, Zanuzo MR, Nora L, Nora FR, Twyman RM, Rom-baldi CV (2004) Characterization of ripening behaviour in transgenic melons expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene from apple. Postharvest Biol Technol 32:263–268

    CAS  Google Scholar 

  • Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, Klingler J, Thompson G, Portnoy V, Katzir N, Perl-Treves R (2003) Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761–773

    CAS  PubMed  Google Scholar 

  • Sousaraei N, Ramshini H, Lotfi M, Sharzei A (2018) Marker assisted backcrossing for introgression of Fusarium wilt resistance gene into melon. Euphytica 214(7):7

    Google Scholar 

  • Soria C, Moriones E, Fereres A, Garzo E, Gomez-Guillamon ML (2003) New source of resistance to mosaic virus transmission by Aphis gossypii in melon. Euphytica 133:313–318

    CAS  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenogsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CE (1986) Downey and powdery mildew resistance musk melon breeding line MR-1. Hortic Sci 21:329

    Google Scholar 

  • Thomas CE, McCreight JD, Jourdain EL (1990) Inheritance of resistance to Alternaria cucumerina in Cucumis melo line MR-1. Plant Dis 74:868–870

    Google Scholar 

  • Tomason Y, Nimmakayala P, Levi A, Reddy UK (2013) Map based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed 31:829–841. https://doi.org/10.1007/s11032-013-9837-9

    Article  CAS  Google Scholar 

  • Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, Meir A et al (2015) A “golden” SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J 82:267–279

    CAS  PubMed  Google Scholar 

  • Vegas J, Garcia-Mas J, Monforte AJ (2013) Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet 126:1531–1544

    CAS  PubMed  Google Scholar 

  • Wang YH, Thomas CE, Dean RA (2000) Genetic mapping of a Fusarium wilt resistance gene Fom-2 in melon (Cucumis melo L.). Mol Breed 6:379–389

    CAS  Google Scholar 

  • Wang S, Yang J, Zhang M (2011) Developments of functional markers for Fom-2-mediated Fusarium wilt resistance based on single nucleotide polymorphism in melon (Cucumis melo L.). Mol Breed 27:385–393

    CAS  Google Scholar 

  • Webb RE (1979) Inheritance of resistance to watermelon mosaic virus in Cucumis melo L. Hortic Sci 14:265–266

    Google Scholar 

  • Wechter WP, Whitehead MP, Thomas CE, Dean RA (1995) Identification of a randomly amplified polymorphic DNA marker linked to the Fom-2 Fusarium wilt resistance gene in muskmelon MR-1. Phytopathology 85:1245–1249

    CAS  Google Scholar 

  • Whitaker TW (1979) The breeding of vegetable crop. Highlights of the past seventy five years. Hortic Sci 14:359–363

    Google Scholar 

  • Whitaker TW, Davis GN (1962) Cucurbits cultivation and utilization. Leonard Hill, London

    Google Scholar 

  • Yoshioka K, Hanada K, Harada T, Minobe Y, Oosawa K (1993) Virus-resistance in transgenic melon plants that express the cucumber mosaic-virus coat protein gene and in their progeny. Jpn J Breed 43:629–634

    Google Scholar 

  • Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas HE (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201

    CAS  PubMed  Google Scholar 

  • Zheng XY, Wolf DW (2000) Development of a SCAR marker associated with Fusarium wilt resistance and the evidence of its segregation with the Fom-2 gene in melon (Cucumis melo L.). Subtrop Plant Sci 52:1–7

    Google Scholar 

  • Zheng XY, Wolff DW, Baudracco-Arnas S, Pitrat M (1999) Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLPs) linked to the Fom-2 Fusarium wilt resistance gene in melon (Cucumis melo L.). Theor Appl Genet 99:453–463

    CAS  PubMed  Google Scholar 

  • Zhong S, Joung J-G, Zheng Y, Chen Y-R, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ (2011) High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc:940–949. Pdb.prot5652. https://doi.org/10.1101/pdb.prot5652

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, H., Yadav, R.K., Maurya, S.K. (2020). Principles and Techniques for Rapid Improvement of Muskmelon for Yield, Fruit Quality and Resistance to Biotic Stresses. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_14

Download citation

Publish with us

Policies and ethics