Skip to main content

Minimally Invasive Root Canal Instrumentation

  • Chapter
  • First Online:
Minimally Invasive Approaches in Endodontic Practice

Abstract

Despite the passionate way that some defend that conventional canal mechanical instrumentation decreases the resistance of teeth to fracture, the current literature is composed by a limited amount of laboratory studies, which means low-quality evidence to shape and guide the clinical decision-making process. Therefore, the idea of providing optimum dimensions for root canal mechanical preparation is one current ongoing concern in endodontic practice and science. Considering the as yet unclear situation of the minimal invasive approaches and rationales proposed to render an endodontically treated tooth predictably functional, the present text focuses on the optimal size/taper relationship necessary to avoid unnecessary overflared canals and, at the same time, to allow the turbulence and solution exchange indispensable for the minimal cleaning and disinfection conditions to assure healing. The big picture is to address and discuss the close-to-optimum operative conditions to maximize tooth strength and longevity. Moreover, advances and developments in nickel-titanium (NiTi) technology have allowed endodontics to move towards the minimally invasive dentistry paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rivera EM, Walton RE. Longitudinal tooth cracks and fractures: an update and review. Endod Topics. 2015;33:14–42.

    Article  Google Scholar 

  2. Arnold LH. Discussion. J Am Dent Assoc. 1931;18:483.

    Google Scholar 

  3. Touré B, Faye B, Kane AW, Lo CM, Niang B, Boucher Y. Analysis of reasons for extraction of endodontically treated teeth: a prospective study. J Endod. 2011;37:1512–5.

    Article  PubMed  Google Scholar 

  4. Currey JD. The design of mineralized hard tissues for their mechanical functions. J Exp Biol. 1999;202:3285–94.

    Article  PubMed  Google Scholar 

  5. Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res. 2003;82:957–61.

    Article  PubMed  Google Scholar 

  6. Missau T, De Carlo BM, Michelon C, et al. Influence of endodontic treatment and retreatment on the fatigue failure load, numbers of cycles for failure, and survival rates of human canine teeth. J Endod. 2017;43:2081–7.

    Article  PubMed  Google Scholar 

  7. Rundquist BD, Versluis A. How does canal taper affect root stresses? Int Endod J. 2006;39:226–37.

    Article  PubMed  Google Scholar 

  8. Eliasson S, Bergstrom J, Sanda A. Periodontal bone loss of teeth with metal posts: a radiographic study. J Clin Periodontol. 1995;22:850–3.

    Article  PubMed  Google Scholar 

  9. Tian SY, Bai W, Jiang WR, Liang YH. Fracture resistance of roots in mandibular premolars following root canal instrumentation of different sizes. Chin J Dent Res. 2019;22:197–202.

    PubMed  Google Scholar 

  10. Krikeli E, Mikrogeorgis G, Lyroudia K. In vitro comparative study of the influence of instrument taper on the fracture resistance of endodontically treated teeth: an integrative approach-based analysis. J Endod. 2018;44:1407–11.

    Article  PubMed  Google Scholar 

  11. Paqué F, Balmer M, Attin T, Peters OA. Preparation of oval-shaped root canals in mandibular molars using nickel-titanium rotary instruments: a micro-computed tomography study. J Endod. 2010;36:703–7.

    Article  PubMed  Google Scholar 

  12. Paqué F, Peters OA. Micro-computed tomography evaluation of the preparation of long oval root canals in mandibular molars with the self-adjusting file. J Endod. 2011;37:517–21.

    Article  PubMed  Google Scholar 

  13. Versiani MA, Leoni GB, Steier L, et al. Micro-computed tomography study of oval-shaped canals prepared with the self-adjusting file, Reciproc, WaveOne and Pro-Taper Universal systems. J Endod. 2013;39:1060–6.

    Article  PubMed  Google Scholar 

  14. De-Deus G, Belladonna FG, Silva EJ, et al. Micro-CT evaluation of non-instrumented canal areas with different enlargements performed by NiTi systems. Braz Dent J. 2015;26:624–9.

    Article  PubMed  Google Scholar 

  15. Belladonna FG, Carvalho MS, Cavalcante DM, et al. Micro-computed tomography shaping ability assessment of the new blue thermal treated Reciproc instrument. J Endod. 2018;44:1146–50.

    Article  PubMed  Google Scholar 

  16. Silva AA, Belladonna FG, Rover G, et al. Does ultraconservative access affect the efficacy of root canal treatment and the fracture resistance of two-rooted maxillary premolars? Int Endod J. 2020;53:265–75.

    Article  PubMed  Google Scholar 

  17. Siqueira JF Jr. Microbial causes of endodontic flareups. Int Endod J. 2003;36:453–63.

    Article  PubMed  Google Scholar 

  18. Waltimo T, Trope M, Haapasalo M, Ørstavik D. Clinical efficacy of treatment procedures in endodontic infection control and one year follow-up of periapical healing. J Endod. 2005;31:863–6.

    Article  PubMed  Google Scholar 

  19. Siqueira JF Jr, Roças IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod. 2008;34:1291–301.

    Article  PubMed  Google Scholar 

  20. De-Deus G, Belladonna FG, Simões-Carvalho M, et al. Shaping efficiency as a function of time of a new heat-treated instrument. Int Endod J. 2019;52:337–42.

    Article  PubMed  Google Scholar 

  21. Rover G, Belladonna FG, Bortoluzzi EA, De-Deus G, Silva EJ, Teixeira CS. Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars. J Endod. 2017;43:1657–62.

    Article  PubMed  Google Scholar 

  22. Zuolo ML, Zaia AA, Belladonna FG, et al. Micro-CT assessment of the shaping ability of four root canal instrumentation systems in oval-shaped canals. Int Endod J. 2018;51:564–71.

    Article  PubMed  Google Scholar 

  23. Kishen A. Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod Topics. 2006;13:57–83.

    Article  Google Scholar 

  24. Kessler JR, Peters DD, Lorton L. Comparison of the relative risk of molar root perforations using various endodontic instrumentation techniques. J Endod. 1983;9:439–47.

    Article  PubMed  Google Scholar 

  25. Isom TL, Marshall JG, Baumgartner JC. Evaluation of root thickness in curved canals after flaring. J Endod. 1995;21:368–71.

    Article  PubMed  Google Scholar 

  26. Wu MK, van der Sluis LW, Wesselink PR. The risk of furcal perforation in mandibular molars using gates-Glidden drills with anticurvature pressure. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:378–82.

    Article  PubMed  Google Scholar 

  27. Ehrhardt IC, Zuolo ML, Cunha RS, et al. Assessment of the separation incidence of mtwo files used with preflaring: prospective clinical study. J Endod. 2012;38:1078–81.

    Article  PubMed  Google Scholar 

  28. Tan BT, Messer HH. The effect of instrument type and preflaring on apical file size determination. Int Endod J. 2002;35:752–8.

    Article  PubMed  Google Scholar 

  29. Reeh ES, Messer HH, Douglas WH. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod. 1989;15:512–6.

    Article  PubMed  Google Scholar 

  30. Clark D, Khademi J. Modern molar endodontic access and directed dentin conservation. Dent Clin N Am. 2010;54:249–73.

    Article  PubMed  Google Scholar 

  31. Estrela C, Decurcio DA, Rossi-Fedele G, Silva JA, Guedes OA, Borges ÁH. Root perforations: a review of diagnosis, prognosis and materials. Braz Dent J. 2018;18:e73.

    Google Scholar 

  32. Abou-Rass M, Frank AL, Glick D. The anticurvature filing method to prepare the curved root canal. J Am Dent Assoc. 1980;101:792–4.

    Article  PubMed  Google Scholar 

  33. Haapasalo M, Shen Y. Evolution of nickel-titanium instruments: from past to future. Endod Topics. 2013;29:3–17.

    Article  Google Scholar 

  34. Pasqualini D, Alovisi M, Cemenasco A, et al. Micro-computed tomography evaluation of ProTaper Next and BioRace shaping outcomes in maxillary first molar curved canals. J Endod. 2015;41:1706–10.

    Article  PubMed  Google Scholar 

  35. You SY, Bae KS, Baek SH, Kum KY, Shon WJ, Lee W. Lifespan of one nickel-titanium rotary file with reciprocating motion in curved root canals. J Endod. 2010;36:1991–4.

    Article  PubMed  Google Scholar 

  36. De-Deus G, Moreira EJ, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J. 2010;43:1063–8.

    Article  PubMed  Google Scholar 

  37. Buehler W, Gilfrich J, Wiley RC. Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Int J Appl Phys. 1963;34:1475–7.

    Article  Google Scholar 

  38. Andreasen GF, Morrow RE. Laboratory and clinical analyses of nitinol wire. Am J Orthod Dentofac Orthop. 1978;73:142–51.

    Article  Google Scholar 

  39. Civjan S, Huget EF, DeSimon LB. Potential applications of certain nickel-titanium (nitinol) alloys. J Dent Res. 1975;54:89–96.

    Article  PubMed  Google Scholar 

  40. Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod. 1988;14:346–51.

    Article  PubMed  Google Scholar 

  41. Lopes HP, Gambarra-Soares T, Elias CN, et al. Comparison of the mechanical properties of rotary instruments made of conventional nickel-titanium, M-wire, or nickel-titanium alloy in R-phase. J Endod. 2013;39:516–20.

    Article  PubMed  Google Scholar 

  42. Zupanc J, Vahdat-Pajouh N, Schäfer E. New thermomechanically treated NiTi alloys—a review. Int Endod J. 2018;51:1088–103.

    Article  PubMed  Google Scholar 

  43. Zhou H, Peng B, Zheng YF. An overview of the mechanical properties of nickel-titanium endodontic instruments. Endod Topics. 2013;29:42–54.

    Article  Google Scholar 

  44. Otsuka K, Wayman CM. Shape memory alloys. 1st ed. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  45. Alapati SB, Brantley WA, Iijima M, et al. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments. J Endod. 2009;35:1589–93.

    Article  PubMed  Google Scholar 

  46. Otsuka K, Ren X. Physical metallurgy of Ti-Ni based shape memory alloys. Prog Mater Sci. 2005;50:511–678.

    Article  Google Scholar 

  47. Lee DH, Park B, Saxena A, Serene TP. Enhanced surface hardness by boron implantation in Nitinol alloy. J Endod. 1996;22:543–6.

    Article  PubMed  Google Scholar 

  48. Rapisarda E, Bonaccorso A, Tripi TR, Fragalk I, Condorelli GG. The effect of surface treatments of nickel-titanium files on wear and cutting efficiency. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:363–8.

    Article  PubMed  Google Scholar 

  49. Rapisarda E, Bonaccorso A, Tripi TR, Condorelli GG, Torrisi L. Wear of nickel-titanium endodontic instruments evaluated by scanning electron microscopy: effect of ion implantation. J Endod. 2001;27:588–92.

    Article  PubMed  Google Scholar 

  50. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 2000;33:297–310.

    Article  PubMed  Google Scholar 

  51. Al-Hadlaq SM, Aljarbou FA, AlThumairy RI. Evaluation of cyclic flexural fatigue of M-wire nickel-titanium rotary instruments. J Endod. 2010;36:305–7.

    Article  PubMed  Google Scholar 

  52. Gao Y, Gutmann JL, Wilkinson K, Maxwell R, Ammon D. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J Endod. 2012;38:398–401.

    Article  PubMed  Google Scholar 

  53. Braga LC, Faria Silva AC, Buono VT, de Azevedo Bahia MG. Impact of heat treatments on the fatigue resistance of different rotary nickel–titanium instruments. J Endod. 2014;40:1494–7.

    Article  PubMed  Google Scholar 

  54. Plotino G, Testarelli L, Al-Sudani D, Pongione G, Grande NM, Gambarini G. Fatigue resistance of rotary instruments manufactured using different nickel-titanium alloys: a comparative study. Odontology. 2014;102:31–5.

    Article  PubMed  Google Scholar 

  55. De-Deus G, Silva EJ, Vieira VT, et al. Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the Reciproc files. J Endod. 2017;43:462–6.

    Article  PubMed  Google Scholar 

  56. Silva EJ, Vieira VT, Hecksher F, Dos Santos Oliveira MR, Dos Santos AH, Moreira EJL. Cyclic fatigue using severely curved canals and torsional resistance of thermally treated reciprocating instruments. Clin Oral Investig. 2018;22:2633–8.

    Article  PubMed  Google Scholar 

  57. Silva EJ, Giraldes JFN, de Lima CO, Vieira VTL, Elias CN, Antunes HS. Influence of heat treatment on torsional resistance and surface roughness of nickel-titanium instruments. Int Endod J. 2019;52:1645–51.

    Article  PubMed  Google Scholar 

  58. Bürklein S, Hinschitza K, Dammaschke T, Schäfer E. Shaping ability and cleaning effectiveness of two single-file systems in severely curved root canals of extracted teeth: Reciproc and WaveOne versus Mtwo and ProTaper. Int Endod J. 2012;45:449–61.

    Article  PubMed  Google Scholar 

  59. Plotino G, Ahmed HM, Grande NM, Cohen S, Bukiet F. Current assessment of reciprocation in endodontic preparation: a comprehensive review—part II: properties and effectiveness. J Endod. 2015;41:1939–50.

    Article  PubMed  Google Scholar 

  60. Zanesco C, Só MV, Schmidt S, Fontanella VR, Grazziotin-Soares R, Barletta FB. Apical transportation, centering ratio, and volume increase after manual, rotary, and reciprocating instrumentation in curved root canals: analysis by micro-computed tomographic and digital subtraction radiography. J Endod. 2017;43:486–90.

    Article  PubMed  Google Scholar 

  61. Bürklein S, Flüch S, Schäfer E. Shaping ability of reciprocating single-file systems in severely curved canals: WaveOne and Reciproc versus WaveOne Gold and Reciproc blue. Odontology. 2019;107:96–102.

    Article  PubMed  Google Scholar 

  62. Pedullà E, Lo Savio F, Boninelli S, et al. Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod. 2016;42:56–9.

    Article  Google Scholar 

  63. Silva EJ, Hecksher F, Antunes HDS, De-Deus G, Elias CN, Vieira VTL. Torsional fatigue resistance of blue-treated reciprocating instruments. J Endod. 2018;44:1038–41.

    Article  PubMed  Google Scholar 

  64. Grande NM, Ahmed HM, Cohen S, Bukiet F, Plotino G. Current assessment of reciprocation in endodontic preparation: a comprehensive review-part I: historic perspectives and current applications. J Endod. 2015;41:1778–83.

    Article  PubMed  Google Scholar 

  65. Frank AL. An evaluation of the Giromatic endodontic handpiece. Oral Surg Oral Med Oral Pathol. 1967;24:419–21.

    Article  PubMed  Google Scholar 

  66. Klayman S, Brilliant J. A comparison of the efficacy of serial preparation versus Giromatic preparation. J Endod. 1974;1:334–7.

    Article  Google Scholar 

  67. Turek T, Langeland K. A light microscopic study of the efficacy of the telescopic and the Giromatic preparation of root canals. J Endod. 1982;8:437–43.

    Article  PubMed  Google Scholar 

  68. Lehman JW, Gerstein H. An evaluation of a new mechanized endodontic device: the Endolift. Oral Surg Oral Med Oral Pathol. 1982;53:417–24.

    Article  PubMed  Google Scholar 

  69. Spyropoulos S, Eldeeb ME, Messer HH. The effect of Giromatic files on the preparation shape of severely curved canals. Int Endod J. 1987;20:133–42.

    Article  PubMed  Google Scholar 

  70. Ianno NR, Weine FS. Canal preparation using two mechanical handpieces: distortions, ledging, and potential solutions. Compendium. 1989;10:100–2, 104–5

    Google Scholar 

  71. Besse H, Normand B, Labarre P, Woda A. An evaluation of four methods of root canal preparation using 14C urea. J Endod. 1991;17:54–8.

    Article  PubMed  Google Scholar 

  72. Hennequin M, Andre JF, Botta G. Dentin removal efficiency of six endodontic systems: a quantitative comparison. J Endod. 1992;18:601–4.

    Article  PubMed  Google Scholar 

  73. Hülsmann M, Stryga F. Comparison of root canal preparation using different automated devices and hand instrumentation. J Endod. 1993;19:141–5.

    Article  PubMed  Google Scholar 

  74. Dautel-Morazin A, Vulcain JM, Guigand M, Bonnaure-Mallet M. An ultrastructural study of debris retention by endodontic reamers. J Endod. 1995;21:358–61.

    Article  PubMed  Google Scholar 

  75. Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J. 2008;41:339–44.

    Article  PubMed  Google Scholar 

  76. Gambarini G, Gergi R, Naaman A, et al. Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion. Int Endod J. 2012;45:802–6.

    Article  PubMed  Google Scholar 

  77. Pedullà E, Grande NM, Plotino G, et al. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod. 2013;39:258–61.

    Article  PubMed  Google Scholar 

  78. Pérez-Higueras JJ, Arias A, de la Macorra JC. Cyclic fatigue resistance of K3, K3XF, and twisted file nickel-titanium files under continuous rotation or reciprocating motion. J Endod. 2013;39:1585–8.

    Article  PubMed  Google Scholar 

  79. Rodrigues E, De-Deus G, Souza E, Silva EJ. Safe mechanical preparation with reciprocation movement without glide path creation: result from a pool of 673 root canals. Braz Dent J. 2016;27:22–7.

    Article  PubMed  Google Scholar 

  80. Cunha RS, Junaid A, Ensinas P, Nudera W, Bueno CE. Assessment of the separation incidence of reciprocating WaveOne files: a prospective clinical study. J Endod. 2014;40:922–4.

    Article  PubMed  Google Scholar 

  81. Plotino G, Grande NM, Porciani PF. Deformation and fracture incidence of Reciproc instruments: a clinical evaluation. Int Endod J. 2015;48:199–205.

    Article  PubMed  Google Scholar 

  82. Bueno CSP, Oliveira DP, Pelegrine RA, Fontana CE, Rocha DGP, Bueno CEDS. Fracture incidence of WaveOne and Reciproc files during root canal preparation of up to 3 posterior teeth: a prospective clinical study. J Endod. 2017;43:705–8.

    Article  PubMed  Google Scholar 

  83. Giansiracusa Rubini A, Plotino G, Al-Sudani D, et al. A new device to test cutting efficiency of mechanical endodontic instruments. Med Sci Monit. 2014;20:374–8.

    Article  PubMed  Google Scholar 

  84. Gambarini G, Giansiracusa Rubini A, Sannino G, et al. Cutting efficiency of nickel-titanium rotary and reciprocating instruments after prolonged use. Odontology. 2016;104:77–81.

    Article  PubMed  Google Scholar 

  85. Pedullà E, Plotino G, Grande NM, et al. Shaping ability of two nickel-titanium instruments activated by continuous rotation or adaptive motion: a micro-computed tomography study. Clin Oral Investig. 2016;20:2227–33.

    Article  PubMed  Google Scholar 

  86. Franco V, Fabiani C, Taschieri S, Malentacca A, Bortolin M, Del Fabbro M. Investigation on the shaping ability of nickel-titanium files when used with a reciprocating motion. J Endod. 2011;37:1398–401.

    Article  PubMed  Google Scholar 

  87. Roane JB, Sabala CL, Duncanson MG Jr. The ‘balanced force’ concept for instrumentation of curved canals. J Endod. 1985;11:203–11.

    Article  PubMed  Google Scholar 

  88. Hin ES, Wu MK, Wesselink PR, Shemesh H. Effects of self-adjusting file, Mtwo, and ProTaper on the root canal wall. J Endod. 2013;39:262–4.

    Article  PubMed  Google Scholar 

  89. Liu R, Hou BX, Wesselink PR, Wu MK, Shemesh H. The incidence of root microcracks caused by 3 different single-file systems versus the ProTaper system. J Endod. 2013;39:1054–6.

    Article  PubMed  Google Scholar 

  90. Arias A, Lee YH, Peters CI, Gluskin AH, Peters OA. Comparison of 2 canal preparation techniques in the induction of microcracks: a pilot study with cadaver mandibles. J Endod. 2014;40:982–5.

    Article  PubMed  Google Scholar 

  91. Karatas E, Gunduz HA, Kırıcı DO, Arslan H. Incidence of dentinal cracks after root canal preparation with ProTaper Gold, Profile Vortex, F360, Reciproc and ProTaper Universal instruments. Int Endod J. 2016;49:905–10.

    Article  PubMed  Google Scholar 

  92. Saber SE, Schafer E. Incidence of dentinal defects after preparation of severely curved root canals using the Reciproc single-file system with and without prior creation of a glide path. Int Endod J. 2016;49:1057–64.

    Article  PubMed  Google Scholar 

  93. Bahrami P, Scott R, Galicia JC, Arias A, Peters OA. Detecting dentinal microcracks using different preparation techniques: an in situ study with cadaver mandibles. J Endod. 2017;43:2070–3.

    Article  PubMed  Google Scholar 

  94. Kfir A, Elkes D, Pawar A, Weissman A, Tsesis I. Incidence of microcracks in maxillary first premolars after instrumentation with three different mechanize file systems: a comparative ex vivo study. Clin Oral Investig. 2017;21:405–11.

    Article  PubMed  Google Scholar 

  95. De-Deus G, Silva EJ, Marins J, et al. Lack of causal relationship between dentinal microcracks and root canal preparation with reciprocation systems. J Endod. 2014;40:1447–50.

    Article  PubMed  Google Scholar 

  96. De-Deus G, Belladonna FG, Souza EM, et al. Microcomputed tomographic assessment on the effect of ProTaper Next and Twisted File Adaptive systems on dentinal cracks. J Endod. 2015;41:1116–9.

    Article  PubMed  Google Scholar 

  97. De-Deus G, Belladonna FG, Marins JR, et al. On the causality between dentinal defects and root canal preparation: a micro-CT assessment. Braz Dent J. 2016;27:664–9.

    Article  PubMed  Google Scholar 

  98. De-Deus G, Carvalhal JCA, Belladonna FG, et al. Dentinal microcrack development after canal preparation: a longitudinal in situ micro-computed tomography study using a cadaver model. J Endod. 2017;43:1553–8.

    Article  PubMed  Google Scholar 

  99. Bayram HM, Bayram E, Ocak M, Uzuner MB, Geneci F, Celik HH. Micro-computed tomographic evaluation of dentinal microcrack formation after using new heat-treated nickel-titanium systems. J Endod. 2017;43:1736–9.

    Article  PubMed  Google Scholar 

  100. Zuolo ML, De-Deus G, Belladonna FG, et al. Microcomputed tomography assessment of dentinal microcracks after root canal preparation with TRUShape and self-adjusting file systems. J Endod. 2017;43:619–22.

    Article  PubMed  Google Scholar 

  101. De-Deus G, Cavalcante DM, Belladonna FG, et al. Root dentinal microcracks: a post-extraction experimental phenomenon? Int Endod J. 2019;52:857–65.

    Article  PubMed  Google Scholar 

  102. Al-Omari MA, Dummer PM. Canal blockage and debris extrusion with eight preparation techniques. J Endod. 1995;21:154–8.

    Article  PubMed  Google Scholar 

  103. Caviedes-Bucheli J, Moreno JO, Carreno CP, et al. The effect of single-file reciprocating systems on Substance P and Calcitonin gene-related peptide expression in human periodontal ligament. Int Endod J. 2013;46:419–26.

    Article  PubMed  Google Scholar 

  104. Koçak S, Kocak MM, Saglam BC, et al. Apical extrusion of debris using selfadjusting file, reciprocating single-file, and 2 rotary instrumentation systems. J Endod. 2013;39:1278–80.

    Article  PubMed  Google Scholar 

  105. Ozsu D, Karatas E, Arslan H, Topcu MC. Quantitative evaluation of apically extruded debris during root canal instrumentation with ProTaper Universal, ProTaper Next, WaveOne, and self-adjusting file systems. Eur J Dent. 2014;8:504–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Silva EJ, Sa L, Belladonna FG, et al. Reciprocating versus rotary systems for root filling removal: assessment of the apically extruded material. J Endod. 2014;40:2077–80.

    Article  PubMed  Google Scholar 

  107. Surakanti JR, Venkata RC, Vemisetty HK, et al. Comparative evaluation of apically extruded debris during root canal preparation using ProTaper, Hyflex and Waveone rotary systems. J Conserv Dent. 2014;17:129–32.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Teixeira JM, Cunha FM, Jesus RO, et al. Influence of working length and apical preparation size on apical bacterial extrusion during reciprocating instrumentation. Int Endod J. 2014;48:648–53.

    Article  PubMed  Google Scholar 

  109. Tinoco JM, De-Deus G, Tinoco EM, et al. Apical extrusion of bacteria when using reciprocating single-file and rotary multifile instrumentation systems. Int Endod J. 2014;47:560–6.

    Article  PubMed  Google Scholar 

  110. Xavier F, Nevares G, Romeiro MK, et al. Apical extrusion of debris from root canals using reciprocating files associated with two irrigation systems. Int Endod J. 2014;48:661–5.

    Article  PubMed  Google Scholar 

  111. De-Deus G, Neves A, Silva EJ, et al. Apically extruded dentin debris by reciprocating single-file and multi-file rotary system. Clin Oral Invest. 2015;19:357–61.

    Article  Google Scholar 

  112. Caviedes-Bucheli J, Rios-Osorio N, Rey-Rojas M, et al. Substance P and Calcitonin gene-related peptide expression in human periodontal ligament after root canal preparation with Reciproc Blue, WaveOne Gold, XP EndoShaper and hand files. Int Endod J. 2018;51:1358–66.

    Article  PubMed  Google Scholar 

  113. Oliveira PS, da Costa KNB, Carvalho CN, Ferreira MC. Impact of root canal preparation performed by ProTaper Next or Reciproc on the quality of life of patients: a randomized clinical trial. Int Endod J. 2019;52:139–48.

    Article  PubMed  Google Scholar 

  114. Garcia-Font M, Durán-Sindreu F, Morelló S, et al. Postoperative pain after removal of gutta-percha from root canals in endodontic retreatment using rotary or reciprocating instruments: a prospective clinical study. Clin Oral Investig. 2018;22:2623–31.

    Article  PubMed  Google Scholar 

  115. Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol. 1965;20:340–9.

    Article  PubMed  Google Scholar 

  116. Lin LM, Skribner JE, Gaengler P. Factors associated with endodontic treatment failures. J Endod. 1992;18:625–7.

    Article  PubMed  Google Scholar 

  117. Siqueira JF Jr. Aetiology of root canal treatment failure: why well-treated teeth can fail. Int Endod J. 2001;34:1–10.

    Article  PubMed  Google Scholar 

  118. Sjogren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J. 1997;30:297–306.

    Article  PubMed  Google Scholar 

  119. Molander A, Warfvinge J, Reit C, Kvist T. Clinical and radiographic evaluation of one- and two-visit endodontic treatment of asymptomatic necrotic teeth with apical periodontitis: a randomized clinical trial. J Endod. 2007;33:1145–8.

    Article  PubMed  Google Scholar 

  120. Haapasalo M, Zandi H, Coil J. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Topics. 2005;10:77–102.

    Article  Google Scholar 

  121. Spangberg LS, Haapasalo M. Rationale and efficacy of root canal medicaments and root filling materials with emphasis on treatment outcome. Endod Topics. 2005;2:35–58.

    Article  Google Scholar 

  122. Ordinola-Zapata R, Martins JNR, Bramante CM, Villas-Boas MH, Duarte MH, Versiani MA. Morphological evaluation of maxillary second molars with fused roots: a micro-CT study. Int Endod J. 2017;50:1192–200.

    Article  PubMed  Google Scholar 

  123. Ordinola-Zapata R, Martins JNR, Niemczyk S, Bramante CM. Apical root canal anatomy in the mesiobuccal root of maxillary first molars: influence of root apical shape and prevalence of apical foramina—a micro-CT study. Int Endod J. 2019;52:1218–27.

    PubMed  Google Scholar 

  124. Chaniotis A, Guerreiro D, Kottoor J, et al. Managing complex root canal anatomies. In: Versiani M, Basrani B, Sousa-Neto MD, editors. The root canal anatomy in permanent dentition. Cham: Springer International Publishing; 2018. p. 343–74.

    Google Scholar 

  125. Grove C. Why canals should be filled to the dentinocemental junction. J Am Dent Assoc. 1930;17:293–6.

    Google Scholar 

  126. Ricucci D. Apical limit of root canal instrumentation and obturation, part 1. Literature review. Int Endod J. 1999;31:384–93.

    Article  Google Scholar 

  127. Ricucci D, Langeland K. Apical limit of root canal instrumentation and obturation, part 2. A histological study. Int Endod J. 1998;31:394–409.

    Article  PubMed  Google Scholar 

  128. Kuttler Y. Microscopic investigation of root apexes. J Am Dent Assoc. 1955;50:544–52.

    Article  PubMed  Google Scholar 

  129. Dummer PM, McGinn JH, Rees DG. The position and topography of the apical canal constriction and apical foramen. Int Endod J. 1984;17:192–8.

    Article  PubMed  Google Scholar 

  130. Versiani MA, Ahmed HM, Sousa-Neto MD, De-Deus G, Dummer PM. Unusual deviation of the main foramen from the root apex. Braz Dent J. 2016;27:589–91.

    Article  PubMed  Google Scholar 

  131. Vieyra JP, Acosta J. Comparison of working length determination with radiographs and four electronic apex locators. Int Endod J. 2011;44:510–8.

    Article  PubMed  Google Scholar 

  132. Martins JN, Marques D, Mata A, Carames J. Clinical efficacy of electronic apex locators: systematic review. J Endod. 2014;40:759–77.

    Article  PubMed  Google Scholar 

  133. Ingle JI. Endodontic cavity preparations. In: Ingle JI, Bakland L, editors. Endodontics. 5th ed. Hamilton: BC Decker Inc.; 2002. p. 405–570.

    Google Scholar 

  134. Grossman L, Oliet S, Del Rio C. Endodontic practice. 11th ed. Philadelphia: Lea&Febiger; 1988.

    Google Scholar 

  135. Torabinejad M. Passive step-back technique. Oral Surg Oral Med Oral Pathol. 1994;77:398–401.

    Article  PubMed  Google Scholar 

  136. Bolanos OR, Jensen JR. Scanning electron microscope comparisons of the efficacy of various methods of root canal preparation. J Endod. 1980;6:815–22.

    Article  PubMed  Google Scholar 

  137. Weiger R, Bartha T, Kalwitzki M, Lost C. A clinical method to determine the optimal apical preparation size. Part I. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:686–91.

    Article  PubMed  Google Scholar 

  138. Sant’Anna Junior A, Cavenago BC, Ordinola-Zapata R, De-Deus G, Bramante CM, Duarte MA. The effect of larger apical preparations in the danger zone of lower molars prepared using the Mtwo and Reciproc systems. J Endod. 2014;40:1855–9.

    Article  PubMed  Google Scholar 

  139. Silva Santos AM, Portela F, Coelho MS, Fontana CE, De Martin AS. Foraminal deformation after foraminal enlargement with rotary and reciprocating kinematics: a scanning electronic microscopy study. J Endod. 2018;44:145–8.

    Article  PubMed  Google Scholar 

  140. Mickel AK, Chogle S, Liddle J, Huffaker K, Jones JJ. The role of apical size determination and enlargement in the reduction of intracanal bacteria. J Endod. 2007;33:21–3.

    Article  PubMed  Google Scholar 

  141. Rodrigues RCV, Zandi H, Kristoffersen AK, et al. Influence of the apical preparation size and the irrigant type on bacterial reduction in root canal-treated teeth with apical periodontitis. J Endod. 2017;43:1058–63.

    Article  PubMed  Google Scholar 

  142. Plotino G, Ozyurek T, Grande NM, Gundogar M. Influence of size and taper of basic root canal preparation on root canal cleanliness: a scanning electron microscopy study. Int Endod J. 2019;52:343–51.

    Article  PubMed  Google Scholar 

  143. Aksel H, Kucukkaya Eren S, Cakar A, Serper A, Ozkuyumcu C, Azim AA. Effect of instrumentation techniques and preparation taper on apical extrusion of bacteria. J Endod. 2017;43:1008–10.

    Article  PubMed  Google Scholar 

  144. Arora M, Sangwan P, Tewari S, Duhan J. Effect of maintaining apical patency on endodontic pain in posterior teeth with pulp necrosis and apical periodontitis: a randomized controlled trial. Int Endod J. 2016;49:317–24.

    Article  PubMed  Google Scholar 

  145. Silva EJ, Menaged K, Ajuz N, Monteiro MR, Coutinho-Filho TS. Postoperative pain after foraminal enlargement in anterior teeth with necrosis and apical periodontitis: a prospective and randomized clinical trial. J Endod. 2013;39:173–6.

    Article  PubMed  Google Scholar 

  146. Saini HR, Sangwan P, Sangwan A. Pain following foraminal enlargement in mandibular molars with necrosis and apical periodontitis: a randomized controlled trial. Int Endod J. 2016;49:1116–23.

    Article  PubMed  Google Scholar 

  147. Abdulrab S, Rodrigues JC, Al-Maweri SA, Halboub E, Alqutaibi AY, Alhadainy H. Effect of apical patency on postoperative pain: a meta-analysis. J Endod. 2018;44:1467–73.

    Article  PubMed  Google Scholar 

  148. Vera J, Hernandez EM, Romero M, Arias A, van der Sluis LW. Effect of maintaining apical patency on irrigant penetration into the apical two millimeters of large root canals: an in vivo study. J Endod. 2012;38:1340–3.

    Article  PubMed  Google Scholar 

  149. Siqueira JF Jr. Reaction of periapical tissues to root canal treatment: benefits and drawbacks. Endod Topics. 2005;10:123–47.

    Article  Google Scholar 

  150. Hülsmann M, Peters OA, Dummer PM. Mechanical preparation of root canals: shaping goals, techniques and means. Endod Topics. 2005;10:30–76.

    Article  Google Scholar 

  151. Kerekes K, Tronstad L. Long-term results of endodontic treatment performed with a standardized technique. J Endod. 1979;5:83–90.

    Article  PubMed  Google Scholar 

  152. Hoskinson SE, Ng YL, Hoskinson AE, Moles DR, Gulabivala K. A retrospective comparison of outcome of root canal treatment using two different protocols. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:705–15.

    Article  PubMed  Google Scholar 

  153. Saini HR, Tewari S, Sangwan P, Duhan J, Gupta A. Effect of different apical preparation sizes on outcome of primary endodontic treatment: a randomized controlled trial. J Endod. 2012;38:1309–15.

    Article  PubMed  Google Scholar 

  154. Plotino G, Grande NM. Root canal shaping and debridement. ED. Piccin; 2020.

    Google Scholar 

  155. Sjögren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990;16:498–504.

    Article  PubMed  Google Scholar 

  156. Endal U, Shen Y, Knut A, Gao Y, Haapasalo M. A high-resolution computed tomographic study of changes in root canal isthmus area by instrumentation and root filling. J Endod. 2011;37:223–7.

    Article  PubMed  Google Scholar 

  157. Schilder H. Cleaning and shaping the root canal. Dent Clin N Am. 1974;18:269–96.

    Article  PubMed  Google Scholar 

  158. Byström A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res. 1981;89:321–8.

    PubMed  Google Scholar 

  159. Orstavik D, Kerekes K, Molven O. Effects of extensive apical reaming and calcium hydroxide dressing on bacterial infection during treatment of apical periodontitis: a pilot study. Int Endod J. 1991;24:1–7.

    Article  PubMed  Google Scholar 

  160. Siqueira JF Jr, Rocas IN, Santos SR, Lima KC, Magalhaes FA, de Uzeda M. Efficacy of instrumentation techniques and irrigation regimens in reducing the bacterial population within root canals. J Endod. 2002;28:181–4.

    Article  PubMed  Google Scholar 

  161. van der Sluis LW, Wu MK, Wesselink PR. The efficacy of ultrasonic irrigation to remove artificially placed dentine debris from human root canals prepared using instruments of varying taper. Int Endod J. 2005;38:764–8.

    Article  PubMed  Google Scholar 

  162. Arvaniti IS, Khabbaz MG. Influence of root canal taper on its cleanliness: a scanning electron microscopic study. J Endod. 2011;37:871–4.

    Article  PubMed  Google Scholar 

  163. Zarei M, Javidi M, Afkhami F, Tanbakuchi B, Zadeh MM, Mohammadi MM. Influence of root canal tapering on smear layer removal. N Y State Dent J. 2016;82:35–8.

    PubMed  Google Scholar 

  164. Guimaraes LS, Gomes CC, Marceliano-Alves MF, Cunha RS, Provenzano JC, Siqueira JF Jr. Preparation of oval-shaped canals with TRUShape and Reciproc systems: a micro-computed tomography study using contralateral premolars. J Endod. 2017;43:1018–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De-Deus, G., Silva, E.J.N.L., Martins, J.N.R., Cavalcante, D., Belladonna, F.G., Plotino, G. (2021). Minimally Invasive Root Canal Instrumentation. In: Plotino, G. (eds) Minimally Invasive Approaches in Endodontic Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-45866-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45866-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45865-2

  • Online ISBN: 978-3-030-45866-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics