Skip to main content

NiTi Rotary Systems: From Revolution to the “More of the Same” Phenomenon

  • Chapter
  • First Online:
Shaping for Cleaning the Root Canals

Abstract

The impact triggered by the introduction of nickel-titanium (NiTi) instrument-driven mechanical preparation in endodontics was significant. From that point on, several concepts, clinical practice, and how new professionals were educated have changed the specialty forever, resulting in an unprecedented scientific and clinical revolution. A new era of courses, meetings and scientific advancements rapidly arose in the field, boosted by a fast-paced release of new instruments and systems into the market. Nevertheless, since its inception, root canal preparation with NiTi rotary systems has been haunted ghosted by a high incidence of instrument fracture. Together with the recognized difficulty in a fast-progressing root canal enlargement toward the apex, the risk of instrument fracture has triggered the industry into a constant and hurried seek for advancements in designs and metallurgical properties in order to increase their safety and cutting efficiency. The present chapter describes this revolution by making a historical categorization of the major thoughts driving the industrial and the scientific progress of mechanical preparation of root canals. The logical thinking grounded on the need to find the best design and safest NiTi alloy coupled with a major lack of in-depth discussions around the topic has led to the rise of hundreds of NiTi systems now available on the market, without any real innovations. Therefore, the initial revolution driven by rotary movement was progressively dominated by the “more of the same” phenomenon, a modern capitalist-based narrative grounded on a heavy and easy marketing and advertising approaches responsible for making dentists believe that a huge availability of instruments is in fact good for the specialty. We aim to demonstrate how far it is from the truth as the developments of new rotary systems are so speedy and market-driven that they indeed lack real innovation and scientific scrutiny before becoming available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchanan S. New additions to the NiTi rotary file market: What to bring in and what to leave out. Dental Tribune U.S. Edition. 2011;6:19–20.

    Google Scholar 

  2. Gavini G, Santos MD, Caldeira CL, Machado MEL, Freire LG, Iglecias EF, et al. Nickel-titanium instruments in endodontics: a concise review of the state of the art. Braz Oral Res. 2018;32:e67.

    Article  PubMed  Google Scholar 

  3. Haapasalo M, Shen Y. Evolution of nickel-titanium instruments: from past to future. Endod Topics. 2013;29:3–17.

    Article  Google Scholar 

  4. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod. 2004;30:559–67.

    Article  PubMed  Google Scholar 

  5. Shen Y, Coil JM, Zhou H, Zheng Y, Haapasalo M. HyFlex nickel-titanium rotary instruments after clinical use: metallurgical properties. Int Endod J. 2013;46:720–9.

    Article  PubMed  Google Scholar 

  6. Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod. 2013;39:163–72.

    Article  PubMed  Google Scholar 

  7. Zhou H, Peng B, Zheng YF. An overview of the mechanical properties of nickel-titanium endodontic instruments. Endod Topics. 2013;29:42–54.

    Article  Google Scholar 

  8. Zupanc J, Vahdat-Pajouh N, Schafer E. New thermomechanically treated NiTi alloys—a review. Int Endod J. 2018;51:1088–103.

    Article  PubMed  Google Scholar 

  9. Sousa-Neto MD, Silva-Sousa YC, Mazzi-Chaves JF, Carvalho KKT, Barbosa AFS, Versiani MA, et al. Root canal preparation using micro-computed tomography analysis: a literature review. Braz Oral Res. 2018;32:e66.

    Article  PubMed  Google Scholar 

  10. Del Fabbro M, Afrashtehfar KI, Corbella S, El-Kabbaney A, Perondi I, Taschieri S. In vivo and in vitro effectiveness of rotary nickel-titanium vs manual stainless steel instruments for root canal therapy: systematic review and meta-analysis. J Evid Based Dent Pract. 2018;18:59–69.

    Article  PubMed  Google Scholar 

  11. Buehler W, Gilfrich J, Wiley RC. Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Int J Appl Phys. 1963;34:1475–7.

    Article  Google Scholar 

  12. Andreasen GF, Morrow RE. Laboratory and clinical analyses of nitinol wire. Am J Orthod. 1978;73:142–51.

    Article  PubMed  Google Scholar 

  13. Civjan S, Huget EF, DeSimon LB. Potential applications of certain nickel-titanium (nitinol) alloys. J Dent Res. 1975;54:89–96.

    Article  PubMed  Google Scholar 

  14. Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of nitinol root canal files. J Endod. 1988;14:346–51.

    Article  PubMed  Google Scholar 

  15. Lopes HP, Gambarra-Soares T, Elias CN, Siqueira JF Jr, Inojosa IF, Lopes WS, et al. Comparison of the mechanical properties of rotary instruments made of conventional nickel-titanium wire, M-wire, or nickel-titanium alloy in R-phase. J Endod. 2013;39:516–20.

    Google Scholar 

  16. Ōtsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  17. Otsuka K, Ren X. Physical metallurgy of Ti-Ni based shape memory alloys. Prog Mater Sci. 2005;50:511–678.

    Google Scholar 

  18. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 2000;33:297–310.

    Article  PubMed  Google Scholar 

  19. Anderson M, Price J, Parashos P. Fracture resistance of electropolished rotary nickel–titanium endodontic instruments. J Endod. 2007;33:1212–6.

    Article  PubMed  Google Scholar 

  20. Lopes HP, Elias CN, Vieira MV, Vieira VT, de Souza LC, Dos Santos AL. Influence of surface roughness on the fatigue life of nickel-titanium rotary endodontic instruments. J Endod. 2016;42:965–8.

    Article  PubMed  Google Scholar 

  21. Lopes HP, Elias CN, Vieira VT, Moreira EJ, Marques RV, de Oliveira JC, et al. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments. J Endod. 2010;36:1653–7.

    Article  PubMed  Google Scholar 

  22. Bui TB, Mitchell JC, Baumgartner JC. Effect of electropolishing ProFile nickel-titanium rotary instruments on cyclic fatigue resistance, torsional resistance, and cutting efficiency. J Endod. 2008;34:190–3.

    Article  PubMed  Google Scholar 

  23. Praisarnti C, Chang JW, Cheung GS. Electropolishing enhances the resistance of nickel-titanium rotary files to corrosion-fatigue failure in hypochlorite. J Endod. 2010;36:1354–7.

    Article  PubMed  Google Scholar 

  24. Shen Y, Winestock E, Cheung GS, Haapasalo M. Defects in nickel-titanium instruments after clinical use. Part 4: an electropolished instrument. J Endod. 2009;35:197–201.

    Article  PubMed  Google Scholar 

  25. Arias A, Perez-Higueras JJ, de la Macorra JC. Influence of clinical usage of GT and GTX files on cyclic fatigue resistance. Int Endod J. 2014;47:257–63.

    Article  PubMed  Google Scholar 

  26. Çapar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod. 2015;41:535–8.

    Article  PubMed  Google Scholar 

  27. Alapati SB, Brantley WA, Iijima M, Clark WA, Kovarik L, Buie C, et al. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments. J Endod. 2009;35:1589–93.

    Article  PubMed  Google Scholar 

  28. Ye J, Gao Y. Metallurgical characterization of M-wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod. 2012;38:105–7.

    Article  PubMed  Google Scholar 

  29. Pirani C, Paolucci A, Ruggeri O, Bossu M, Polimeni A, Gatto MR, et al. Wear and metallographic analysis of WaveOne and Reciproc NiTi instruments before and after three uses in root canals. Scanning. 2014;36:517–25.

    Article  PubMed  Google Scholar 

  30. Perez-Higueras JJ, Arias A, de la Macorra JC. Cyclic fatigue resistance of K3, K3XF, and twisted file nickel-titanium files under continuous rotation or reciprocating motion. J Endod. 2013;39:1585–8.

    Article  PubMed  Google Scholar 

  31. Braga LC, Faria Silva AC, Buono VT, de Azevedo Bahia MG. Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments. J Endod. 2014;40:1494–7.

    Article  PubMed  Google Scholar 

  32. De-Deus G, Silva EJ, Vieira VT, Belladonna FG, Elias CN, Plotino G, et al. Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the Reciproc files. J Endod. 2017;43:462–6.

    Article  PubMed  Google Scholar 

  33. Plotino G, Testarelli L, Al-Sudani D, Pongione G, Grande NM, Gambarini G. Fatigue resistance of rotary instruments manufactured using different nickel-titanium alloys: a comparative study. Odontology. 2014;102:31–5.

    Article  PubMed  Google Scholar 

  34. Silva E, Vieira VTL, Belladonna FG, Zuolo AS, Antunes HDS, Cavalcante DM, et al. Cyclic and torsional fatigue resistance of XP-endo Shaper and TRUShape instruments. J Endod. 2018;44:168–72.

    Article  PubMed  Google Scholar 

  35. Silva EJNL, Giraldes JFN, de Lima CO, Vieira VTL, Elias CN, Antunes HS. Influence of heat treatment on torsional resistance and surface roughness of nickel-titanium instruments. Int Endod J. 2019;52:1645–51.

    Article  PubMed  Google Scholar 

  36. Silva EJNL, Hecksher F, Antunes HDS, De-Deus G, Elias CN, Vieira VTL. Torsional fatigue resistance of blue-treated reciprocating instruments. J Endod. 2018;44:1038–41.

    Article  PubMed  Google Scholar 

  37. Silva EJNL, Vieira VTL, Hecksher F, Dos Santos Oliveira MRS, Dos Santos Antunes H, Moreira EJL. Cyclic fatigue using severely curved canals and torsional resistance of thermally treated reciprocating instruments. Clin Oral Investig. 2018;22:2633–8.

    Article  PubMed  Google Scholar 

  38. Arslan H, Yildiz ED, Gunduz HA, Sumbullu M, Bayrakdar IS, Karatas E, et al. Comparative study of ProTaper Gold, Reciproc, and ProTaper Universal for root canal preparation in severely curved root canals. J Conserv Dent. 2017;20:222–4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bürklein S, Hinschitza K, Dammaschke T, Schäfer E. Shaping ability and cleaning effectiveness of two single-file systems in severely curved root canals of extracted teeth: Reciproc and WaveOne versus Mtwo and ProTaper. Int Endod J. 2012;45:449–61.

    Article  PubMed  Google Scholar 

  40. Plotino G, Ahmed HM, Grande NM, Cohen S, Bukiet F. Current assessment of reciprocation in endodontic preparation: a comprehensive review—part II: properties and effectiveness. J Endod. 2015;41:1939–50.

    Article  PubMed  Google Scholar 

  41. Duque JA, Vivan RR, Cavenago BC, Amoroso-Silva PA, Bernardes RA, Vasconcelos BC, et al. Influence of NiTi alloy on the root canal shaping capabilities of the ProTaper Universal and ProTaper Gold rotary instrument systems. J Appl Oral Sci. 2017;25:27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bürklein S, Flüch S, Schäfer E. Shaping ability of reciprocating single-file systems in severely curved canals: WaveOne and Reciproc versus WaveOne Gold and Reciproc blue. Odontology. 2019;107:96–102.

    Article  PubMed  Google Scholar 

  43. Belladonna FG, Carvalho MS, Cavalcante DM, Fernandes JT, de Carvalho Maciel AC, Oliveira HE, et al. Micro-computed tomography shaping ability assessment of the new blue thermal treated reciproc instrument. J Endod. 2018;44:1146–50.

    Article  PubMed  Google Scholar 

  44. Pedullá E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, et al. Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod. 2016;42:156–9.

    Article  PubMed  Google Scholar 

  45. Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, et al. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int Endod J. 2016;49:483–93.

    Article  PubMed  Google Scholar 

  46. Gündoğar M, Özyürek T. Cyclic fatigue resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue nickel-titanium instruments. J Endod. 2017;43:1192–6.

    Article  PubMed  Google Scholar 

  47. Nabavizadeh MR, Sedigh-Shams M, Abdolrasoulnia S. Cyclic fatigue life of two single file engine-driven systems in simulated curved canals. Iran Endod J. 2018;13:61–5.

    PubMed  PubMed Central  Google Scholar 

  48. Rubio J, Zarzosa JI, Pallares A. A comparative study of cyclic fatigue of 10 different types of endodontic instruments: an in vitro study. Acta Stomatol Croat. 2019;53:28–36.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000;26:161–5.

    Article  PubMed  Google Scholar 

  50. Al-Fouzan KS. Incidence of rotary ProFile instrument fracture and the potential for bypassing in vivo. Int Endod J. 2003;36:864–7.

    Article  PubMed  Google Scholar 

  51. Ehrhardt IC, Zuolo ML, Cunha RS, De Martin AS, Kherlakian D, Carvalho MC, et al. Assessment of the separation incidence of mtwo files used with preflaring: prospective clinical study. J Endod. 2012;38:1078–81.

    Article  PubMed  Google Scholar 

  52. Wang NN, Ge JY, Xie SJ, Chen G, Zhu M. Analysis of Mtwo rotary instrument separation during endodontic therapy: a retrospective clinical study. Cell Biochem Biophys. 2014;70:1091–5.

    Article  PubMed  Google Scholar 

  53. Wolcott S, Wolcott J, Ishley D, Kennedy W, Johnson S, Minnich S, et al. Separation incidence of protaper rotary instruments: a large cohort clinical evaluation. J Endod. 2006;32:1139–41.

    Article  PubMed  Google Scholar 

  54. Wu J, Lei G, Yan M, Yu Y, Yu J, Zhang G. Instrument separation analysis of multi-used ProTaper Universal rotary system during root canal therapy. J Endod. 2011;37:758–63.

    Article  PubMed  Google Scholar 

  55. Inan U, Gonulol N. Deformation and fracture of Mtwo rotary nickel-titanium instruments after clinical use. J Endod. 2009;35:1396–9.

    Article  PubMed  Google Scholar 

  56. Patiño PV, Biedma BM, Liebana CR, Cantatore G, Bahillo JG. The influence of a manual glide path on the separation rate of NiTi rotary instruments. J Endod. 2005;31:114–6.

    Article  PubMed  Google Scholar 

  57. Gambarini G, Piasecki L, Di Nardo D, Miccoli G, Di Giorgio G, Carneiro E, et al. Incidence of deformation and fracture of twisted file adaptive instruments after repeated clinical use. J Oral Maxillofac Res. 2016;7:e5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lacerda M, Marceliano-Alves MF, Perez AR, Provenzano JC, Neves MAS, Pires FR, et al. Cleaning and shaping oval canals with 3 instrumentation systems: a correlative micro-computed tomographic and histologic study. J Endod. 2017;43:1878–84.

    Article  PubMed  Google Scholar 

  59. Versiani MA, Carvalho KKT, Mazzi-Chaves JF, Sousa-Neto MD. Micro-computed tomographic evaluation of the shaping ability of XP-endo Shaper, iRaCe, and EdgeFile systems in long oval-shaped canals. J Endod. 2018;44:489–95.

    Article  PubMed  Google Scholar 

  60. McSpadden JT. Mastering endodontic instrumentation. Ramsey: Arbor Books, Inc.; 2007.

    Google Scholar 

  61. Schwartz B. The paradox of choice: why more is less. 1st ed. New York: Ecco; 2004.

    Google Scholar 

  62. Peters OA, Paqué F. Current developments in rotary root canal instrument technology and clinical use: a review. Quintessence International. 2010;41:479–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel J. N. L. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, E.J.N.L., Souza, E., De Deus, G., Versiani, M.A., Zuolo, M. (2022). NiTi Rotary Systems: From Revolution to the “More of the Same” Phenomenon. In: De Deus, G., Silva, E.J.N.L., Souza, E., Versiani, M.A., Zuolo, M. (eds) Shaping for Cleaning the Root Canals. Springer, Cham. https://doi.org/10.1007/978-3-030-84617-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84617-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84616-9

  • Online ISBN: 978-3-030-84617-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics