Skip to main content

Validation of a Shallow Landslide Susceptibility Analysis Through a Real Case Study: An Example of Application in Rome (Italy)

  • Chapter
  • First Online:
Applied Geology

Abstract

In the last years, statistically based models (such as Logistic Regression) have been frequently used for evaluating the probability of landslide occurrence over large areas. In the case of Rome, over the years, more than 348 landslides have been recorded throughout the city. For this reason, in this study, we implemented and evaluated three main validation criteria of logistic regression to assess the rainfall-induced landslide susceptibility in a specific area of the city of Rome. Through the evaluation of the predictive performances, the best model has been identified and the results were also compared with those obtained in similar case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alessi D, Bozzano F, Di Lisa A, Esposito C, Fantini A, Loffredo A, Martino S, Mele F, Moretto S, Noviello A, Prestininzi A, Sarandrea P, Scarascia Mugnozza G, Schiliro L, Varone C (2014) Geological risk in large cities: the landslides triggered in the city of Rome (Italy) by the rainfall of 31 January–2 February. Italia J Eng Geol Environ:15–34. https://doi.org/10.4408/IJEGE.2014-01-0-02

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Bozzano F, Salvatore M, Priori M (2006) Natural and man-made induced stress evolution of slope: the Monte Mario hill of Rome. Environ Geol 50:505–524. https://doi.org/10.1007/s00254-006-0228-y

    Article  Google Scholar 

  • Budimir MEA, Atkinson PM, Lewis HG (2015) A systematic review of landslide probability mapping using logistic regression. Landslides 12:419–436. https://doi.org/10.1007/s10346-014-0550-5

    Article  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. J Int Assoc Math Geol 15(3):403–426

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94:353–378. https://doi.org/10.1016/j.geomorph.2006.10.033

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7:411–423. https://doi.org/10.1007/s10346-010-0202-3

    Article  Google Scholar 

  • Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65–12:1389–1399

    Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Corominas J, van Westen CJ, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani S, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide Types and Processes. In: Turner AK, Shuster RL (eds) Landslide: investigation and Mitigation, Special Report, Transportation Research Board, National Academy of Sciences, 247. National Academy Press, Washington, DC, pp 36–75

    Google Scholar 

  • Del Monte M, D’orefice M, Luberti GM, Marini R, Pica A, Vergari F (2016) Geomorphological classification of urban landscapes: the case study of Rome (Italy). J Maps 12(Suppl 1):178–189. https://doi.org/10.1080/17445647.2016.1187977

    Article  Google Scholar 

  • Devkota CK, Regmi DA, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165. https://doi.org/10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • Frattini P, Crosta GB, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1–4):62–72. https://doi.org/10.1016/j.enggeo.2009.12.004

    Article  Google Scholar 

  • Funiciello R, Giordano G (2008) La nuova Carta Geologica di Roma: litostratigrafia e organizzazione stratigrafica. Mem Descr Carta Geol D’It 80(1):39–85, 22 figg., Firenze

    Google Scholar 

  • Glade T (2003) Landslide occurrence as a response to land use change: review of evidence from New Zealand. Catena 50(3–41):297–314

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2006) Probability landslide hazard assessment at the basin scale. Geomorphology 81:272–299

    Article  Google Scholar 

  • ISTAT (2011) Istituto Nazionale di Statistica (eng. National Institute of Statistics) of Italy

    Google Scholar 

  • Lin L, Lin Q, Wang Y (2017) Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat Hazards Earth Syst Sci 17:1411–1424. https://doi.org/10.5194/nhess-17-1411-2017

    Article  Google Scholar 

  • Mărgărint MC, Grozavu A, Patriche CV (2013) Assessing the spatial variability of coefficients of landslide predictors in different regions of Romania using logistic regression. Nat Hazards Earth Syst Sci 13:3339–3355. https://doi.org/10.5194/nhess-13-3339-2013

    Article  Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2007) Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India. Int J Remote Sens 28(10):2257–2275. https://doi.org/10.1080/01431160600928583

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in Northeast Kansas, USA. J Eng Geol:331–343. https://doi.org/10.1016/S0013-7952(03)00069-3

  • Park DW, Nikhil NV, Lee SR (2013) Landslide and debris flow susceptibility zonation using TRIGRS for 2011 Seoul landslide event. Nat Hazards Earth Syst Sci 13:2833–2849. https://doi.org/10.5194/nhess-13-2833-2013

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • SchilirĂ² L, Cevasco A, Esposito C, Scarascia MG (2018) Shallow landslide initiation on terraced slopes: inferences from a physically based approach. Geomatics Nat Hazards Risk 9(1):295–324. https://doi.org/10.1080/19475705.2018.1430066

    Article  Google Scholar 

  • Trigila A, Iadanza C, Esposito C, Scarascia MG (2015) Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 249:119–136. https://doi.org/10.1016/j.geomorph.2015.06.001

    Article  Google Scholar 

  • Van Den Eeckhaut M, HervĂ¡s J, Jaedicke C, Malet JP, Montanarella M, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369. https://doi.org/10.1007/s10346-011-0299-z

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control, special report 176. Transportation research Board, national research council, Washington, DC, pp 11–33

    Google Scholar 

  • Ventriglia U (2002) Geologia del territorio Comune di Roma. A cura del Servizio Geologico, Difesa del Suolo – Provincia di Roma, 809 pagg., 13 tavole fuori testo.

    Google Scholar 

  • Wang L-J, Sawada K, Moriguchi S (2013) Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Comput Geosci 57:81–92. https://doi.org/10.1016/j.cageo.2013.04.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraud Poueme Djueyep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Djueyep, G.P., Esposito, C., SchilirĂ², L., Bozzano, F. (2020). Validation of a Shallow Landslide Susceptibility Analysis Through a Real Case Study: An Example of Application in Rome (Italy). In: De Maio, M., Tiwari, A. (eds) Applied Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-43953-8_16

Download citation

Publish with us

Policies and ethics