Skip to main content

Deformity Secondary to Vertebral Body Metastases

  • Chapter
  • First Online:
Central Nervous System Metastases

Abstract

Spinal metastases are the most common type of vertebral column tumor, affecting up to 70% of all patients with neoplastic disease. Though seldom the primary determinant of survival, these lesions are clinically important for the mass effect they exert on a patient’s neural elements as well as the mechanical instability they generate within affected vertebrae. Osteolytic lesions are of particular concern as they significantly decrease axial loading strength of the vertebral column, increasing the risk of fracture and subsequent deformity. Diagnosis of deformity is made using computed tomography imaging, which can also be used for surgical planning in patients indicated for operative management. Other interventions include prophylaxis against vertebral collapse using a combination of vertebral body cement augmentation and administration of anti-osteolytic agents, such as bisphosphonates and denosumab. In this chapter, we provide an overview of the biomechanics of the metastatic spine, give background on the pathophysiology of osteolysis in metastatic segments, and outline the therapeutic interventions for those with spinal deformity or mechanical instability in the context of disseminated cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Forman-Hoffman VL, Ault KL, Anderson WL, Weiner JM, Stevens A, Campbell VA, et al. Disability status, mortality, and leading causes of death in the United States community population. Med Care. 2015;53(4):346–54.

    PubMed  PubMed Central  Google Scholar 

  2. Wright JD, Chen L, Tergas AI, Patankar S, Burke WM, Hou JY, et al. Trends in relative survival for ovarian cancer from 1975 to 2011. Obstet Gynecol. 2015;125(6):1345–52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alberts SR, Cervantes A, van de Velde CJH. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14 Suppl 2:36.

    Google Scholar 

  4. Cheng TD, Cramb SM, Baade PD, Youlden DR, Nwogu C, Reid ME. The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. J Thorac Oncol. 2016;11(10):1653–71.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Verdial FC, Etzioni R, Duggan C, Anderson BO. Demographic changes in breast cancer incidence, stage at diagnosis and age associated with population-based mammographic screening. J Surg Oncol. 2017;115(5):517–22.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li J, Djenaba JA, Soman A, Rim SH, Master VA. Recent trends in prostate cancer incidence by age, cancer stage, and grade, the United States, 2001–2007. Prostate Cancer. 2012;2012:1–8.

    Article  Google Scholar 

  7. Kakhki VRD, Anvari K, Sadeghi R, Mahmoudian A, Torabian-Kakhki M. Pattern and distribution of bone metastases in common malignant tumors. Nucl Med Rev Cent East Eur. 2013;16(2):66–9.

    Article  PubMed  Google Scholar 

  8. Nakamoto Y, Osman M, Wahl RL. Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG. Clin Nucl Med. 2003;28(4):302–7.

    PubMed  Google Scholar 

  9. Fornasier VL, Horne JG. Metastases to the vertebral column. Cancer. 1975;36(2):590–4.

    Article  CAS  PubMed  Google Scholar 

  10. Togawa D, Lewandrowski K. The pathophysiology of spinal metastases. In: RF ML, Lew RK, Markman M, Bukowski RM, Macklis R, et al., editors. Cancer in the spine: comprehensive care. Totowa, NJ: Humana Press; 2006. p. 17–23.

    Chapter  Google Scholar 

  11. Tokuhashi Y, Matsuzaki H, Toriyama S, Kawano H, Ohsaka S. Scoring system for the preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976). 1990;15(11):1110–3.

    Article  CAS  Google Scholar 

  12. Klimo P Jr, Thompson CJ, Kestle JRW, Schmidt MH. A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro-Oncology. 2005;7(1):64–76.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sioutos PJ, Arbit E, Meshulam CF, Galicich JH. Spinal metastases from solid tumors. Analysis of factors affecting survival. Cancer. 1995;76(8):1453–9.

    Article  CAS  PubMed  Google Scholar 

  14. Cole JS, Patchell RA. Metastatic epidural spinal cord compression. Lancet Neurol. 2008;7(5):459–66.

    Article  PubMed  Google Scholar 

  15. Miscusi M, Polli FM, Forcato S, Ricciardi L, Frati A, Cimatti M, et al. Comparison of minimally invasive surgery with standard open surgery for vertebral thoracic metastases causing acute myelopathy in patients with short- or mid-term life expectancy: surgical technique and early clinical results. J Neurosurg Spine. 2015;22(5):518–25.

    Article  PubMed  Google Scholar 

  16. Smith ZA, Yang I, Gorgulho A, Raphael D, De Salles, Antonio AF, Khoo LT. Emerging techniques in the minimally invasive treatment and management of thoracic spine tumors. J Neuro-Oncol. 2012;107(3):443–55.

    Article  Google Scholar 

  17. Eleraky M, Papanastassiou I, Vrionis FD. Management of metastatic spine disease. Curr Opin Support Palliat Care. 2010;4(3):182–8.

    Article  PubMed  Google Scholar 

  18. Zaikova O, Giercksky K, Fosså SD, Kvaløy S, Johannesen TB, Skjeldel S. A population-based study of spinal metastatic disease in South-East Norway. Clin Oncol (R Coll Oncol). 2009;21(10):753–9.

    Article  CAS  Google Scholar 

  19. Molina CA, Gokaslan ZL, Sciubba DM. A systematic review of the current role of minimally invasive spine surgery in the management of metastatic spine disease. Int J Surg Oncol. 2011;2011:598148.

    PubMed  PubMed Central  Google Scholar 

  20. Fürstenberg CH, Wiedenhöfer B, Gerner HJ, Putz C. The effect of early surgical treatment on recovery in patients with metastatic compression of the spinal cord. J Bone Joint Surg Br. 2009;91B(2):240–4.

    Article  Google Scholar 

  21. Kaloostian PE, Yurter A, Zadnik PL, Sciubba DM, Gokaslan ZL. Current paradigms for metastatic spinal disease: an evidence-based review. Ann Surg Oncol. 2014;21(1):248–62.

    Article  CAS  PubMed  Google Scholar 

  22. Loblaw DA, Laperriere NJ, Mackillop WJ. A population-based study of malignant spinal cord compression in Ontario. Clin Oncol (R Coll Oncol). 2003;15(4):211–7.

    Article  CAS  Google Scholar 

  23. Loblaw DA, Perry J, Chambers A, Laperriere NJ. Systematic review of the diagnosis and management of malignant extradural spinal cord compression: the cancer care Ontario practice guidelines initiative‘s neuro-oncology disease site group. J Clin Oncol. 2005;23(9):2028–37.

    Article  PubMed  Google Scholar 

  24. Mak KS, Lee LK, Mak RH, Wang S, Pile-Spellman J, Abrahm JL, et al. Incidence and treatment patterns in hospitalizations for malignant spinal cord compression in the United States, 1998–2006. Int J Radiat Oncol Biol Phys. 2011;80(3):824–31.

    Article  PubMed  Google Scholar 

  25. Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8.

    Article  PubMed  Google Scholar 

  26. Quraishi NA, Gokaslan ZL, Boriani S. The surgical management of metastatic epidural compression of the spinal cord. J Bone Joint Surg Br. 2010;92(8):1054–60.

    Article  CAS  PubMed  Google Scholar 

  27. Tomycz N, Gerszten P. Minimally invasive treatments for metastatic spine tumors: vertebroplasty, kyphoplasty, and radiosurgery. Neurosurg Q. 2008;18(2):104–8.

    Article  Google Scholar 

  28. Witham TF, Khavkin YA, Gallia GL, Wolinsky J, Gokaslan ZL. Surgery insight: current management of epidural spinal cord compression from metastatic spine disease. Nat Clin Pract Neurol. 2006;2(2):87–94.

    Article  PubMed  Google Scholar 

  29. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res. 1984;189:65–76.

    Google Scholar 

  30. Holdsworth F. Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am. 1970;52(8):1534–51.

    Article  CAS  PubMed  Google Scholar 

  31. Azam MQ, Sadat-Ali M. The concept of evolution of thoracolumbar fracture classifications helps in surgical decisions. Asian Spine J. 2015;9(6):984–94.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alexandru D, So W. Evaluation and management of vertebral compression fractures. Perm J. 2012;16(4):46–51.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK, et al. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res. 2005;20(7):1216–22.

    Article  PubMed  Google Scholar 

  34. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Suva LJ, Washam C, Nicholas RW, Griffin RJ. Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol. 2011;7(4):208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roberts E, Cossigny DAF, Quan GMY. The role of vascular endothelial growth factor in metastatic prostate cancer to the skeleton. Prostate Cancer. 2013;2013:418340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hall CL, Daignault SD, Shah RB, Pienta KJ, Keller ET. Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate. 2008;68(13):1396–404.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ottewell PD. The role of osteoblasts in bone metastasis. J Bone Oncol. 2016;5(3):124–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Coelho RM, Lemos JM, Alho I, Valério D, Ferreira AR, Costa L, et al. Dynamic modeling of bone metastasis, microenvironment and therapy: Integrating parathyroid hormone (PTH) effect, anti-resorptive and anti-cancer therapy. J Theor Biol. 2016;391:1–12.

    Article  PubMed  Google Scholar 

  40. Swami S, Johnson J, Bettinson LA, Kimura T, Zhu H, Albertelli MA, et al. Prevention of breast cancer skeletal metastases with parathyroid hormone. JCI Insight. 2017;2(17).

    Google Scholar 

  41. Iddon J, Bundred NJ, Hoyland J, Downey SE, Baird P, Salter D, et al. Expression of parathyroid hormone-related protein and its receptor in bone metastases from prostate cancer. J Pathol. 2000;191(2):170–4.

    Article  CAS  PubMed  Google Scholar 

  42. Ritchie CK, Thomas KG, Andrews LR, Tindall DJ, Fitzpatrick LA. Effects of the calciotrophic peptides calcitonin and parathyroid hormone on prostate cancer growth and chemotaxis. Prostate. 1997;30(3):183–7.

    Article  CAS  PubMed  Google Scholar 

  43. Schwartz GG. Prostate cancer, serum parathyroid hormone, and the progression of skeletal metastases. Cancer Epidemiol Biomark Prev. 2008;17(3):478–83.

    Article  CAS  Google Scholar 

  44. Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, et al. Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem. 2013;288(28):20122–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer. 2010;116(6):1406–18.

    Article  CAS  PubMed  Google Scholar 

  46. Guise TA. Molecular mechanisms of osteolytic bone metastases. Cancer. 2000;88(12 Suppl):2892–8.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Sosnoski DM, Mastro AM. Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Res. 2010;12(6):215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naylor K, Eastell R. Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol. 2012;8(7):379–89.

    Article  CAS  PubMed  Google Scholar 

  49. Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  50. Mariz K, Ingolf J, Daniel H, Teresa NJ, Erich-Franz S. The Wnt inhibitor dickkopf-1: a link between breast cancer and bone metastases. Clin Exp Metastasis. 2015;32(8):857–66.

    Article  CAS  PubMed  Google Scholar 

  51. Yavropoulou MP, van Lierop AH, Hamdy NAT, Rizzoli R, Papapoulos SE. Serum sclerostin levels in Paget’s disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone. 2012;51(1):153–7.

    Article  CAS  PubMed  Google Scholar 

  52. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349(26):2483–94.

    Article  CAS  PubMed  Google Scholar 

  53. Steger GG, Bartsch R. Denosumab for the treatment of bone metastases in breast cancer: evidence and opinion. Ther Adv Med Oncol. 2011;3(5):233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yuasa T, Yamamoto S, Urakami S, Fukui I, Yonese J. Denosumab: a new option in the treatment of bone metastases from urological cancers. Onco Targets Ther. 2012;5:221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821–31.

    Article  CAS  PubMed  Google Scholar 

  56. Gül G, Sendur MAN, Aksoy S, Sever AR, Altundag K. A comprehensive review of denosumab for bone metastasis in patients with solid tumors. Curr Med Res Opin. 2016;32(1):133–45.

    Article  PubMed  CAS  Google Scholar 

  57. Filis AK, Aghayev KV, Doulgeris JJ, Gonzalez-Blohm SA, Vrionis FD. Spinal neoplastic instability: biomechanics and current management options. Cancer Control. 2014;21(2):144–50.

    Article  PubMed  Google Scholar 

  58. Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47(Suppl 2):11.

    Article  Google Scholar 

  59. Yang KH, King AI. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine. 1984;9(6):557–65.

    Article  CAS  PubMed  Google Scholar 

  60. Aebi M. Spinal metastasis in the elderly. Eur Spine J. 2003;12 Suppl 2:202.

    Article  Google Scholar 

  61. Tong X, Burton IS, Isaksson H, Jurvelin JS, Kröger H. Cortical bone histomorphometry in male femoral neck: the investigation of age-association and regional differences. Calcif Tissue Int. 2015;96(4):295–306.

    Article  CAS  PubMed  Google Scholar 

  62. Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58(1):82–6.

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Bank RA, TeKoppele JM, Agrawal CM. The role of collagen in determining bone mechanical properties. J Orthop Res. 2001;19(6):1021–6.

    Article  CAS  PubMed  Google Scholar 

  64. Keaveny TM, Hayes WC. A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng. 1993;115(4B):534–42.

    Article  CAS  PubMed  Google Scholar 

  65. Zebaze RMD, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375(9727):1729–36.

    Article  PubMed  Google Scholar 

  66. Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17(6):521–5.

    Article  CAS  PubMed  Google Scholar 

  67. Nair AK, Gautieri A, Chang S, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 2013;4:1724.

    Article  PubMed  CAS  Google Scholar 

  68. Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech. 1989;22(5):419–26.

    Article  CAS  PubMed  Google Scholar 

  69. Martin RB, Boardman DL. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech. 1993;26(9):1047–54.

    Article  CAS  PubMed  Google Scholar 

  70. Riggs CM, Vaughan LC, Evans GP, Lanyon LE, Boyde A. Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat Embryol. 1993;187(3):239–48.

    CAS  Google Scholar 

  71. Whyne CM. Biomechanics of metastatic disease in the vertebral column. Neurol Res. 2014;36(6):493–501.

    Article  PubMed  Google Scholar 

  72. Greenspan A, Norman A. Osteolytic cortical destruction: an unusual pattern of skeletal metastases. Skelet Radiol. 1988;17(6):402–6.

    Article  CAS  Google Scholar 

  73. Silva MJ, Hipp JA, McGowan DP, Takeuchi T, Hayes WC. Strength reductions of thoracic vertebrae in the presence of transcortical osseous defects: effects of defect location, pedicle disruption, and defect size. Eur Spine J. 1993;2(3):118–25.

    Article  CAS  PubMed  Google Scholar 

  74. McGowan DP, Hipp JA, Takeuchi T, White AA, Hayes WC. Strength reductions from trabecular destruction within thoracic vertebrae. J Spinal Disord. 1993;6(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  75. Dimar JR, Voor MJ, Zhang YM, Glassman SD. A human cadaver model for determination of pathologic fracture threshold resulting from tumorous destruction of the vertebral body. Spine. 1998;23(11):1209–14.

    Article  PubMed  Google Scholar 

  76. Mizrahi J, Silva MJ, Hayes WC. Finite element stress analysis of simulated metastatic lesions in the lumbar vertebral body. J Biomed Eng. 1992;14(6):467–75.

    Article  CAS  PubMed  Google Scholar 

  77. Whyne CM, Hu SS, Lotz JC. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine. 2003;28(7):652–60.

    PubMed  Google Scholar 

  78. Windhagen H, Hipp JA, Hayes WC. Postfracture instability of vertebrae with simulated defects can be predicted from computed tomography data. Spine. 2000;25(14):1775–81.

    Article  CAS  PubMed  Google Scholar 

  79. Ebihara H, Ito M, Abumi K, Taneichi H, Kotani Y, Minami A, et al. A biomechanical analysis of metastatic vertebral collapse of the thoracic spine. Spine (Phila Pa 1976). 2004;29(9):994–9.

    Article  Google Scholar 

  80. Hong J, Cabe GD, Tedrow JR, Hipp JA, Snyder BD. Failure of trabecular bone with simulated lytic defects can be predicted non-invasively by structural analysis. J Orthop Res. 2004;22(3):479–86.

    Article  PubMed  Google Scholar 

  81. Tschirhart CE, Finkelstein JA, Whyne CM. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J Biomech. 2007;40(1):46–54.

    Article  PubMed  Google Scholar 

  82. Vassiliou V, Kalogeropoulou C, Petsas T, Leotsinidis M, Kardamakis D. Clinical and radiological evaluation of patients with lytic, mixed and sclerotic bone metastases from solid tumors: is there a correlation between clinical status of patients and type of bone metastases? Clin Exp Metastasis. 2007;24(1):49–56.

    Article  PubMed  Google Scholar 

  83. Whyne C, Hardisty M, Wu F, Skrinskas T, Clemons M, Gordon L, et al. Quantitative characterization of metastatic disease in the spine. Part II. Histogram-based analyses. Med Phys. 2007;34(8):3279–85.

    Article  PubMed  Google Scholar 

  84. Shah LM, Salzman KL. Imaging of spinal metastatic disease. Int J Surg Oncol. 2011;2011:769753.

    PubMed  PubMed Central  Google Scholar 

  85. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the spine oncology study group. Spine (Phila Pa 1976). 2010;35(22):E1229.

    Article  Google Scholar 

  86. Fourney DR, Frangou EM, Ryken TC, DiPaola CP, Shaffrey CI, Berven SH, et al. Spinal Instability Neoplastic Score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29(22):3072–7.

    Article  PubMed  Google Scholar 

  87. Campos M, Urrutia J, Zamora T, Román J, Canessa V, Borghero Y, et al. The spine instability neoplastic score: an independent reliability and reproducibility analysis. Spine J. 2014;14(8):1466–9.

    Article  PubMed  Google Scholar 

  88. Fisher CG, Schouten R, Versteeg AL, Boriani S, Varga PP, Rhines LD, et al. Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases. Radiat Oncol (London, England). 2014;9(1):69.

    Article  Google Scholar 

  89. Fox S, Spiess M, Hnenny L, Fourney DR. Spinal Instability Neoplastic Score (SINS): reliability among spine fellows and resident physicians in orthopedic surgery and neurosurgery. Global Spine J. 2017;7(8):744–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ruland CM, McAfee PC, Warden KE, Cunningham BW. Triangulation of pedicular instrumentation. A biomechanical analysis. Spine. 1991;16(6 Suppl):270.

    Article  Google Scholar 

  91. Hadjipavlou AG, Nicodemus CL, al-Hamdan FA, Simmons JW, Pope MH. Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct. J Spinal Disord. 1997;10(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  92. Barber JW, Boden SD, Ganey T, Hutton WC. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord. 1998;11(3):215–20.

    Article  CAS  PubMed  Google Scholar 

  93. Lai D, Shih Y, Chen Y, Chien A, Wang J. Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. J Biomech. 2018;70:196–203.

    Article  PubMed  Google Scholar 

  94. Ponnusamy KE, Iyer S, Gupta G, Khanna AJ. Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J. 2011;11(1):54–63.

    Article  PubMed  Google Scholar 

  95. Chen L, Tai C, Lee D, Lai P, Lee Y, Niu C, et al. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet Disord. 2011;12:33.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kiyak G, Balikci T, Heydar AM, Bezer M. Comparison of the pullout strength of different pedicle screw designs and augmentation techniques in an osteoporotic bone model. Asian Spine J. 2018;12(1):3–11.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chatzistergos PE, Sapkas G, Kourkoulis SK. The influence of the insertion technique on the pullout force of pedicle screws: an experimental study. Spine. 2010;35(9):332.

    Article  Google Scholar 

  98. Chen L, Tai C, Lai P, Lee D, Tsai T, Fu T, et al. Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping. Clin Biomech (Bristol, Avon). 2009;24(8):613–8.

    Article  Google Scholar 

  99. Pfeiffer FM, Abernathie DL, Smith DE. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine. 2006;31(23):867.

    Article  Google Scholar 

  100. Erkan S, Hsu B, Wu C, Mehbod AA, Perl J, Transfeldt EE. Alignment of pedicle screws with pilot holes: can tapping improve screw trajectory in thoracic spines? Eur Spine J. 2010;19(1):71–7.

    Article  PubMed  Google Scholar 

  101. Leichtle CI, Lorenz A, Rothstock S, Happel J, Walter F, Shiozawa T, et al. Pull-out strength of cemented solid versus fenestrated pedicle screws in osteoporotic vertebrae. Bone Joint Res. 2016;5(9):419–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tokuhashi Y, Ajiro Y, Umezawa N. Outcome of treatment for spinal metastases using scoring system for preoperative evaluation of prognosis. Spine (Phila Pa 1976). 2009;34(1):69–73.

    Article  Google Scholar 

  103. Yang SB, Cho W, Chang U. Analysis of prognostic factors relating to postoperative survival in spinal metastases. J Korean Neurosurg Soc. 2012;51(3):127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Finkelstein JA, Zaveri G, Wai E, Vidmar M, Kreder HJ, Chow E. A population-based study of surgery for spinal metastases. Survival rates and complications. J Bone Joint Surg Br. 2003;85(7):1045–50.

    Article  CAS  PubMed  Google Scholar 

  105. Hosono N, Ueda T, Tamura D, Aoki Y, Yoshihawa H. Prognostic relevance of clinical symptoms in patients with spinal metastases. Clin Orthop Relat Res. 2005;436:196–201.

    Article  Google Scholar 

  106. Laufer I, Sciubba DM, Madera M, Bydon A, Witham TJ, Gokaslan ZL, et al. Surgical management of metastatic spinal tumors. Cancer Control. 2012;19(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  107. Sciubba D, Gokaslan Z, Suk I, Suki D, Maldaun M, McCutcheon I, et al. Positive and negative prognostic variables for patients undergoing spine surgery for metastatic breast disease. Eur Spine J. 2007;16(10):1659–67.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sciubba D, Yurter A, Ju D, Gokaslan Z, Fisher C, Rhines L, et al. A systematic review of clinical outcomes and prognostic factors for patients undergoing surgery for spinal metastases secondary to breast cancer. Global Spine J. 2015;5(1_suppl):1554402.

    Google Scholar 

  109. Zadnik P, Hwang L, Ju D, Groves M, Sui J, Yurter A, et al. Prolonged survival following aggressive treatment for metastatic breast cancer in the spine. Clin Exp Metastasis. 2014;31(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  110. Pointillart V, Vital J, Salmi R, Diallo A, Quan GMY. Survival prognostic factors and clinical outcomes in patients with spinal metastases. J Cancer Res Clin Oncol. 2011;137(5):849–56.

    Article  PubMed  Google Scholar 

  111. Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru T. Surgical strategy for spinal metastases. Spine. 2001;26(3):298–306.

    Article  CAS  PubMed  Google Scholar 

  112. North RB, LaRocca VR, Schwartz J, North CA, Zahurak M, Davis RF, et al. Surgical management of spinal metastases: analysis of prognostic factors during a 10-year experience. J Neurosurg Spine. 2005;2(5):564–73.

    Article  PubMed  Google Scholar 

  113. Ju D, Zadnik P, Groves M, Hwang L, Kaloostian P, Wolinksy J, et al. Factors associated with improved outcomes following decompressive surgery for prostate cancer metastatic to the spine. Neurosurgery. 2013;73(4):657–66.

    Article  PubMed  Google Scholar 

  114. Katagiri H, Okada R, Takagi T, Takahashi M, Murata H, Harada H, et al. New prognostic factors and scoring system for patients with skeletal metastasis. Cancer Med. 2014;3(5):1359–67.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Quraishi NA, Rajagopal TS, Manoharan SR, Elsayed S, Edwards KL, Boszczyk BM. Effect of timing of surgery on neurological outcome and survival in metastatic spinal cord compression. Eur Spine J. 2013;22(6):1383–8.

    Article  CAS  PubMed  Google Scholar 

  116. Laufer I, Iorgulescu JB, Chapman T, Lis E, Shi W, Zhang Z, et al. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18(3):207.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Burton AW, Rhines LD, Mendel E. Vertebroplasty and kyphoplasty: a comprehensive review. Neurosurg Focus. 2005;18(3):e1.

    Article  PubMed  Google Scholar 

  118. Pizzoli AL, Brivio LR, Caudana R, Vittorini E. Percutaneous CT-guided vertebroplasty in the management of osteoporotic fractures and dorsolumbar metastases. Orthop Clin North Am. 2009;40(4):458, vii.

    Article  Google Scholar 

  119. Berenson J, Pflugmacher R, Jarzem P, Zonder J, Schechtmna K, Tillman JB, et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(3):225–35.

    Article  PubMed  Google Scholar 

  120. Dalbayrak S, Onen MR, Yilmaz M, Naderi S. Clinical and radiographic results of balloon kyphoplasty for treatment of vertebral body metastases and multiple myelomas. J Clin Neurosci. 2010;17(2):219–24.

    Article  PubMed  Google Scholar 

  121. Pflugmacher R, Beth P, Schroeder R, Schaser K, Melcher I. Balloon kyphoplasty for the treatment of pathological fractures in the thoracic and lumbar spine caused by metastasis: one-year follow-up. Acta Radiol. 2007;48(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  122. Qian Z, Sun Z, Yang H, Gu Y, Chen K, Wu G. Kyphoplasty for the treatment of malignant vertebral compression fractures caused by metastases. J Clin Neurosci. 2011;18(6):763–7.

    Article  PubMed  Google Scholar 

  123. Fourney DR, Schomer DF, Nader R, Chlan-Fourney J, Suki D, Ahrar K, et al. Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg. 2003;98(Spine 1):21–30.

    PubMed  Google Scholar 

  124. Alvarez L, Pérez-Higueras A, Quiñones D, Calvo E, Rossi R. Vertebroplasty in the treatment of vertebral tumors: postprocedural outcome and quality of life. Eur Spine J. 2003;12(4):356–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ambrosanio G, Lavanga A, Vassallo P, Izzo R, Diano AA, Muto M. Vertebroplasty in the treatment of spine disease. Interv Neuroradiol. 2005;11(4):309–23.

    Article  CAS  PubMed  Google Scholar 

  126. Barr JD, Barr MS, Lemley TJ, McCann RM. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine. 2000;25(8):923–8.

    Article  CAS  PubMed  Google Scholar 

  127. Caudana R, Renzi Brivio L, Ventura L, Aitini E, Rozzanigo U, Barai G. CT-guided percutaneous vertebroplasty: personal experience in the treatment of osteoporotic fractures and dorsolumbar metastases. Radiol Med. 2008;113(1):114–33.

    Article  CAS  PubMed  Google Scholar 

  128. Chen L, Ni R, Liu S, Liu Y, Jin Y, Zhu X, et al. Percutaneous vertebroplasty as a treatment for painful osteoblastic metastatic spinal lesions. J Vasc Interv Radiol. 2011;22(4):525–8.

    Article  CAS  PubMed  Google Scholar 

  129. Kobayashi T, Arai Y, Takeuchi Y, Nakajima Y, Shioyama Y, Sone M, et al. Phase I/II clinical study of percutaneous vertebroplasty (PVP) as palliation for painful malignant vertebral compression fractures (PMVCF): JIVROSG-0202. Ann Oncol. 2009;20(12):1943–7.

    Article  CAS  PubMed  Google Scholar 

  130. Lee B, Franklin I, Lewis JS, Coombes RC, Leonard R, Gishen P, et al. The efficacy of percutaneous vertebroplasty for vertebral metastases associated with solid malignancies. Eur J Cancer. 2009;45(9):1597–602.

    Article  PubMed  Google Scholar 

  131. Nirala AP, Vatsal DK, Husain M, Gupta C, Chawla J, Kumar V, et al. Percutaneous vertebroplasty: an experience of 31 procedures. Neurol India. 2003;51(4):490–2.

    CAS  PubMed  Google Scholar 

  132. Sun G, Cong Y, Xie Z, Jin P, Li F, Yi Y, et al. Percutaneous vertebroplasty using instruments and drugs made in China for vertebral metastases. Chin Med J. 2003;116(8):1207–12.

    PubMed  Google Scholar 

  133. Sun G, Li L, Jin P, Liu X, Li M. Percutaneous vertebroplasty for painful spinal metastasis with epidural encroachment. J Surg Oncol. 2014;110(2):123–8.

    Article  PubMed  Google Scholar 

  134. Xie P, Zhao Y, Li G. Efficacy of percutaneous vertebroplasty in patients with painful vertebral metastases: a retrospective study in 47 cases. Clin Neurol Neurosurg. 2015;138:157–61.

    Article  PubMed  Google Scholar 

  135. Berton A, Salvatore G, Giambini H, Ciuffreda M, Longo UG, Denaro V, et al. A 3D finite element model of prophylactic vertebroplasty in the metastatic spine: vertebral stability and stress distribution on adjacent vertebrae. J Spinal Cord Med. 2020;43(1):39–45.

    Article  PubMed  Google Scholar 

  136. Oakland RJ, Furtado NR, Timothy J, Hall RM. The biomechanics of vertebroplasty in multiple myeloma and metastatic bladder cancer: a preliminary cadaveric investigation. J Neurosurg Spine. 2008;9(5):493–501.

    Article  PubMed  Google Scholar 

  137. Oakland RJ, Furtado NR, Timothy J, Hall RM. A preliminary cadaveric study investigating the biomechanical effectiveness of vertebroplasty in treating spinal metastases and multiple myeloma. Orthop Proc. 2009;91-B(SUPP_III):497.

    Google Scholar 

  138. Tschirhart CE, Roth SE, Whyne CM. Biomechanical assessment of stability in the metastatic spine following percutaneous vertebroplasty: effects of cement distribution patterns and volume. J Biomech. 2005;38(8):1582–90.

    Article  PubMed  Google Scholar 

  139. Hide IG, Gangi A. Percutaneous vertebroplasty: history, technique and current perspectives. Clin Radiol. 2004;59:461–7.

    Article  CAS  PubMed  Google Scholar 

  140. Hentschel SJ, Rhines LD, Shah HN, Burton AW, Mendel E. Percutaneous vertebroplasty in vertebra plana secondary to metastasis. J Spinal Disord Tech. 2004;17(6):554–7.

    Article  PubMed  Google Scholar 

  141. Amoretti N, Diego P, Amélie P, Andreani O, Foti P, Schmid-Antomarchi H, et al. Percutaneous vertebroplasty in tumoral spinal fractures with posterior vertebral wall involvement: feasibility and safety. Eur J Radiol. 2018;104:38–42.

    Article  PubMed  Google Scholar 

  142. Eck JC, Nachtigall D, Humphreys SC, Hodges SD. Comparison of vertebroplasty and balloon kyphoplasty for treatment of vertebral compression fractures: a meta-analysis of the literature. Spine J. 2008;8(3):488–97.

    Article  PubMed  Google Scholar 

  143. Hulme PA, Krebs J, Ferguson SJ, Berlemann U. Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine. 2006;31(17):1983–2001.

    Article  PubMed  Google Scholar 

  144. Siemionow K, Lieberman I. Vertebral augmentation in osteoporosis and bone metastasis. Curr Opin Support Palliat Care. 2007;1(4):323–7.

    Article  PubMed  Google Scholar 

  145. Gerszten PC, Ozhasoglu C, Burton SA, Vogel WJ, Atkins BA, Kalnicki S, et al. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery. 2004;55(1):99.

    Article  Google Scholar 

  146. Gerszten PC, Burton SA, Ozhasoglu C, Welch WC. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine. 2007;32(2):193–9.

    Article  PubMed  Google Scholar 

  147. Gerszten PC, Mendel E, Yamada Y. Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes? Spine. 2009;34(22 Suppl):78.

    Article  Google Scholar 

  148. Nyaruba MM, Yamamoto I, Kimura H, Morita R. Bone fragility induced by X-ray irradiation in relation to cortical bone-mineral content. Acta Radiol. 1998;39:43–6.

    Article  CAS  PubMed  Google Scholar 

  149. Gong B, Oest ME, Mann KA, Damron TA, Morris MD. Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation. Bone. 2013;57(1):252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Govey PM, Zhang Y, Donahue HJ. Mechanical loading attenuates radiation-induced bone loss in bone marrow transplanted mice. PLoS One. 2016;11(12):e0167673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Oest ME, Policastro CG, Mann KA, Zimmerman ND, Damron TA. Longitudinal effects of single hindlimb radiation therapy on bone strength and morphology at local and contralateral sites. J Bone Miner Res. 2018;33(1):99–112.

    Article  PubMed  Google Scholar 

  152. Wright LE, Buijs JT, Kim H, Coats LE, Scheidler AM, John SK, et al. Single-limb irradiation induces local and systemic bone loss in a murine model. J Bone Miner Res. 2015;30(7):1268–79.

    Article  CAS  PubMed  Google Scholar 

  153. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  CAS  PubMed  Google Scholar 

  154. Coleman RE, Finkelstein D, Barrios CH, Martin M, Iwata H, Glaspy JA, et al. Adjuvant denosumab in early breast cancer: first results from the international multicenter randomized phase III placebo controlled D-CARE study. 2018 ASCO Annual Meeting 2018 June 4.

    Google Scholar 

  155. Holen I, Coleman RE. Bisphosphonates as treatment of bone metastases. Curr Pharm Des. 2010;16(11):1262–71.

    Article  CAS  PubMed  Google Scholar 

  156. O’Carrigan B, Wong MH, Willson ML, Stockler MR, Pavlakis N, Goodwin A. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev. 2017;10:CD003474.

    PubMed  Google Scholar 

  157. Mhaskar R, Kumar A, Miladinovic B, Djulbegovic B. Bisphosphonates in multiple myeloma: an updated network meta-analysis. Cochrane Database Syst Rev. 2017;12:CD003188.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Sciubba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pennington, Z., Ahmed, A.K., Sciubba, D.M. (2020). Deformity Secondary to Vertebral Body Metastases. In: Ramakrishna, R., Magge, R., Baaj, A., Knisely, J. (eds) Central Nervous System Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-42958-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42958-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42957-7

  • Online ISBN: 978-3-030-42958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics