Skip to main content

Advertisement

Log in

The Wnt inhibitor dickkopf-1: a link between breast cancer and bone metastases

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Breast cancer is the second leading cause of cancer death in women and metastasizes to bone in greater than 80 % of advanced-disease patients. Once breast cancer bone metastases are established, the disease is incurable and drives numerous complications that increase morbidity and diminish patients’ quality of life. Many mechanisms have been implicated in bone metastases of breast cancer. The critical role of Wnt signalling pathway inhibition in initiating bone lesions has been demonstrated in a variety of bone diseases and tumours. Overexpression of dickkopf-1 (Dkk1) protein, a negative regulator of the Wnt/β-catenin pathway, has been found in breast cancer cell lines that form osteolytic metastases preferentially and in serum from breast cancer patients with osteolytic bone metastases. Further understanding of the mechanistic role of Dkk1 as a link between primary breast tumours and secondary osteolytic bone metastases may facilitate development of anti-Dkk1 antibody therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  PubMed  Google Scholar 

  2. Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10:169–180

    Article  PubMed  Google Scholar 

  3. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  CAS  PubMed  Google Scholar 

  4. Lipton A (2005) Management of bone metastases in breast cancer. Cur Treat Options Oncol 6:161–171

    Article  Google Scholar 

  5. Aubin JE, Triffitt J (2002) Mesenchymal stem cells and the osteoblast lineage. In: Principles of bone biology, 2nd edn. Academic Press, New York, pp 59–81

  6. Suda T, Takahashi N, Udagawa N et al (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  CAS  PubMed  Google Scholar 

  7. Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  8. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modelling and remodelling. Arch Biochem Biophys 473:139–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Quinn JM, Saleh H (2009) Modulation of osteoclast function in bone by the immune system. Mol Cell Endocrinol 310:40–51

    Article  CAS  PubMed  Google Scholar 

  10. Weitzmann MN (2013) The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica. doi:10.1155/2013/125705

    PubMed Central  PubMed  Google Scholar 

  11. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:1–6

    Article  CAS  Google Scholar 

  12. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastases. Cell 117:927–939

    Article  CAS  PubMed  Google Scholar 

  13. Eckhardt BL, Parker BS, van Laar RK et al (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3:1–13

    CAS  PubMed  Google Scholar 

  14. Bohn OL, Nasir I, Brufsky A et al (2009) Biomarker profile in breast carcinomas presenting with bone metastasis. Int J Clin Exp Pathol 3:139–146

    PubMed Central  PubMed  Google Scholar 

  15. Ota D, Mimori K, Yokobori T et al (2011) Identification of recurrence-related microRNAs in the bone marrow of breast cancer patients. Int J Oncol 38:955–962

    CAS  PubMed  Google Scholar 

  16. Patel LR, Camacho DF, Shiozawa Y et al (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654

    Article  CAS  Google Scholar 

  17. Onder TT, Gupta PB, Mani SA et al (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. Mammary Gland Biol Neoplasia 10:169–180

    Article  Google Scholar 

  18. Guise TA, Kozlow WM, Heras-Herzig A et al (2005) Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 5:46–53

    Article  Google Scholar 

  19. Kakonen SM, Mundy GR (2003) Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 97:834–839

    Article  PubMed  Google Scholar 

  20. Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. Mammary Gland Biol Neoplasia 10:169–180

    Article  Google Scholar 

  21. Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Karaplis A, Goltzman D (2000) PTH and PTHrP effects on the skeleton. Rev Endocr Metab Disord 1:331–341

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Karaplis AC, Huang DC et al (2011) PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target. J Clin Investig 121:4655–4669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bohn OL, Nasir I, Brufsky A et al (2010) Biomarker profile in breast carcinomas presenting with bone metastasis. Int J Clin Exp Pathol 3:139–146

    PubMed Central  CAS  Google Scholar 

  25. Guise TA, Yin JJ, Taylor SD et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Investig 98:1544–1549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. de la Mata J, Uy HL, Guise TA et al (1995) Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J Clin Investig 95:2846–2852

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bendre MS, Margulies AG, Walser B et al (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65:11001–11009

    Article  CAS  PubMed  Google Scholar 

  28. Dallas SL, Rosser JL, Mundy GR et al (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277:21352–21360

    Article  CAS  PubMed  Google Scholar 

  29. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  CAS  PubMed  Google Scholar 

  30. Feeley BT, Gamradt SC, Hsu WK et al (2005) Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. J Bone Miner Res 20:2189–2199

    Article  CAS  PubMed  Google Scholar 

  31. Dai J, Keller J, Zhang J et al (2005) Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res 65:8274–8285

    Article  CAS  PubMed  Google Scholar 

  32. Gregory LS, Choi W, Burke L et al (2013) Breast cancer cells induce osteolytic bone lesions in vivo through a reduction in osteoblast activity in mice. PLoS One. doi:10.1371/journal.pone.0068103

    Google Scholar 

  33. Milat F, Ng KW (2009) Is Wnt signalling the final common pathway leading to bone formation? Mol Cell Endocrinol 310:52–62

    Article  CAS  PubMed  Google Scholar 

  34. Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433

    Article  CAS  PubMed  Google Scholar 

  35. Cadigan KM, Liu YI (2006) Wnt signalling: complexity at the surface. J Cell Sci 119:395–402

    Article  CAS  PubMed  Google Scholar 

  36. Miller JR (2002) The Wnts. Genome Biol 3:3001.1–3001.15

    Google Scholar 

  37. Clevers H (2006) Wnt/β-Catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  38. van Amerongen R, Mikels A, Nusse R (2008) Alternative Wnt signaling is initiated by distinct receptors. Sci Signal. doi:10.1126/scisignal.135re9

    PubMed  Google Scholar 

  39. Bryja V, Andersson ER, Shambony A et al (2009) The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol Biol Cell 20:924–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bovolenta P, Esteve P, Ruiz JM et al (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121:737–746

    Article  CAS  PubMed  Google Scholar 

  41. He X, Semenov M, Tamai K et al (2004) LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131:1663–1677

    Article  CAS  PubMed  Google Scholar 

  42. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Investig 116:1202–1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yan C, Benjamin A (2009) Wnt pathway, an essential role in bone regeneration. J Cell Biochem 106:353–362

    Article  CAS  Google Scholar 

  44. Hill TP, Später D, Taketo MM et al (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738

    Article  CAS  PubMed  Google Scholar 

  45. Vaes BLT, Dechering KJ, van Someren EP et al (2005) Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts. Bone 36:803–811

    Article  CAS  PubMed  Google Scholar 

  46. Kato M, Patel MS, Levasseur R et al (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Glass DA 2nd, Bialek P, Ahn JD et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764

    Article  CAS  PubMed  Google Scholar 

  48. Gunn WG, Conley A, Deininger L et al (2006) A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24:986–991

    Article  CAS  PubMed  Google Scholar 

  49. Hall CL, Daignault SD, Shah RB et al (2008) Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate 68:1396–1404

    Article  PubMed Central  PubMed  Google Scholar 

  50. Barth AL, Näthke IS, Nelson WJ (1997) Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 9:683–690

    Article  CAS  PubMed  Google Scholar 

  51. Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137:811–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Brennan KR, Brown AMC (2004) Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia 9:119–131

    Article  PubMed  Google Scholar 

  53. Hatsell S, Rowlands T, Hiremath M et al (2003) Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia 8:145–158

    Article  PubMed  Google Scholar 

  54. Rijsewijk F, Schuermann M, Wagenaar E et al (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 14:649–657

    Article  Google Scholar 

  55. Prosperi JR, Khramtsov AI, Khramtsova GF et al (2011) Apc mutation enhances PyMT-induced mammary tumorigenesis. PLOS One. doi:10.1371/journal.pone.0029339

    Google Scholar 

  56. Klopocki E, Kristiansen G, Wild PJ et al (2004) Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol 25:641–649

    CAS  PubMed  Google Scholar 

  57. Ai L, Tao Q, Zhong S et al (2006) Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27:1341–1348

    Article  CAS  PubMed  Google Scholar 

  58. Zardawi SJ, O’Toole SA, Sutherland RL et al (2009) Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 24:385–398

    CAS  PubMed  Google Scholar 

  59. Ryo A, Nakamura M, Wulf G et al (2001) Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 3:793–801

    Article  CAS  PubMed  Google Scholar 

  60. Dolled-Filhart M, McCabe A, Giltnane J et al (2006) Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Res 66:5487–5494

    Article  CAS  PubMed  Google Scholar 

  61. Wong SC, Lo SF, Lee KC et al (2002) Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. Br J Cancer 87:1281–1286

    Article  CAS  Google Scholar 

  62. Chen Y, Shi HY, Stock SR et al (2011) Regulation of breast cancer-induced bone lesions by β-catenin protein signaling. J Biol Chem 286:42575–42584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Johnson RW, Merkel AR, Page JM et al (2014) PTHrP Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin Exp Metastasis 31:945–959

    Article  CAS  PubMed  Google Scholar 

  64. Johnson RW, Mai PN, Susan SP et al (2010) TGF-β promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical hedgehog signaling. Cancer Res 71:822–831

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Thiery JP, Acloque H, Huang RY et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  66. McDermott SP, MS Wicha (2010) Targeting breast cancer stem cells. Mol Oncol 4:404–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Mani SA, Guo W, Mai-Jing L et al (2008) The epithelial-mesenchymal transition generates cells wit properties of stem cells. Cell 133:704–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Scheel C, Eaton EN, Li SH et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145:926–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Lamb R, Ablett MP, Spence K et al (2013) Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One 8(7):e67811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Pedersen KB, Nesland JM, Fodstad O et al (2002) Expression of S100A4. E-cadherin, alpha- and beta-catenin in breast cancer biopsies. Br J Cancer 87:1281–1286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Gillett CE, Miles DW, Ryder K et al (2001) Retention of the expression of E-cadherin and catenins is associated with shorter survival in grade III ductal carcinoma of the breast. J Pathol 193:433–441

    Article  CAS  PubMed  Google Scholar 

  72. Bukholm IK, Nesland JM, Karesen R et al (1998) E-cadherin and alpha-, beta-, and gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 185:262–266

    Article  CAS  PubMed  Google Scholar 

  73. Zorn AM (2001) Wnt signalling: antagonistic Dickkopfs. Curr Biol 11:592–595

    Article  Google Scholar 

  74. Glinka A, Wu W, Delius H et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  CAS  PubMed  Google Scholar 

  75. Mao J, Wu W, Li Y et al (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411:321–325

    Article  CAS  PubMed  Google Scholar 

  76. Mao B, Niehrs C (2003) Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signalling. Gene 302:179–183

    Article  CAS  PubMed  Google Scholar 

  77. Mao B, Wu W, Davidson G et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417:664–667

    Article  CAS  PubMed  Google Scholar 

  78. Wu W, Glinka A, Delius H et al (2000) Mutual antagonism between dickkopf1 and dickkopf2 regulates Wnt/β-catenin signalling. Curr Biol 10:1611–1614

    Article  CAS  PubMed  Google Scholar 

  79. Brott BK, Sokol SY (2002) Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol Cell Biol 22:6100–6110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Boyden LM, Mao J, Belsky J et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    Article  CAS  PubMed  Google Scholar 

  81. Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  CAS  PubMed  Google Scholar 

  82. Morvan F, Boulukos K, Clement-Lacroix P et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21:934–945

    Article  CAS  PubMed  Google Scholar 

  83. Li J, Sarosi I, Cattley RC et al (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39:754–766

    Article  CAS  PubMed  Google Scholar 

  84. Heiland GR, Zwerinal K, Baum W et al (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69:2152–2159

    Article  CAS  PubMed  Google Scholar 

  85. Weng LH, Wang CJ, Ko JY et al (2010) Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. Arthritis Rheum 62:1393–1402

    Article  CAS  PubMed  Google Scholar 

  86. Christodoulides C, Scarda A, Granzotto M et al (2006) WNT10B mutations in human obesity. Diabetologia 49:678–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Cheng SL, Shao JS, Cai J et al (2008) Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem 283:20505–20522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Diarra D, Stolina M, Polzer K et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163

    Article  CAS  PubMed  Google Scholar 

  89. Liu Y, Tang W, Xie L et al (2014) Prognostic significance of dickkopf-1 overexpression in solid tumors: a meta-analysis. Tumour Biol 35:3145–3154

    Article  CAS  PubMed  Google Scholar 

  90. Zhou XL, Qin XR, Zhang XD et al (2010) Downregulation of Dickkopf-1 is responsible for high proliferation of breast cancer cells via losing control of Wnt/beta-catenin signaling. Acta Pharmacol Sin 31:202–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Kim HY, Park JH, Won HY et al (2015) CBX7 inhibits breast tumorigenicity through DKK-1-mediated suppression of the Wnt/β-catenin pathway. FASEB J 29:300–313

    Article  CAS  PubMed  Google Scholar 

  92. Mikheey AM, Mikheeva SA, Maxwell JP et al (2008) Dickkopf-1 mediated tumor suppression in human breast carcinoma cells. Breast Cancer Res Treat 112:263–273

    Article  CAS  Google Scholar 

  93. Agur Z, Kirnasovsky OU, Vasserman G et al (2011) Dickkopf1 regulates fate decision and drives breast cancer stem cells to differentiation: an experimentally supported mathematical model. PLoS One 6(9):e24225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Sato N, Yamabuki T, Takano A et al (2010) Wnt inhibitor Dickkopf-1 as a target for passive cancer immunotherapy. Cancer Res 70:5326–5336

    Article  CAS  PubMed  Google Scholar 

  95. Forget MA, Turcotte S, Beauseigle D et al (2007) The Wnt pathway regulator DKK1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types. Br J Cancer 96:646–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Xu WH, Liu ZB, Yang C et al (2012) Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype. PLoS One. doi:10.1371/journal.pone.0037624

    Google Scholar 

  97. Zhou SJ, Zhou SR, Yang XQ et al (2014) Serum Dickkopf-1 expression level positively correlates with a poor prognosis in breast cancer. Diagn Pathol 9:161

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Hideshima T, Mitsiades C, Tonon G et al (2007) Understanding multiple myloma pathogenesis in the bone marrow to identify new therapeutics targets. Nat Rev Cancer 7:585–595

    Article  CAS  PubMed  Google Scholar 

  99. Qiang YW, Chen Y, Stephens O et al (2008) Myeloma derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 112:196–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Voorzanger-Rousselot N, Journe F, Doriath V et al (2009) Assessment of circulating Dickkopf-1 with a new two-site immunoassay in healthy subjects and women with breast cancer and bone metastases. Calcif Tissue Int 84:348–354

    Article  CAS  PubMed  Google Scholar 

  101. Yoneda T, Williams PJ, Hiraga T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495

    Article  CAS  PubMed  Google Scholar 

  102. Voorzanger-Rousselot N, Goehrig D, Journe F et al (2007) Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 97:964–970

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Bu G, Lu W, Liu CC et al (2008) Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: implication for breast cancer osteolytic bone metastases. Int J Cancer 123:1034–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Niida A, Hiroko T, Kasai M et al (2004) DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway. Oncogene 23:8520–8526

    Article  CAS  PubMed  Google Scholar 

  105. Menezes ME, Devine DJ, Shevde LA et al (2012) Dickkopf1: a tumor suppressor or metastasis promoter? Int J Cancer 130:1477–1483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Ellies DL, Viviano B, McCarthy J et al (2006) Bone density ligand. Sclerostin directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. Bone Miner 21:1738–1749

    Article  CAS  Google Scholar 

  107. Kawai M, Mödder UI, Khosia S et al (2011) Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov 10:141–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Mendoza-Villanueva D, Zeef L, Shore P (2011) Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2-CBFβ-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res 13:R106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. van Bezooijen DL, Roelen BAJ, Visser A et al (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 6:805–814

    Article  CAS  Google Scholar 

  110. Rachner TD, Hadji P, Hofbauer LC (2012) Novel therapies in benign and malignant bone diseases. Pharmacol Ther 134:338–344

    Article  CAS  PubMed  Google Scholar 

  111. Pinzone JJ, Hall BM, Thudi NK et al (2009) The role of Dikkopf-1 in bone development, homeostasis, and disease. Blood 113:517–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Rachner TD, Göbel A, Benad-Mehner P et al (2014) Dickkopf-1 as a mediator and novel target in malignant bone disease. Cancer Lett 346:172–177

    Article  CAS  PubMed  Google Scholar 

  113. Iyer SP, Beck JT, Ak Stewart et al (2014) A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol 167:366–375

    Article  CAS  PubMed  Google Scholar 

  114. Rachner TD, Göbel A, Thiele S (2014) Dickkopf-1 is regulated by the mevalonate pathway in breast cancer. Breast Cancer Res. doi:10.1186/bcr3616

    PubMed Central  PubMed  Google Scholar 

  115. Kyvernitakis I, Rachner TD, Urbschat A et al (2014) Effect of aromatase inhibition on serum levels of sclerostin and dickkopf-1, bone turnover markers and bone mineral density in women with breast cancer. J Cancer Res Clin Oncol 140:1671–1680

    Article  CAS  PubMed  Google Scholar 

  116. Coleman RE, Guise TA, Lipton A et al (2008) Advancing treatment for metastatic bone cancer: consensus recommendations from the second Cambridge Conference. Clin Cancer Res 14:6387–6395

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Funding

All authors declare that they have received no funding concerning this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasoha Mariz.

Ethics declarations

Conflict of interest

Erich-Franz Solomayer holds a consultancy position at Novartis and Amgen and received compensation from Novartis, Amgen and Roche. Mariz Kasoha, Ingolf Juhasz-Boess, Daniel Herr and Jasmin Teresa Ney declare that they have no conflict of interests.

Ethical approval

No ethical approval was required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariz, K., Ingolf, JB., Daniel, H. et al. The Wnt inhibitor dickkopf-1: a link between breast cancer and bone metastases. Clin Exp Metastasis 32, 857–866 (2015). https://doi.org/10.1007/s10585-015-9750-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9750-1

Keywords

Navigation