Skip to main content

Polyphenols as an Effective Therapeutic Intervention Against Cognitive Decline During Normal and Pathological Brain Aging

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1260))

Abstract

Research in animals and humans has indicated that polyphenols can delay the age-related decline in learning, memory and neurodegenerative diseases. Among the polyphenols, berry phenolics have extensive beneficial effects because of their antioxidant and anti-inflammatory properties. Long-term consumption of grapes results in accumulation of polyphenols in the brain, which modulates cell-signalling pathways and neutralises the redox imbalance in the aging brain. Here we review the in vivo and in vitro evidence for considering grape-derived polyphenolics, the flavonoids- catechins, epicatechin, anthocyanidin, and quercetin, and non-flavonoids-gallic acid and resveratrol, as effective dietary sources to facilitate cognition in adults and lessen the decline in the old and pathogenic states, Alzheimer’s and Parkinson’s disease. Furthermore, a combined intervention of polyphenols along with regular physical exercise provides cognitive benefits for the aging brain and holds promising venues for preclinical and clinical studies in formulating neuro-nutraceuticals as functional foods for a healthy brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf

  2. Dai Q, Borenstein AR, Wu YG, Jackson JC, Larson EB (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 119:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Devore EE, Kang JH, Breteler M, Grodstein F (2012) Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 72:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hollman PCH, Geelen A, Kromhout D (2010) Dietary flavonol intake may lower stroke risk in men and women. J Nutr 140:600–604

    Article  CAS  PubMed  Google Scholar 

  5. Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165:1364–1371

    Article  CAS  PubMed  Google Scholar 

  6. Kesse-Guyot E, Fezeu L, Andreeva VA, Touvier M, Scalbert A, Hercberg S et al (2012) Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr 142:76–83

    Article  CAS  PubMed  Google Scholar 

  7. D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43:348–361

    PubMed  Google Scholar 

  8. Peschel W, Sa’nchez-Rabaneda F, Diekmann W, Plescher A, Gartzı I, Jime’nez D et al (2006) An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem 97:137–150

    Article  CAS  Google Scholar 

  9. Makris DP, Boskou G, Andrikopoulos NK (2007) Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresour Technol 98:2963–2967

    Article  CAS  PubMed  Google Scholar 

  10. Hernandez-Jimenez A, Gomez-Plaza E, Martinez-Cutillas A, Kennedy JA (2009) Grape skin and seed proanthocyanidins from Monastrell x Syrah grapes. J Agric Food Chem 57:10798–10803

    Article  CAS  PubMed  Google Scholar 

  11. Pastrana-Bonilla E, Akoh CC, Sellappan S, Krewer G (2003) Phenolic content and antioxidant capacity of muscadine grapes. J Agric Food Chem 51:5497–4503

    Article  CAS  PubMed  Google Scholar 

  12. Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 52:255–260

    Article  CAS  PubMed  Google Scholar 

  13. Abhijit S, Sunil JT, Bhagya BS, Shankaranarayana Rao BS, Subramanyam MV, Asha Devi S (2018) Antioxidant action of grape seed polyphenols and aerobic exercise in improving neuronal number in the hippocampus is associated with decrease in lipid peroxidation and hydrogen peroxide in adult and middle-aged rats. Exp Gerontol 101:101–112

    Article  CAS  PubMed  Google Scholar 

  14. Abhijit S, Sunil JT, Shankaranarayana Rao BS, Asha Devi S (2019) Grape seed proanthocyanidin extract and swimming training enhances neuronal number in dorso-medial prefrontal cortex in middle-aged male rats by alleviating oxidative stress. J Funct Foods 60:103693. https://doi.org/10.1016/j.jff.2019.103693

    Article  CAS  Google Scholar 

  15. Varzakas T, Zakynthinos G, Verpoort F (2016) Plant food residues as a source of nutraceuticals and functional foods. Foods 5(4). pii: E88. https://doi.org/10.3390/foods5040088

  16. Kumar GP, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacogn Rev 6:81–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Weseler AR, Bast A (2017) Masquelier’s grape seed extract: from basic flavonoid research to a well-characterized food supplement with health benefits. Nutr J 16:5. https://doi.org/10.1186/s12937-016-0218-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borges G, Lean MEJ, Roberts SA, Crozier A (2013) Bioavailability of dietary (poly) phenols: a study with ileostomists to discriminate between absorption in small and large intestine. Food Funct 4:754–762

    Article  CAS  PubMed  Google Scholar 

  19. Pimpão RC, Ventura MR, Ferreira RB, Williamson G, Santos CN (2015) Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. Brit J Nutr 113:454–463

    Article  PubMed  CAS  Google Scholar 

  20. Hanhineva K, Torronen R, Bondia Pons I, Pekkinen J, Kolehmainen M, Mykkanen H (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11:1365–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5:3779–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gasperotti M, Passamonti S, Tramer F, Masuero D, Guella G, Mattivi F et al (2015) Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem Neurosci 6:1341–1352

    Article  CAS  PubMed  Google Scholar 

  23. Ho L, Ferruzzi MG, Janle EM, Wang J, Gong B, Chen TY et al (2013) Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J 27:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Youdim KA, Qaiser MS, Begley DJ, Rice-Evans CS, Abbott NJ (2004) Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med 36:592–604

    Article  CAS  PubMed  Google Scholar 

  25. Chen TY, Kritchevsky J, Hargett K, Feller K, Klobusnik R, Song BJ et al (2015) Plasma bioavailability and regional brain distribution of polyphenols from apple/grape seed and bilberry extracts in a young swine model. Mol Nutr Food Res 59:2432–2447

    Article  CAS  PubMed  Google Scholar 

  26. Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood–brain barrier: in vitro studies. J Neurochem 85:180–192

    Article  CAS  PubMed  Google Scholar 

  27. Shukitt-Hale B, Lau FC, Joseph JA (2008) Berry fruit supplementation and the aging brain. J Agric Food Chem 56:636–641

    Article  CAS  PubMed  Google Scholar 

  28. Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA et al (2008) Identification of anthocyanins in the liver, eye and brain of blueberry-fed pigs. J Agric Food Chem 56:705–725

    Article  CAS  PubMed  Google Scholar 

  29. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  30. Cardoso FL, Brites D, Brito MA (2010) Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64:328–363

    Article  CAS  PubMed  Google Scholar 

  31. Faria A, Pestana D, Teixeira D, Couraud PO, Romero I, Weksler B et al (2011) Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food Funct 2:39–44

    Article  CAS  PubMed  Google Scholar 

  32. Liang J, Xu F, Zhang YZ, Zang XY, Wang D, Shang MY et al (2013) The profiling and identification of the metabolites of (+)-catechin and study on their distribution in rats by HPLCDAD-ESI-IT-TOF-MSn technique. Biomed Chromatogr 28:401–411

    Article  PubMed  CAS  Google Scholar 

  33. Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M et al (2009) Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72:1906–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM, Baumgartner RN et al (2003) The aging hippocampus: cognitive, biochemical and structural findings. Cereb Cortex 13:1344–1351

    Article  PubMed  Google Scholar 

  35. Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP et al (2008) Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol 67:1205–1212

    Article  PubMed  PubMed Central  Google Scholar 

  36. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. NeuroImage 51:501–511

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dickstein DL, Weaver CM, Luebke JI, Hof PR (2013) Dendritic spine changes associated with normal aging. Neuroscience 251:21–32

    Article  CAS  PubMed  Google Scholar 

  38. Mota C, Taipa R, Pereira das Neves S, Monteiro-Martins S, Monteiro S, Palha AJ et al (2019) Structural and molecular correlates of cognitive aging in the rat. Sci Rep 9:2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  40. Asha Devi S, Jolitha AB, Ishii N (2006) Grape seed proanthocyanidin extract (GSPE) and antioxidant defense in the brain of adult rats. Med Sci Monit 12:BR124–BR129

    PubMed  Google Scholar 

  41. Savory J, Rao JK, Huang Y (1999) Age-related hippocampal changes in Bcl-2:bax ratio, oxidative stress, redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging. Neurotoxicology 20:805–817

    CAS  PubMed  Google Scholar 

  42. Asha Devi S, Manjula KR, Sagar Chandrasekhar BK, Ishii N (2011) Grape seed proanthocyanidin lowers brain oxidative stress in the adult and middle-aged rats. Exp Gerontol 46:958–964

    Article  CAS  PubMed  Google Scholar 

  43. El-Beshbishy HA, Mohamadin AM, Abdel-Naim AB (2009) In vitro evaluation of the antioxidant activities of grape seed (vitis vinifere) exyract, blackseed (Nigella sativa) extract and curcumin. J Taibah Univ Med Sci 4:23–35

    Google Scholar 

  44. Balu M, Sangeetha P, Murali G, Panneerselvam C (2006) Modulatory role of grape seed extract on age-related oxidative DNA damage in central nervous system of rats. Brain Res Bull 68:469–473

    Article  CAS  PubMed  Google Scholar 

  45. Balu M, Sangeetha P, Haripriya D, Panneerselvam C (2005) Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract. Neurosci Lett 383:295–300

    Article  CAS  PubMed  Google Scholar 

  46. Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M et al (2009) Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 17:352–358

    Article  CAS  Google Scholar 

  47. Abhijit S, Subramanyam MVV, Asha Devi S (2017) Grape seed proanthocyanidin and swimming exercise protects against cognitive decline: a study on M1 acetylcholine receptors in aging male rat brain. Neurochem Res 42:3573–3586

    Article  CAS  PubMed  Google Scholar 

  48. Bentourkia M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A et al (2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181:19–28

    Article  CAS  PubMed  Google Scholar 

  49. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Manach C, Scalbert A, Morand C, Rémési C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  51. Chan YC, Hosoda K, Tsai CJ, Yamamoto S, Wang MF (2006) Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence accelerated mice. J Nutr Sci Vitaminol 52:266–273

    Article  CAS  PubMed  Google Scholar 

  52. Field DT, Williams CM, Butler LT (2011) Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav 103:255–260

    Article  CAS  PubMed  Google Scholar 

  53. Miller MG, Shukitt-Hale B (2012) Berry fruit enhances beneficial signaling in the brain. J Agric Food Chem 60:5709–5715

    Article  CAS  PubMed  Google Scholar 

  54. Smith JM, Stouffer EM (2014) Concord grape juice reverses the age-related impairment in latent learning in rats. Nutr Neurosci 17:81–87

    Article  CAS  PubMed  Google Scholar 

  55. Burke S, Barnes C (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40

    Article  CAS  PubMed  Google Scholar 

  56. Rendeiro C, Vauzour D, Kean RJ, Butler LT, Rattray M, Spencer JP et al (2012) Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology (Berl) 223:319–330

    Article  CAS  Google Scholar 

  57. Rendeiro C, Vauzour D, Rattray M, Waffo-Téguo P, Mérillon JM, Butler LT et al (2013) Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One 8:e63535. https://doi.org/10.1371/journal.pone.0063535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shukitt-Hale B, Carey A, Simon L, Mark DA, Joseph JA (2006) Effects of concord grape juice on cognitive and motor deficits in aging. Nutrition 22:295–302

    Article  CAS  PubMed  Google Scholar 

  59. Feng G, Chen LQ (2003) Determination of procyanidin in grape seed extracts. China Food Addit 6:103–105

    Google Scholar 

  60. Spranger I, Sun B, Mateus AM, Freitas V, Ricardo-da-Silva JM (2008) Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chem 108:519–532

    Article  CAS  PubMed  Google Scholar 

  61. Shukitt-Hale B, Bielinski DF, Lau FC, Willis LM, Carey AN, Joseph JA (2015) The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. Br J Nutr 114:1542–1549

    Article  CAS  PubMed  Google Scholar 

  62. Choi MR, Lee MY, Hong JE, Kim JE, Lee JY, Kim TH et al (2014) Rubus coreanus miquel ameliorates scopolamine-induced memory impairments in ICR mice. J Med Food 17:1049–1056

    Article  PubMed  Google Scholar 

  63. Witte AV, Kerti L, Margulies DS, Floel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34:7862–7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cimrová B, Budáč S, Melicherová U, Jergelová M, Jagla F (2011) Electrophysiological evidence of the effect of natural polyphenols upon the human higher brain functions. Neuro Endocrinol Lett 32:464–468

    PubMed  Google Scholar 

  65. Krikorian R, Boespflug EL, Fleck DE, Stein AL, Wightman JD, Shidler MD et al (2012) Concord grape juice supplementation and neurocognitive function in human aging. J Agric Food Chem 60:5736–5742

    Article  CAS  PubMed  Google Scholar 

  66. Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81:471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ng F, Tang BL (2013) When is Sirt1 activity bad for dying neurons? Front Cell Neurosci 7:186. https://doi.org/10.3389/fncel.2013.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun AY, Wang Q, Simonyi A, Sun GY (2008) Botanical phenolics and brain health. NeuroMolecular Med 10:259–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wahlster L, Arimon M, Nasser-Ghodsi N, Post KL, Serrano-Pozo A, Uemura K et al (2013) Presenilin-1 adopts pathogenic conformation in normal aging and in sporadic Alzheimer’s disease. Acta Neuropathol 125:187–199

    Article  CAS  PubMed  Google Scholar 

  70. Hajieva P (2017) The effect of polyphenols on protein degradation pathways: implications for neuroprotection. Molecules 22(1). pii: E159. https://doi.org/10.3390/molecules22010159

  71. Heredia L, Lin R, Vigo FS, Kedikian G, Busciglio J, Lorenzo A (2004) Deposition of amyloid fibrils promotes cell-surface accumulation of amyloid β precursor protein. Neurobiol Dis 16:617–629

    Article  CAS  PubMed  Google Scholar 

  72. Utsuki T, Yu QS, Davidson D, Chen D, Holloway HW, Brossi A et al (2006) Identification of novel small molecule inhibitors of amyloid precursor protein synthesis as a route to lower Alzheimer's disease amyloid-β peptide. J Pharmacol Exp Ther 318:855–862

    Article  CAS  PubMed  Google Scholar 

  73. Scheltens P, Blennow K, Breteler MM, De Strooper B, Frisoni GB, Salloway S et al (2016) Alzheimer’s disease. Lancet 388:505–517

    Article  CAS  PubMed  Google Scholar 

  74. Sadigh-Eteghad S, Majdi A, Mahmoudi J, Golzari SE, Talebi M (2016) Astrocytic and microglial nicotinic acetylcholine receptors: an overlooked issue in Alzheimer’s disease. J Neural Transm 123:1359–1367

    Article  CAS  PubMed  Google Scholar 

  75. Von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 12:215–232

    Article  Google Scholar 

  76. Pervin M, Hasnat A, Lee Y, Kim D, Jo J, Lim B (2014) Antioxidant activity and acetylcholinesterase inhibition of grape skin anthocyanin (GSA). Molecules 19:9403–9418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  78. Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348:1356–1364

    Article  CAS  PubMed  Google Scholar 

  79. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12:521–528

    Article  CAS  PubMed  Google Scholar 

  80. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    Google Scholar 

  81. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    Article  CAS  PubMed  Google Scholar 

  82. Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30:244–250

    Article  CAS  PubMed  Google Scholar 

  83. Reevea A, Eve Simcoxa E, Turnbulla D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30

    Article  CAS  Google Scholar 

  84. Al-Chalabi A, van den Berg LH, Veldink J (2016) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13:96–104

    Article  PubMed  CAS  Google Scholar 

  85. van Praag H, Lucero MJ, Yeo GW, Stecker K, Heivand N, Zhao C et al (2007) Plant-derived flavanol (−)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27:5869–5878

    Google Scholar 

  86. Vauzour D, Vafeiadou K, Spencer JPE (2007) Inhibition of the formation of the neurotoxin 5-S-cysteinyl-dopamine by polyphenols. Biochem Biophys Res Commun 262:340–346

    Article  CAS  Google Scholar 

  87. Duffy KB, Spangler EL, Devan BD, Guo Z, Bowker JL, Janas AM et al (2008) A blueberry-enriched diet provides cellular protection against oxidative stress and reduces a kainite induced learning impairment in rats. Neurobiol Aging 29:1680–1697

    Article  CAS  PubMed  Google Scholar 

  88. Wang J, Ho L, Zhao W, Ono K, Rosensweig C, Chen L et al (2008) Grape-derived polyphenolics prevent A beta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 28:6388–6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A et al (2009) Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res 15:3–14

    Article  PubMed  CAS  Google Scholar 

  90. Ksiezak-Redinga H, Hoa L, Santa-Mariaa I, Diaz-Ruiza C, Wanga J, Pasinettia GM (2012) Ultrastructural alterations of Alzheimer’s disease paired helical filaments by grape seed-derived polyphenols. Neurobiol Aging 33:427–1439

    Google Scholar 

  91. Long J, Gao H, Sun L, Liu J, Zhao-Wilson X (2009) Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Res 12:321–331

    Article  CAS  PubMed  Google Scholar 

  92. Ben Youssef S, Brisson G, Doucet-Beaupré H, Castonguay AM, Gora C, Amri M et al (2019) Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson's disease. Nutr Neurosci 25:1–15

    Article  Google Scholar 

  93. Ho L, Ferruzzi MG, Elsa M, Wang J, Gong B, Chen TY et al (2013) Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease. FASEB J 27:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bastianetto S, Zheng WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 13:711–720

    Article  Google Scholar 

  95. Goyarzu P, Malin DH, Lau FC, Taglialatela G, Moon WD, Jennings R et al (2004) Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci 7:75–83

    Article  PubMed  Google Scholar 

  96. Kent K, Charlton K, Roodenrys S, Batterham M, Potter J, Traynor V et al (2017) Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr 56:333–341

    Article  CAS  PubMed  Google Scholar 

  97. Hajipour S, Sarkaki A, Farbood Y, Eidi A, Mortazavi P, Valizadeh Z (2016) Effect of gallic acid on dementia type of Alzheimer disease in rats: electrophysiological and histological studies. Basic Clin Neurosci 7:97–106

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ogunsuyi OB, Oboh G, Oluokun OO, Ademiluy AO, Ogunruku OO (2019) Gallic acid protects against neurochemical alterations in transgenic Drosophila model of Alzheimer’s disease. Orient Pharm Exp Med. https://doi.org/10.1007/s13596-019-00393-x

  99. Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P (2008) Therapeutic potential of resveratrol in Alzheimer's disease. BMC Neurosci 9(Suppl. 2):S6. https://doi.org/10.1186/1471-2202-9-S2-S6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE et al (2010) AMP-activate.d protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285:9100–9113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid- peptides. J Biol Chem 280:37377–37382

    Article  CAS  PubMed  Google Scholar 

  102. Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease. Neurochem Int 54:111–118

    Article  CAS  PubMed  Google Scholar 

  103. Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P et al (2012) Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT sig-naling cascade. J Neurochem 120:461–472

    Article  CAS  PubMed  Google Scholar 

  104. Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 37:1829–1842

    Article  CAS  PubMed  Google Scholar 

  105. Zhang L, Yu X, Ji M, Liu S, Wu X, Wang Y et al (2018) Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson's disease. Food Funct 9:6414–6426

    Article  CAS  PubMed  Google Scholar 

  106. Barber EK (2017) The benefits of resveratrol with polyphenols in Parkinson’s disease with Alzheimer’s disease. Alzheimer’s and Dementia 13(7 Supplement):P262. https://doi.org/10.1016/j.jalz.2017.06.132

    Article  Google Scholar 

  107. Nair AT, Vadivelan R, Ramachandran, Ahamed HN (2019) Resveratrol with an adjunct for improved maintenance of mitochondrial homeostasis and dopamine neuronal rescue in neurodegeneration. J Pharm Sci Res 11:1210–1215

    CAS  Google Scholar 

  108. Lin KL, Lin KJ, Wang PW, Chuang JH, Lin HY, Chen SD et al (2018) Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radic Res 52:1371–1386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the lab members for their support in reading the manuscript. We apologize to research groups for not mentioning their studies due to space constraints. Financial support for our studies cited in this article has been through research grants from the Indian Council of Medical Research (ICMR, Referral No.54/9/CFP/GER/2011/NCD-II, dt.30.04.2012), New Delhi and the Promotion of University Research and Scientific Excellence (PURSE)-Department of Science and Technology (DST, Referral No. SR/59/Z-23/2010/38) dt.27.06.2011), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asha Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, S.A., Chamoli, A. (2020). Polyphenols as an Effective Therapeutic Intervention Against Cognitive Decline During Normal and Pathological Brain Aging. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_7

Download citation

Publish with us

Policies and ethics