Skip to main content

Nicotiana tabacum L.: Tobacco

  • Chapter
  • First Online:
Medicinal, Aromatic and Stimulant Plants

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 12))

Abstract

Tobacco (Nicotiana tabacum L.) is cultivated primarily for use in the manufacture of nicotine-containing products such as cigarettes, cigars, and smokeless tobacco products. Plant breeding methodologies are used to develop new tobacco cultivars with important trait combinations that contribute to the economy of crop production and to preferred characteristics for product manufacturing. Desired traits for new cultivars include high cured leaf yields, disease resistance, satisfactory physical cured leaf quality, appropriate cured leaf chemistry, and acceptable sensory attributes. Types of variation that might be used in tobacco breeding programs include that native to N. tabacum or its close relatives. De novo variation generated via mutation breeding, gene editing, or genetic engineering might also be considered. Methodologies used to combine desired traits into new commercial inbred lines and hybrids may vary according to the breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AC, Lusso MF, Pramod S, Xu D (2016) Compositions and methods for producing tobacco plants and products having altered alkaloid levels. United States Patent Application 20160374387A1

    Google Scholar 

  • Allard HA (1919) Gigantism in Nicotiana tabacum and its alternate inheritance. Am Nat 53:218–233

    Article  Google Scholar 

  • Aoki S, Ito M (2000) Molecular phylogeny of Nicotiana (Solanaceae) based on the nucleotide sequence of the matK gene. Plant Biol 2:316–324

    Article  CAS  Google Scholar 

  • Apple JL (1962) Transfer of resistance to black shank (Phytophthora parasitica var. nicotianae) from Nicotiana plumbaginifolia to N. tabacum. Phytopath 52:1. (Abstr)

    Google Scholar 

  • Aycock MK, Mann TJ, Matzinger DF (1963) Investigations with a form of cytoplasmic male-sterility in flue-cured tobacco. Tob Sci 7:130–135

    Google Scholar 

  • Bai D, Reeleder R, Brandle JE (1995) Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root rot of tobacco. Theor Appl Genet 91:1184–1189

    Article  CAS  PubMed  Google Scholar 

  • Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:120–131

    Article  CAS  PubMed  Google Scholar 

  • Beatson RA, Wernsman EA, Long RC (1984) Divergent mass selection for carotenoids in a flue-cured tobacco populations. Crop Sci 24:67–71

    Article  CAS  Google Scholar 

  • Berbec A (2001) Floral morphology and some other characteristics of iso-genomic alloplasmics of Nicotiana tabacum L. Beitrage zur Tabakforschung Int 19:309–314

    Google Scholar 

  • Berbec A, Jack AM (1996) Morphological and cytological variation in the off-type progeny of tobacco hybrids made with pollen stored under unfavourable conditions. Bull Spec CORESTA Congress 1996:105

    Google Scholar 

  • Berbec A, Laskowska D (2005) Investigations of isogenomic alloplasmics of flue-cured tobacco Nicotiana tabacum cv. Wislica. Beitrage zur Tabakforschung International 21:258–263

    Google Scholar 

  • Bindler G, Plieske J, Bakaher N, Gunduz I, Inanov N, van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Bland MM, Matzinger DF, Levings CS III (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541

    Article  CAS  PubMed  Google Scholar 

  • Bowman DT (1996) History of the Regional Minimum Standards Program for the release of flue-cured tobacco varieties in the United States. Tob Sci 40:99–110

    Google Scholar 

  • Bowman DT, Wernsman EA, Corbin TC, Tart AG (1984) Contribution of genetics and production technology to long-term yield and quality gains in flue-cured tobacco. Tob Sci 28:30–35

    Google Scholar 

  • Bowman DT, Tart AG, Wernsman EA, Corbin TC (1988) Revised North Carolina grade index for flue-cured tobacco. Tob Sci 32:39–40

    Google Scholar 

  • Burk LG (1967) An interspecific bridge cross – Nicotiana repanda through N. sylvestris to N. tabacum. J Hered 58:215–218

    Article  Google Scholar 

  • Burk LG, Gwynn GR, Chaplin JR (1972) Diploidized haploids from aseptically cultured anthers of Nicotiana tabacum: A colchicine method applicable to plant breeding. J Hered 63:355–360

    Article  Google Scholar 

  • Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. from seed. Science 206:585

    Article  CAS  PubMed  Google Scholar 

  • Burns DM, Dybing E, Gray N, Hecht S, Anderson C, Sanner T, O’Connor R, Djordjevic M, Dresler C, Hainaut P, Jarvis M, Opperhuizen A, Straif K (2008) Mandated lowering of toxicants in tobacco smoke: a description of the World Health Organization TobReg proposal. Tob Control 17:132–141

    Article  CAS  PubMed  Google Scholar 

  • Bush LP, Cui M, Shi H, Burton HR (2001) Formation of tobacco specific nitrosamines in air-cured tobacco. Recent Adv Tob Sci 27:23–46

    Google Scholar 

  • Chaplin JF (1962) Transfer of black shank resistance from Nicotiana plumbaginifolia to flue cured N. tabacum. Tob Sci 6:184–189

    Google Scholar 

  • Chaplin JF (1963) Certain undesirable characteristics of mammoth flue-cured tobacco not genetically associated with the mammoth gene. Crop Sci 3:158–161

    Article  Google Scholar 

  • Chaplin JF (1966) Comparative performance of F1 flue cured tobacco hybrids and their parents. I. Agronomic and quality characteristics. Tob Sci 10:126–130

    Google Scholar 

  • Chaplin JF, Ford ZT (1965) Agronomic and chemical characteristics of male-sterile flue-cured tobacco as influenced by cytoplasms of different Nicotiana species. Crop Sci 5:436–438

    Article  Google Scholar 

  • Chaplin JF, Mann TJ (1978) Evaluation of tobacco mosaic resistance factor transferred from burley to flue-cured tobacco. J Hered 69:175–178

    Article  Google Scholar 

  • Chaplin JF, Weeks WW (1976) Association between percent total alkaloids and other traits in flue-cured tobacco. Crop Sci 16:416–418

    Article  CAS  Google Scholar 

  • Chaplin JF, Matzinger DF, Mann TJ (1966) Influence of the homozygous and heterozygous mosaic-resistance factor on quantitative character of flue-cured tobacco. Tob Sci 10:81–84

    Google Scholar 

  • Chintapakorn Y, Hamill JD (2003) Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol 53:87–105

    Article  CAS  PubMed  Google Scholar 

  • Choo TM, Kannenberg LW (1978) The efficiency of using doubled haploids in a recurrent selection program in a diploid, cross-fertilized species. Can J Genet Cytol 20:505–511

    Article  Google Scholar 

  • Choo TM, Kannenberg LW (1988) Selection response and efficiency of doubled-haploid recurrent selection in a cross-fertilized species. Theor Appl Genet 75:410–414

    Article  Google Scholar 

  • Clausen RE, Cameron DR (1944) Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton EE (1947) A wildfire resistant tobacco. J Hered 38:35–40

    Article  CAS  PubMed  Google Scholar 

  • Clayton EE (1967) The transfer of blue mold resistance to tobacco from Nicotiana debneyi. Part III. Development of a blue mold resistant cigar wrapper variety. Tob Sci 11:107–110

    Google Scholar 

  • Clayton EE (1969) The study of resistance to the black root disease of tobacco. Tob Sci 13:30–37

    Google Scholar 

  • Clayton EE, Graham TW, Todd FA, Gaines JG, Clark FA (1958) Resistance to the root knot nematode disease of tobacco. Tob Sci 2:53–63

    Google Scholar 

  • Clayton EE, Heggestad HE, Grosso JJ, Burk LG (1967) The transfer of blue mold resistance to tobacco from Nicotiana debneyi. Part I. Breeding Progress 1937-1954. Tob Sci 11:91–99

    Google Scholar 

  • Dean CE (1974) Heterosis, inbreeding depression, and combining ability in diallel crosses of cigar-wrapper tobacco. Crop Sci 14:482–482

    Article  Google Scholar 

  • Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27

    Article  CAS  PubMed  Google Scholar 

  • Dluge KL, Song Z, Wang B, Steede WT, Xiao B, Liu Y, Dewey RE (2018) Characterization of Nicotiana tabacum genotypes possessing deletion mutations that affect potyvirus resistance and the production of trichome exudates. BMC Genomics 19:484. (in review)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorlhac de Borne F, Elmayan T, de Roton C, de Hys L, Tepfer M (1998) Cadmium portioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breed 4:83–90

    Article  Google Scholar 

  • Drake KE, Lewis RS (2013) An introgressed Nicotiana rustica genomic region confers resistance to Phytophthora nicotianae in cultivated tobacco. Crop Sci 53:1366–1374

    Article  CAS  Google Scholar 

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics 18:448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eickholt DP, Lewis RS (2013) Breeding cycles expedited by FT-mediated reduction in generation time. Crop Sci 53:2384–2391

    Article  Google Scholar 

  • Eickholt DP, Lewis RS (2014) Effect of an introgressed Nicotiana tomentosa leaf number QTL on yield and quality characteristics in flue-cured tobacco. Crop Sci 54:586–594

    Article  Google Scholar 

  • Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A (2010) Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol 73:673–685

    Article  CAS  PubMed  Google Scholar 

  • Fricano A, Bakaher N, Del Corvo M, Piffanelli P, Donini P, Stella A, Ivanov NV, Pozzi C (2012) Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet 13:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajos Z (1987) Polalta, the first Polish tobacco variety resistant to Tomato spotted wilt virus was released for regional experimentation and propagation. Wiad Tytoniowa 31:11–17

    Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 23:871–920

    Google Scholar 

  • Garner WW, Allard H, Clayton EE (1936) Superior germplasm in tobacco. In: 1936 yearbook of agriculture. USDA, Washington, D.C, pp 785–830

    Google Scholar 

  • Gavilano LB, Coleman NP, Bowen SW, Siminszky B (2007) Functional analysis of nicotine demethylase genes reveals insights into the evolution of modern tobacco. J Biol Chem 282:249–256

    Article  CAS  PubMed  Google Scholar 

  • Gerstel DU (1945) Inheritance in Nicotiana tabacum. XIX. Identification of the tabacum chromosome replaced by one from N. glutinosa in mosaic-resistant Holmes Samsoun tobacco. Genetics 30:448–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstel DU (1980) Cytoplasmic male sterility in Nicotiana (a review). North Carolina Agricultural Research Service Tech Bull No. 263

    Google Scholar 

  • Gerstel DU, Sisson VA (1995) Tobacco. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, Second Edition. Wiley, New York, pp 458–463

    Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica, Waltham

    Google Scholar 

  • Hancock WG, Lewis RS (2017) Heterosis, transmission genetics, and selection for increased growth rate in a N. tabacum × synthetic tobacco cross. Mol Breed 37:53

    Article  CAS  Google Scholar 

  • Hancock WG, Kuraparthy V, Kernodle SP, Lewis RS (2015) Identification of maternal haploids of Nicotiana tabacum aided by transgenic expression of green fluorescent protein: evidence for chromosome elimination in the N. tabacum × N. africana interspecific cross. Mol Breed 35:179

    Article  CAS  Google Scholar 

  • Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancers. Nat Rev Cancer 3:733–744

    Article  CAS  PubMed  Google Scholar 

  • Hecht SS (2006) Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbeck’s Arch Surg 391:603–613

    Article  Google Scholar 

  • Hernand V, Julio E, Dorlhac de Borne F, Punshon T, Ricachenevsky FK, Bellec A, Gosti F, Berthomieu P (2014) Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination. Metallomics 6:1427–1440

    Article  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann D, Djordjevic MV (1997) Chemical composition and carcinogenicity of smokeless tobacco. Adv Dent Res 11:322–329

    Article  CAS  PubMed  Google Scholar 

  • Holmes FO (1938) Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathology 28:553–561

    Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hosfield GL, Wernsman EA (1974) Effect of alien cytoplasm and fertility restoring factor on growth, agronomic characters, and chemical constituents in a male-sterile variety of flue-cured tobacco. Crop Sci 14:575–577

    Article  CAS  Google Scholar 

  • Jack AM, Krahner AM (1994) The effect of pollen storage conditions on the frequency of off-type progeny. CORESTA Congress Inf Bull 1994:34

    Google Scholar 

  • Jack A, Fannin N, Bush LP (2007) Implications of reducing nornicotine accumulation in burley tobacco: Appendix A – The LC Protocol. Recent Adv Tob Sci 33:58–79

    Google Scholar 

  • Johnson ES (1999) Identification and marker-assisted selection of a major gene for Phytophthora resistance, its origin, and effect on agronomic characters in tobacco. PhD Dissertation, North Carolina State University, Raleigh

    Google Scholar 

  • Johnson ES, Wolff MS, Wernsman EA (2002) Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis 86:1303–1309

    Article  CAS  PubMed  Google Scholar 

  • Johnson CS, Wernsman EA, LaMondia JA (2009) Effect of a chromosome segment marked by the Php gene for resistance to Phytophthora nicotianae on reproduction of tobacco cyst nematodes. Plant Dis 93:309–315

    Article  CAS  PubMed  Google Scholar 

  • Julio E, Cotucheau J, Decorps C, Volpatti R, Sentenac C, Candresse T, Dorlhac de Borne F (2015) A eukaryotic translation initiation factor 4E (eIF4E) is responsible for the “va” tobacco recessive resistance to potyviruses. Plant Mol Biol Reports 33:609–623

    Article  CAS  Google Scholar 

  • Kasperbauer MA, Collins GB (1972) Reconstitution of diploids from leaf tissue of anther-derived haploids in tobacco. Crop Sci 12:98–101

    Article  Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  CAS  PubMed  Google Scholar 

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new section classification in Nicotiana (Solanaceae). Taxon 52:73–82

    Article  Google Scholar 

  • Koelle G (1961) Genetische analyse einer Y-virus (Rippenbraun) resistenten Mutante der Tabaksorte Virgin A. Zuchter 31:71–72

    Google Scholar 

  • Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J 7:219–226

    Article  CAS  PubMed  Google Scholar 

  • Kostoff D (1948) Cytogenetics of Nicotiana tabacum var Virii resistant to the common tobacco mosaic virus. Curr Sci 17:315–316

    Google Scholar 

  • Kovarik A, Dadejova M, Lim KY, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea HW (1963) The transfer of resistance against blue mold (Peronospora tabacina Adam) from Nicotiana debneyi to cultivated tobacco. CORESTA Inf Bull 3:13–15

    Google Scholar 

  • Legg PD, Collins GB (1971) Inheritance of percent total alkaloids in Nicotiana tabacum L. II. Genetic effects of two loci in Burley 21 × LA Burley 21 populations. Can J Genet Cytol 13:287–291

    Article  Google Scholar 

  • Legg PD, Smeeton BW (1999) Breeding and genetics. In: David DL, Nielsen MT (eds) Tobacco production, chemistry, and technology. Blackwell Science, Malden, pp 32–48

    Google Scholar 

  • Legg PD, Matzinger DF, Mann TJ (1965) Genetic variation and covariation in a Nicotiana tabacum L. synthetic two generations after synthesis. Crop Sci 5:30–33

    Article  Google Scholar 

  • Legg PD, Chaplin JF, Collins GB (1969) Inheritance of percent total alkaloids in Nicotiana tabacum L. J Hered 60:213–217

    Article  Google Scholar 

  • Legg PD, Collins GB, Litton CC (1970) Heterosis and combining ability in diallel crosses of burley tobacco, Nicotiana tabacum L. Crop Sci 10:705–707

    Article  Google Scholar 

  • Legg PD, Litton CC, Collins GB (1981) Effects of the Nicotiana debneyi black root rot resistance factor on agronomic and chemical traits in burley tobacco. Theor Appl Genet 60:365–368

    Article  CAS  PubMed  Google Scholar 

  • Levin JS, Thompson WF, Csinos AS, Stephenson MG, Weissinger AK (2005) Matrix attachment regions increase the efficiency and stability of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco. Transgenic Res 14:193–206

    Article  CAS  PubMed  Google Scholar 

  • Lewis RS (2005) Transfer of resistance to potato virus Y (PVY) from Nicotiana africana to Nicotiana tabacum: possible influence of tissue culture on the rate of introgression. Theor Appl Genet 110:678–687

    Article  CAS  PubMed  Google Scholar 

  • Lewis RS (2018) Potential mandated lowering of nicotine levels in cigarettes: a plant perspective. Nicotine Tob Res 2018:1–5

    Google Scholar 

  • Lewis RS, Kernodle SP (2009) A method for accelerated trait conversion in plant breeding. Theor Appl Genet 118:1499–1508

    Article  PubMed  Google Scholar 

  • Lewis RS, Nicholson JS (2007) Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana Germplasm Collection. Genet Resour Crop Evol 54:727–740

    Article  Google Scholar 

  • Lewis RS, Rose C (2010) Agronomic performance of TMV-resistant tobacco lines and hybrids possessing the resistance gene N introgressed on different chromosomes. Crop Sci 50:1339–1347

    Article  CAS  Google Scholar 

  • Lewis RS, Rose C (2011) Identification of Nicotiana tabacum haploids based on transgenic over-expression of PAP1 from Arabidopsis thaliana. Crop Sci 51:1491–1497

    Article  Google Scholar 

  • Lewis RS, Milla SR, Levin JS (2005) Molecular and genetic characterization of N. glutinosa L. chromosome segments in tobacco mosaic virus (TMV)-resistant tobacco accessions. Crop Sci 45:2355–2362

    Article  CAS  Google Scholar 

  • Lewis RS, Linger LR, Wolff MF, Wernsman EA (2007) The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. Theor Appl Genet 115:169–178

    Article  CAS  PubMed  Google Scholar 

  • Lewis RS, Jack AM, Morris JW, Robert VJM, Gavilano LB, Siminszky B, Bush LP, Hayes AJ, Dewey RE (2008) RNAi-induced suppression of nicotine demethylase activity reduces levels of a key carcinogen in cured tobacco leaves. Plant Biotechnol J 6:346–354

    Article  CAS  PubMed  Google Scholar 

  • Lewis RS, Bowen SW, Keogh MR, Dewey RE (2010) Three nicotine demethylase genes mediate nornicotine accumulation in tobacco: functional characterization of the CYP82E10 gene. Phytochemistry 71:1988–1998

    Article  CAS  PubMed  Google Scholar 

  • Lewis RS, Lopez HO, Bowen SW, Andres KR, Steede WT, Dewey RE (2015) Transgenic and mutation-based suppression of a Berberine Bridge Enzyme-Like (BBL) gene family reduces alkaloid content in field-grown tobacco. PLoS One 10(2):e0117273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, Lewis RS, Jack AM, Dewey RE, Bowen SW, Miller RD (2012) Development of CAPS and dCAPS markers for CYP82E4, CYP82E5v2 and CYP82E10 gene mutants reducing nicotine to nornicotine conversion in tobacco. Mol Breed 29:589–599

    Article  CAS  Google Scholar 

  • Liedschulte V, Laparra H, Battey JND, Schwaar JD, Broye H, Mark R, Klein M, Goepfert S, Bovet L (2017) Impairing both HMA4 homeologs is required for cadmium reduction in tobacco. Plant Cell Environ 40:364–377

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606

    Article  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:757–763

    Article  CAS  Google Scholar 

  • Litton CC, Stokes GW (1964) Outcrossing in burley tobacco. Tob Sci 8:113–115

    Google Scholar 

  • Lusso M, Gunduz I, Kondylis A, Jaccard G, Ruffieux L, Gadani F, Lion K, Adams A, Morris W, Danielson T, Warek U (2017) Novel approach for selective reduction of NNN in cigarette tobacco filler and mainstream smoke. Regul Toxicol Pharmacol 89:101–111

    Article  CAS  PubMed  Google Scholar 

  • Ma JM (2017) The fine mapping of two black shank resistance loci and identification of a hybrid lethality gene in tobacco. Unpublished PhD Dissertation, North Carolina State University, Raleigh

    Google Scholar 

  • Mallah GS (1943) Inheritance in Nicotiana tabacum. XVI. Structural differences among the chromosomes of a selected group of varieties. Genetics 28:525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann TJ, Chaplin JF (1957) The effect of the mammoth gene on certain quantitatively inherited characters of flue-cured tobacco. Agron J 49:230–233

    Article  Google Scholar 

  • Mann TJ, Weybrew JA (1958) Manifestation of hybrid vigor in crosses between flue-cured varieties of N. tabacum and N. sylvestris. Tob Sci 2:120–125

    Google Scholar 

  • Mann TJ, Jones GL, Matzinger DF (1962) The use of cytoplasmic male sterility in flue-cured tobacco hybrids. Crop Sci 2:407–410

    Article  Google Scholar 

  • Marani A, Sachs Y (1966) Heterosis and combining ability in a diallel cross among nine varieties of Oriental tobacco. Crop Sci 6:19–22

    Article  Google Scholar 

  • Matzinger DF, Mann TJ (1962) Hybrids among flue-cured varieties of Nicotiana tabacum in the F1 and F2 generations. Tob Sci 6:125–132

    Google Scholar 

  • Matzinger DF, Wernsman EA (1967) Genetic diversity and heterosis in Nicotiana. I. Interspecific crosses. Der Züchter 37:188–191

    Article  Google Scholar 

  • Matzinger DF, Wernsman EA (1979) Population improvement in self-pollinated crops. In: Corbin FT (ed) World Soybean Research Conference II. Westview Press, Boulder, pp 191–199

    Google Scholar 

  • Matzinger DF, Mann TJ, Robinson HF (1960) Genetic variability in flue-cured varieties of Nicotiana tabacum. I. Hicks Broadleaf × Coker 139. Agron J 52:8–11

    Article  Google Scholar 

  • Matzinger DF, Mann TJ, Cockerham CC (1962) Diallel crosses in Nicotiana tabacum. Crop Sci 2:383–386

    Article  Google Scholar 

  • Matzinger DF, Wernsman EA, Ross HF (1971) Diallel crosses among burley varieties of Nicotiana tabacum L. in the F1 and F2 generations. Crop Sci 11:275–279

    Article  Google Scholar 

  • Matzinger DF, Mann TJ, Cockerham CC (1972) Recurrent family selection and correlated response in Nicotiana tabacum L. I. ‘Dixie Bright 244’ × ‘Coker 139.’. Crop Sci 12:40–43

    Article  Google Scholar 

  • Matzinger DF, Wernsman EA, Weeks WW (1978) Genetic modification of total particulate matter in tobacco smoke. Tob Sci 22:138–140

    Google Scholar 

  • Matzinger DF, Weeks WW, Wernsman EA (1984) Genetic modification of total particulate matter. Recent Adv Tob Sci 10:15–51

    CAS  Google Scholar 

  • Matzinger DF, Wernsman EA, Weeks WW (1989) Restricted index selection for total alkaloids and yield in tobacco. Crop Sci 29:74–77

    Article  Google Scholar 

  • McCoy J-A, Young JH, Nifong JM, Hummer K, DeNoma J, Avendaño-Arrazate CH, Greene SL, Kantar MB (2018) Species for medicinal and social use with an emphasis on Theobroma cacao L. (cacao), Nicotiana tabacum L. (tobacco), Actaea racemosa L. (black cohosh), Humulus lupulus L. (hops). In: Greene SL, Williams KA, Khoury CK, Kantar M, Marek L (eds) North American crop wild relatives: conservation and use. Springer, Cham, pp 645–686

    Google Scholar 

  • McMurtrey JE, Wilson DB, Pointer JP (1960) Natural crossing of tobacco under Maryland conditions. Tob Sci 4:243–247

    Google Scholar 

  • Merxmüller H, Buttler KP (1975) Nicotiana in der afrikanischen Namibein pflanzengeographisches and phylogenetisches Rätsel. Mitt Bot München 12:91–104

    Google Scholar 

  • Milla SR, Levin JS, Lewis RS, Rufty RC (2005) RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam. in tobacco. Crop Sci 45:2346–2354

    Article  CAS  Google Scholar 

  • Moon H, Nicholson JS (2007) AFLP and SCAR markers linked to tomato spotted wilt virus resistance in tobacco. Crop Sci 47:1887–1894

    Article  CAS  Google Scholar 

  • Moon HS, Nicholson JS, Heineman A, Lion K, van der Hoeven R, Hayes AJ, Lewis RS (2009a) Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci 49:498–508

    Article  Google Scholar 

  • Moon HS, Nifong JM, Nicholson JS, Heineman A, Lion K, Van der Hoeven R, Hayes AJ, Lewis RS (2009b) Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci 49:2149–2159

    Article  CAS  Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation conditions. Plant Mol Biol 8:363–373

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1963) The efficiency of haploid method of plant breeding. Heredity 18:95–100

    Article  Google Scholar 

  • Nielsen MT, Lusso MF, Antoine F (2017) Tobacco compositions and methods of making. U.S. Patent US9629334B2

    Google Scholar 

  • Nikova V, Vladova R, Pundeva R, Shabanov D (1997) Cytoplasmic male sterility in Nicotiana tabacum L. obtained through interspecific hybridization. Euphytica 94:375–378

    Article  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • Olmstead RG, Palmer JD (1991) Chloroplast DNA and systematics of the Solanaceae. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens, Kew, pp 161–168

    Google Scholar 

  • Rathkamp G, Tso TC, Hoffmann D (1973) Chemical studies on tobacco smoke, XX: smoke analysis of cigarettes made from bright tobaccos differing in variety and stalk positions. Beitr Tabakforsch 7:179–189

    CAS  Google Scholar 

  • Reed DG, Jelesko JG (2004) The A and B loci of Nicotiana tabacum have non-equivalent effects on the mRNA levels of four alkaloid biosynthetic genes. Plant Sci 167:1123–1130

    Article  CAS  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  CAS  PubMed  Google Scholar 

  • Rufty RC, Wernsman EA, Gooding GV (1987) Use of detached leaves to evaluate tobacco haploids and doubled haploids for resistance to tobacco mosaic virus, Meloidogyne incognita, and Pseudomonas syringae pv. tabaci. Phytopathology 77:60–62

    Article  Google Scholar 

  • Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N, Rösti S, Tissier A (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72:1–17

    Article  CAS  PubMed  Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79:206–209

    Article  CAS  Google Scholar 

  • Schweppenhauser MA (1968) Recent advances in breeding tobacco resistant to Meloidogyne javanica. CORESTA Inf Bull 1:9–20

    Google Scholar 

  • Schweppenhauser MA (1975) Rootknot resistance from Nicotiana longiflora. Tob Sci 19:26–29

    Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    Article  CAS  PubMed  Google Scholar 

  • Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Natl Acad Sci U S A 102:14919–14924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisson VA, Saunders JA (1982) Alkaloid composition of the USDA tobacco (Nicotiana tabacum L.) introduction collection. Tob Sci 16:117–120

    Google Scholar 

  • Smeeton BW (1987) Genetic control of tobacco quality. Recent Adv Tob Sci 13:3–26

    Google Scholar 

  • Smeeton BW, Ternouth RAF (1992) Sources of resistance to powdery mildew, wildfire, angular leaf spot, and Alternaria. CORESTA Inf Bull 1992(3/4):127–135

    Google Scholar 

  • Smith HH (1979) The genus as a genetic resource. In: Durbin RD (ed) Nicotiana: procedures for experimental use, USDA Technical Bulletin No 1586, pp 1–16

    Google Scholar 

  • Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hille J, Goldbach RW, Prins M (2001) The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol Breed 7:151–161

    Article  CAS  Google Scholar 

  • Stavely JR, Skoog HA (1976) Transfer of resistance to a virulent strain of Pseudomonas tabaci from Nicotiana rustica to Nicotiana tabacum breeding lines. Proc Am Phytopath Soc 3:231. (Abst.)

    Google Scholar 

  • Steede WT, Ma JM, Eickholt EP, Drake-Stowe KE, Kernodle SP, Shew HD, Danehower DA, Lewis RS (2017) The tobacco trichome exudate Z-abienol and its relationship with plant resistance to Phytophthora nicotianae. Plant Dis 101:1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Nakata K (1969) Tobacco plants obtained by anther culture and experiments to get diploid seeds from diploids. Jpn J Genet 44:47–54

    Article  Google Scholar 

  • Tanzer MM, Thompson WF, Law MD, Wernsman EA, Uknes S (1997) Characterization of post-transcriptionally suppressed transgene expression that confers resistance to tobacco etch virus infection in tobacco. Plant Cell 9:1411–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ternouth RAF, MacKenzie J, Shepherd JA (1986) Introduction of Meloidogyne javanica resistance into flue-cured tobacco in Zimbabwe. CORESTA Information Bulletin Symposium, Taormina, Sicily, 26–30 Oct 1986, p 66 (abstract)

    Google Scholar 

  • Ternovsky MF (1945) Methods of breeding tobacco varieties resistant to tobacco mosaic and powdery mildew. The AI Mikoyan Pan-Soviet Sci Res Inst Tob & Indian Tob Ind Krasnodar Publ 143:126–141

    Google Scholar 

  • United States Department of Agriculture (1989) Official standard grades for flue-cured tobacco U.S. types 11, 12, 13, 14, & foreign type. Agricultural Marketing Service, Tobacco Division, Washington, D.C, p 92

    Google Scholar 

  • United States Food and Drug Administration (2012) Harmful and potentially harmful constituents in tobacco products and tobacco smoke; established list. Fed Regist 77(64):20034–20037

    Google Scholar 

  • United States Food and Drug Administration (2017) Tobacco product standard for N’-nitrosonornicotine level in finished smokeless tobacco products. Fed Regist 82(13):8004–8053

    Google Scholar 

  • Valleau WD (1952) Breeding tobacco for disease resistance. Econ Bot 6:69–102

    Article  Google Scholar 

  • Valleau WD, Stokes GW, Johnson EM (1960) Nine years’ experience with the Nicotiana longiflora factor for resistance to Phytophthora parasitica var. nicotianae in the control of black shank. Tob Sci 4:92–94

    Google Scholar 

  • Vontimitta V, Danehower DA, Steede T, Lewis RS (2010) Analysis of a Nicotiana tabacum genomic region controlling two leaf surface chemistry traits. J Agric Food Chem 58:294–300

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ, Korenkov V, King B (2009) Impacts of expressing AtCAX and metallothionein genes on Cd accumulation in field grown tobacco. 2009 CORESTA Congress, 4–8 Oct, Rovinj

    Google Scholar 

  • Wang E, Wagner GJ (2003) Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216:686–691

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol 19:371–374

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liang Z, Zeng J, Li W, Sun X, Miao Z, Tang K (2008) Generation of tobacco lines with widely different reduction in nicotine levels via RNA silencing approaches. J Biosci 33:177–184

    Article  PubMed  Google Scholar 

  • Wark DC (1963) Nicotiana species as sources of resistance to blue mold (Peronospora tabacina Adam) for cultivated tobacco. In: Proceedings of 3rd world tobacco science congress, Salisbury, Southern Rhodesia. Tobacco Research Board, Harare, pp 252–259

    Google Scholar 

  • Wark DC (1970) Development of flue-cured tobacco cultivars resistant to a common strain of blue mold. Tob Sci 14:147–150

    Google Scholar 

  • Wernsman EA (1992) Varied roles for the haploid sporophyte in plant improvement. In: Stalker HT, Murphy JP (eds) Plant breeding in the 1990s. Proceedings of the symposium on plant breeding in the 1990s, N.C. State University. CAB International, Wallingford, pp 461–484

    Google Scholar 

  • Wernsman EA, Matzinger DF (1980a) Mammoth genotypes and tobacco management regimes for reduced production of downstalk tobaccos. Agron J 72:1047–1050

    Article  Google Scholar 

  • Wernsman EA, Matzinger DF (1980b) Tobacco. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy & Crop Science Society of America, Madison, pp 657–668

    Google Scholar 

  • Wernsman EA, Matzinger DF, Mann TJ (1976) Use of progenitor species germplasm for the improvement of a cultivated allotetraploid. Crop Sci 16:800–803

    Article  CAS  Google Scholar 

  • Wilkinson CA, Rufty RC (1990) Diallel analysis of crosses among United States and European burley tobacco cultivars. Tob Sci 34:15–18

    Google Scholar 

  • Woodend JJ, Mudzengerere E (1992) Inheritance of resistance to wildfire and angular leaf spot derived from Nicotiana rustica var. Brasilea. Euphytica 64:149–156

    Article  Google Scholar 

  • World Health Organization (2015) Advisory note: global nicotine reduction strategy. WHO Study Group on Tobacco Product Regulation. WHO Press, Geneva

    Google Scholar 

  • Xie J, Song W, Maksymowicz W, Jin W, Cheah K, Chen W, Carnes C, Ke J, Conkling MA (2004) Biotechnology: a tool for reduced-risk tobacco products – the nicotine experience from test tube to cigarette pack. Recent Adv Tob Sci 30:17–38

    CAS  Google Scholar 

  • Yeargan R, Maiti IB, Nielsen MT, Hunt AG, Wagner GJ (1992) Tissue portioning of cadmium in transgenic tobacco seedlings and field grown plants expressing the mouse metallothionein I gene. Trans Res 1:261–267

    Article  CAS  Google Scholar 

  • Yi Y-H, Rufty RC, Wernsman EA (1998a) Identification of RAPD markers linked the wildfire resistance gene of tobacco using bulked segregant analysis. Tob Sci 42:52–57

    Google Scholar 

  • Yi Y-H, Rufty RC, Wernsman EA, Conkling MC (1998b) Mapping the root-knot nematode resistance gene (Rk) in tobacco with RAPD markers. Plant Dis 82:1319–1322

    Article  CAS  PubMed  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Gen Genomics 275:367–373

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsey S. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewis, R.S. (2020). Nicotiana tabacum L.: Tobacco. In: Novak, J., Blüthner, WD. (eds) Medicinal, Aromatic and Stimulant Plants. Handbook of Plant Breeding, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-38792-1_9

Download citation

Publish with us

Policies and ethics