Skip to main content

Nanostructured Composite Modifying Coatings for Highly Efficient Environmentally Friendly Dry Cutting

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

One of the key ways to increase the efficiency of modern material cutting processes is to increase cutting speed; however, at the same time, temperature in the cutting zone also increases. In turn, various cutting fluids (CF) that have a negative impact on human health and the environment are traditionally used to remove heat. An increase in the cutting speed with simultaneous abandonment of CF is possible only with the use of alternative compensating technologies. One of these technologies is the modification of the surface layer of a cutting tool by applying special nanostructured composite coatings. These coatings, characterized by high heat resistance (up to 1100 °C), provide a favorable way to transform the cutting conditions by reducing the coefficient of friction (COF) and the adhesion with the material being machined. Due to their special nanostructure with nanolayer thickness of 2–20 nm, the considered coatings are also characterized by high hardness (up to 40 GPa), resistance to diffusion and oxidation, crack resistance, and resistance to brittle fracture. This chapter discusses methods for obtaining such coatings and examines their basic properties (COF at temperatures of 20–1100 °C, hardness, nature of cracking and destruction under various conditions, elemental and phase composition), as well as the cutting properties of tools with the above coatings in machining of structural and austenitic steels in various cutting conditions. This chapter also considers the challenges to choose the optimal composition and thickness of the above coatings, as well as the optimal thickness of their nanolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47

    Article  CAS  Google Scholar 

  2. Liew PJ, Shaaroni A, Sidik NAC, Yan J (2017) An overview of current status of cutting fluids and cooling techniques of turning hard steel. Int J Heat Mass Transf 114:380–394

    Article  Google Scholar 

  3. Vereschaka AA, Vereschaka AS, Grigoriev SN, Kirillov AK, Khaustova OU (2013) Development and research of environmentally friendly dry technological machining system with compensation of physical function of cutting fluids. Procedia CIRP 7:311–316

    Article  Google Scholar 

  4. Vereshchaka AS, Vereshchaka AA, Kirillov AK (2012) Ecologically friendly dry machining by cutting tool from layered composition ceramic with nano-scale multilayered coatings. Key Eng Mater 496:67–74

    Article  CAS  Google Scholar 

  5. Krolczyk GM, Nieslony P, Maruda RW, Wojciechowski S (2017) Dry cutting effect in turning of a duplex stainless steel as a key factor in clean production. J Clean Prod 142:3343–3354

    Article  CAS  Google Scholar 

  6. Yan P, Rong Y, Wang G (2016) The effect of cutting fluids applied in metal cutting process. Proc Inst Mech Eng B J Eng Manuf 230(1):19–37

    Article  Google Scholar 

  7. Amrita M, Kamesh B, Srikant RR, Prithiviraajan RN, Reddy KS (2019) Thermal enhancement of graphene dispersed emulsifier cutting fluid with different surfactants. Mater Res Express 6(12):125030

    Article  CAS  Google Scholar 

  8. Karpenko GV, Gutman EM, Vasilenko II (1968) The rebinder effect in corrosive and weak surface-active media. Sov Mater Sci 3(5):382–388

    Article  Google Scholar 

  9. Quintero L (2002) An overview of surfactant applications in drilling fluids for the petroleum industry. J Dispers Sci Technol 23(1–3):393–404

    Article  CAS  Google Scholar 

  10. Vereschaka AS (1993) Working capacity of the cutting tool with wear resistant coatings. Mashinostroenie, Moscow. in Russian

    Google Scholar 

  11. Bouzakis KD, Michailidis N, Skordaris G, Bouzakis E, Biermann D, M’Saoubi R (2012) Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann Manuf Technol 61:703–723

    Article  Google Scholar 

  12. Fox-Rabinovich GS, Yamamoto K, Beake BD, Gershman IS, Kovalev AI, Veldhuis SC, Aguirre MH, Dosbaeva G, Endrino JL (2012) Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: The quest for nonequilibrium states and emergent behavior. Sci Technol Adv Mater 13(4):043001

    Article  CAS  Google Scholar 

  13. Bobzin K (2017) High-performance coatings for cutting tools. CIRP J Manuf Sci Technol 18:1–9

    Article  Google Scholar 

  14. Vereshchaka AA, Vereshchaka AS, Mgaloblishvili O, Morgan MN, Batako AD (2014) Nano-scale multilayered-composite coatings for the cutting tools. Int J Adv Manuf Technol 72(1–4):303–317

    Article  Google Scholar 

  15. Vereschaka AA, Vereschaka AS, Batako AD, Hojaev OK, Mokritskii BY (2016) Development and research of nanostructured multilayer composite coatings for tungsten-free carbides with extended area of technological applications. Int J Adv Manuf Technol 87(9–12):3449–3457

    Article  Google Scholar 

  16. Vereschaka AA, Grigoriev SN, Volosova MA, Batako A, Vereschaka AS, Sitnikov NN, Seleznev AE (2017) Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools. Int J Adv Manuf Technol 90(1–4):27–43

    Article  Google Scholar 

  17. Naskar A, Chattopadhyay AK (2018) Investigation on flank wear mechanism of CVD and PVD hard coatings in high speed dry turning of low and high carbon steel. Wear 396–397:98–106

    Article  CAS  Google Scholar 

  18. Savostikov VM, Potekaev AI, Tabachenko AN, Shulepov IA, Kuzmichenko VM, Didenko AA (2012) Gradient multilayer tribilogical coatings based on Mo-S-Ti-C formed by hybrid ion-plasma methods. Russ Phys J 54(11):1232–1240

    Article  CAS  Google Scholar 

  19. Jiao Q, Guo F, Li C, Zheng G, He J, Zhao H, Qin Y, Yin F (2020) Effects of Mo addition on tribological performance of plasma-sprayed Ti–Si–C coatings. Ceram Int 46(9):12948–12954

    Article  CAS  Google Scholar 

  20. Riedl H, Aschauer E, Koller CM, Polcik P, Arndt M, Mayrhofer PH (2017) Ti-Al-N/Mo-Si-B multilayers: an architectural arrangement for high temperature oxidation resistant hard coatings. Surf Coat Technol 328:80–88

    Article  CAS  Google Scholar 

  21. Vereschaka A, Tabakov V, Grigoriev S, Aksenenko A, Sitnikov N, Oganyan G, Seleznev A, Shevchenko S (2019) Effect of adhesion and the wear-resistant layer thickness ratio on mechanical and performance properties of ZrN-(Zr,Al,Si)N coatings. Surf Coat Technol 357:218–234

    Article  CAS  Google Scholar 

  22. Vereschaka A (2013) Improvement of working efficiency of cutting tools by modifying its surface properties by application of wear-resistant complexes. Adv Mater Res 712–715:347–351

    Article  Google Scholar 

  23. Grigoriev SN, Vereshchaka AA (2016) Methodology of formation of multi-layered coatings for carbide cutting tools. Mech Ind 17(7):706

    Article  Google Scholar 

  24. Vereschaka A, Tabakov V, Grigoriev S, Grigoriev S, Sitnikov N, Andreev N, Milovich F (2018) Investigation of wear and diffusion processes on rake faces of carbide inserts with Ti-TiN-(Ti,Al,Si)N composite nanostructured coating. Wear 416-417:72–80

    Article  CAS  Google Scholar 

  25. Grigoriev S, Vereschaka A, Milovich F, Tabakov V, Sitnikov N, Andreev N, Sviridova T, Bublikov J (2020) Investigation of multicomponent nanolayer coatings based on nitrides of Cr, Mo, Zr, Nb, and Al. Surface and Coatings Technology 401:126258

    Google Scholar 

  26. Grigoriev S, Volosova M, Fyodorov S, Lyakhovetskiy M, Seleznev A (2019) DLC-coating application to improve the durability of ceramic tools. J Mater Eng Perform 28(7):4415–4426

    Article  CAS  Google Scholar 

  27. Sobol’ OV, Andreev AA, Grigoriev SN, Volosova MA, Gorban’ VF (2012) Vacuum-arc multilayer nanostructured TiN/Ti coatings: structure, stress state, properties. Metal Sci Heat Treat 54(1–2):28–33

    Article  CAS  Google Scholar 

  28. Metel A, Grigoriev S, Melnik Y, Panin V, Prudnikov V (2011) Cutting tools nitriding in plasma produced by a fast neutral molecule beam. Jpn J Appl Phys 50(8):08JG04

    Article  Google Scholar 

  29. Fominski VY, Grigoriev SN, Celis JP, Romanov RI, Oshurko VB (2012) Structure and mechanical properties of W–Se–C/diamond-like carbon and W–Se/diamond-like carbon bi-layer coatings prepared by pulsed laser deposition. Thin Solid Films 520(21):6476–6483

    Article  CAS  Google Scholar 

  30. Fominski VY, Grigoriev SN, Gnedovets AG, Romanov RI (2012) Pulsed laser deposition of composite Mo-Se-Ni-C coatings using standard and shadow mask configuration. Surf Coat Technol 206(24):5046–5054

    Article  CAS  Google Scholar 

  31. Metel AS, Grigoriev SN, Melnik YA, Prudnikov VV (2011) Glow discharge with electrostatic confinement of electrons in a chamber bombarded by fast electrons. Plasma Phys Rep 37:628–637

    Article  CAS  Google Scholar 

  32. Klocke F, Krieg T (1999) Coated tools for metal cutting – features and applications. Ann CIRP 48(2):515–525

    Article  Google Scholar 

  33. Messier R, Yehoda JE (1985) Geometry of thin-film morphology. J Appl Phys 58:3739

    Article  CAS  Google Scholar 

  34. Herman MA, Richter W, Sitter H (2004) Epitaxy: physical principles and technical implementation, Springer-Verlag Berlin Heidelberg 322

    Google Scholar 

  35. Posti E, Nieminen I (1989) Influence of coating thickness on the life of TIN coated high speed steel cutting tools. Wear 129:273–283

    Article  CAS  Google Scholar 

  36. Bouzakis K-D, Hadjiyiannis S, Skordaris G, Mirisidis I, Michailidis N, Efstathiou K, Pavlidou E, Erkens G, Cremer R, Rambadt S, Wirth I (2004) The effect of coating thickness, mechanical strength and hardness properties on the milling performance of PVD coated cemented carbides inserts. Surf Coat Technol 177–178:657–666

    Article  CAS  Google Scholar 

  37. Skordaris G, Bouzakis K-D, Kotsanis T, Charalampous P, Bouzakis E, Lemmer O, Bolz S (2016) Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools. Surf Coat Technol 307:452–460

    Article  CAS  Google Scholar 

  38. Bouzakis K-D, Bouzakis E, Skordaris G, Makrimallakis S, Tsouknidas A, Katirtzoglou G, Gerardis S (2007) Wear of tools coated with various PVD films: correlation with impact test results by means of FEM simulations. Plasma Process Polym 4(3):301–310

    Article  CAS  Google Scholar 

  39. Vereschaka AA, Grigoriev SN (2017) Study of cracking mechanisms in multi-layered composite nano-structured coatings. Wear 378–379:43–57

    Article  CAS  Google Scholar 

  40. Vereschaka AA, Vereschaka AS, Bublikov JI, Aksenenko AY, Sitnikov NN (2016) Study of properties of nanostructured multilayer composite coatings of Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N. J Nano Res 40:90–98

    Article  CAS  Google Scholar 

  41. Veprek S, Veprek-Heijman MJG (2012) Limits to the preparation of superhard nanocomposites: impurities, deposition and annealing temperature. Thin Solid Films 522:274–282

    Article  CAS  Google Scholar 

  42. Veprek S, Veprek-Heijman MJG (2016) Superhard and ultrahard nanostructured materials and coatings. In: Kanyanta V (ed) Microstructure-property correlations for hard, superhard, and ultrahard materials. Springer, Cham, pp 167–210

    Google Scholar 

  43. Vereschaka A, Grigoriev S, Sitnikov N, Aksenenko A, Milovich F, Andreev N, Oganyan G, Bublikov J (2019) Influence of the thickness of multilayer composite nano-structured coating Ti-TiN-(Ti,Al,Si)N on the tool life of metal-cutting tools and the nature of wear. Coatings 9(11):730

    Article  CAS  Google Scholar 

  44. Vereschaka AA, Volosova MA, Grigoriev SN, Vereschaka AS (2013) Development of wear-resistant complex for high-speed steel tool when using process of combined cathodic vacuum arc deposition. Procedia CIRP 9:8–12

    Article  Google Scholar 

  45. Vereschaka A, Tabakov V, Grigoriev S, Sitnikov N, Oganyan G, Andreev N, Milovich F (2019) Investigation of wear dynamics for cutting tools with multilayer composite nanostructured coatings in turning constructional steel. Wear 420–421:17–37

    Article  CAS  Google Scholar 

  46. Vereschaka A, Aksenenko A, Sitnikov N, Migranov M, Shevchenko S, Sotova C, Batako A, Andreev N (2018) Effect of adhesion and tribological properties of modified composite nano-structured multi-layer nitride coatings on WC-Co tools life. Tribol Int 128:313–327

    Article  CAS  Google Scholar 

  47. Hovsepian PE, Lewis DB, Luo Q, Munz W-D, Mayrhofer PH, Mitterer C, Zhou Z, Rainforth WM (2005) TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures. Thin Solid Films 485:160–168

    Article  CAS  Google Scholar 

  48. Antonov M, Hussainova I, Sergejev F, Kulu P, Gregor A (2009) Assessment of gradient and nanogradient PVD coatings behavior under erosive, abrasive and impact wear conditions. Wear 267(5–8):898–906

    Article  CAS  Google Scholar 

  49. Contreras E, Galindez Y, Rodas MA, Bejarano G, Gómez MA (2017) CrVN/TiN nanoscale multilayer coatings deposited by DC unbalanced magnetron sputtering. Surf Coat Technol 332:214–222

    Article  CAS  Google Scholar 

  50. Araujo JA, Araujo GM, Souza RM, Tschiptschin AP (2015) Effect of periodicity on hardness and scratch resistance of CrN/NbN nanoscale multilayer coating deposited by cathodic arc technique. Wear 330–331:469–477

    Article  CAS  Google Scholar 

  51. Al-Bukhaiti MA, Al-hatab KA, Tillmann W, Hoffmann F, Sprute T (2014) Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel. Appl Surf Sci 318:180–190

    Article  CAS  Google Scholar 

  52. Hovsepian PE, Ehiasarian AP, Braun R, Walker J, Du H (2010) Novel CrAlYN/CrN nanoscale multilayer PVD coatings produced by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique for environmental protection of γ-TiAl alloys. Surf Coat Technol 204:2702–2708

    Article  CAS  Google Scholar 

  53. Bobzin K, Brögelmann T, Kruppe NC, Arghavani M, Mayer J, Weirich TE (2017) Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS. Surf Coat Technol 332:253–261

    Article  CAS  Google Scholar 

  54. Araujo JA, Giorjão RAR, Bettini J, Souza RM, Tschiptschin AP (2016) Modeling intrinsic residual stresses built-up during growth of nanostructured multilayer NbN/CrN coatings. Surf Coat Technol 308:264–272

    Article  CAS  Google Scholar 

  55. Vereschaka AA, Grigoriev SN, Sitnikov NN, Batako AD (2017) Delamination and longitudinal cracking in multi-layered composite nano-structured coatings and their influence on cutting tool life. Wear 390–391:209–219

    Article  CAS  Google Scholar 

  56. Vereschaka A, Tabakov V, Grigoriev S, Sitnikov N, Milovich F, Andreev N, Sotova C, Kutina N (2020) Investigation of the influence of the thickness of nanolayers in wear-resistant layers of Ti-TiN-(Ti,Cr,Al)N coating on destruction in the cutting and wear of carbide cutting tools. Surf Coat Technol 385:125402

    Article  CAS  Google Scholar 

  57. Vereschaka A, Grigoriev S, Tabakov V, Migranov M, Sitnikov N, Milovich F, Andreev N (2020) Influence of the nanostructure of Ti-TiN-(Ti,Al,Cr)N multilayer composite coating on tribological properties and cutting tool life. Tribol Int 150:106388

    Article  CAS  Google Scholar 

  58. Vereschaka A, Tabakov V, Grigoriev S, Sitnikov N, Milovich F, Andreev N, Bublikov J (2019) Investigation of wear mechanisms for the rake face of a cutting tool with a multilayer composite nanostructured Cr–CrN-(Ti,Cr,Al,Si)N coating in high-speed steel turning. Wear 438-439:203069

    Article  CAS  Google Scholar 

  59. Vereshchaka AS (1976) Carbide tools with wear resistant TiN coatings. Mach Tool 47(6):23–25

    Google Scholar 

  60. Veprek S, Jilek M (2002) Superhard nanocomposite coatings. From basic science toward industrialization. Pure Appl Chem 74(3):475–481

    Article  CAS  Google Scholar 

  61. Wang YK, Cheng XY, Wang WM, Gu XH, Xia LF, Lei TC, Liu WH (1995) Microstructure and properties of (Ti, Al) N coating on high speed steel. Surf Coat Technol 72(1–2):71–77

    Article  CAS  Google Scholar 

  62. Pogrebnjak AD (2013) Structure and properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings. J Nanomater 2013:780125

    Article  CAS  Google Scholar 

  63. Chang K-S, Chen K-T, Hsu C-Y, Hong P-D (2018) Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system. Appl Surf Sci 440:1–7

    Article  CAS  Google Scholar 

  64. Tomaszewski L, Gulbinski W, Urbanowicz A, Suszko T, Lewandowski A, Gulbinski W (2015) TiAlN based wear resistant coatings modified by molybdenum addition. Vacuum 121:223–229

    Article  CAS  Google Scholar 

  65. Liu W, Li A, Wu H, Long Y, Huang J, Deng X, Wang Q, Wu S (2016) Effects of gas pressure on microstructure and performance of (Ti, Al, Zr)N coatings produced by physical vapor deposition. Ceram Int 42(15):17436–17441

    Article  CAS  Google Scholar 

  66. Grigoriev SN, Vereschaka AA, Fyodorov SV, Sitnikov NN, Batako AD (2017) Comparative analysis of cutting properties and nature of wear of carbide cutting tools with multi-layered nano-structured and gradient coatings produced by using of various deposition methods. Int J Adv Manuf Technol 90(9–12):3421–3435

    Article  Google Scholar 

  67. Beresnev VM, Torianyk IN, Pogrebnjak AD, Bondar OV, Bilokur M, Sobol OV, Kolesnikov DA, Lytovchenko SV, Turbin PV (2015) Structure and physical and mechanical Properties of nanocomposite (Zr-Ti-Cr-Nb)N and (Ti-Zr-Al-Nb-Y)N coatings, obtained by vacuum-arc evaporation method. Springer Proc Phys 156:75–84

    Article  CAS  Google Scholar 

  68. Vereschaka A, Grigoriev S, Sitnikov N, Milovich F, Aksenenko A, Andreev N (2019) Investigation of performance and cutting properties of carbide tool with nanostructured multilayer Zr-ZrN-(Zr0.5,Cr0.3,Al0.2)N coating. Int J Adv Manuf Technol 102(9–12):2953–2965

    Article  Google Scholar 

  69. Vereschaka AS, Grigoriev SN, Tabakov VP, Sotova ES, Vereschaka AA, Kulikov MY (2014) Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings. Key Eng Mater 581:68–73

    Article  Google Scholar 

  70. Hangwei C, Yuan G, Lin Y, Zhikang M, Chenglei W (2014) High-temperature oxidation behavior of (Ti,Cr)N coating deposited on 4Cr13 stainless steel by multi-arc ion plating. Rare Metal Mater Eng 43:1084–1087

    Article  Google Scholar 

  71. Koshy RA, Graham ME, Marks LD (2010) Temperature activated self-lubrication in CrN/Mo2N nanolayer coatings. Surf Coat Technol 204:1359–1365

    Article  CAS  Google Scholar 

  72. Qi ZB, Zhu FP, Wu ZT, Liu B, Wang ZC, Peng DL, Wu CH (2013) Influence of yttrium addition on microstructure and mechanical properties of ZrN coatings. Surf Coat Technol 231:102–106

    Article  CAS  Google Scholar 

  73. Yamamoto K, Kujime S, Fox-Rabinovich G (2008) Effect of alloying element (Si,Y) on properties of AIP deposited (Ti,Cr,Al)N coating. Surf Coat Technol 203(5–7):579–583

    Article  CAS  Google Scholar 

  74. Domínguez-Meister S, El Mrabet S, Escobar-Galindo R, Mariscal A, Jiménez de Haro MC, Justo A, Brizuela M, Rojas TC, Sánchez-López JC (2015) Role of Y in the oxidation resistance of CrAlYN coatings. Appl Surf Sci 353:504–511

    Article  CAS  Google Scholar 

  75. Riedl H, Holec D, Rachbauer R, Polcik P, Hollerweger R, Paulitsch J, Mayrhofer PH (2013) Phase stability, mechanical properties and thermal stability of Y alloyed Ti-Al-N coatings. Surf Coat Technol 235:174–180

    Article  CAS  Google Scholar 

  76. Rachbauer R, Holec D, Mayrhofer PH (2012) Increased thermal stability of Ti–Al–N thin films by Ta alloying. Surf Coat Technol 211:98–10

    Article  CAS  Google Scholar 

  77. Koller CM, Hollerweger R, Sabitzer C, Rachbauer R, Kolozsvári S, Paulitsch J, Mayrhofer PH (2014) Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings. Surf Coat Technol 259(Part C):599–600

    Article  CAS  Google Scholar 

  78. Seidl WM, Bartosik M, Kolozsvári S, Bolvardi H, Mayrhofer PH (2018) Mechanical properties and oxidation resistance of Al-Cr-N/Ti-Al-Ta-N multilayer coatings. Surf Coat Technol 347:427–433

    Article  CAS  Google Scholar 

  79. Grossmann B, Tkadletz M, Schalk N, Czettl C, Pohler M, Mitterer C (2018) High-temperature tribology and oxidation of Ti1−x−yAlxTayN hard coatings. Surf Coat Technol 342:190–197

    Article  CAS  Google Scholar 

  80. Sangiovanni DG, Chirita V, Hultman L (2012) Toughness enhancement in TiAlN-based quarternary alloys. Thin Solid Films 520(11):4080–4088

    Article  CAS  Google Scholar 

  81. Franz R, Mitterer C (2013) Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: a review. Surf Coat Technol 228:1–13

    Article  CAS  Google Scholar 

  82. Guo F, Holec D, Wang J, Li S, Du Y (2020) Impact of V, Hf and Si on oxidation processes in Ti–Al–N: insights from ab initio molecular dynamics. Surf Coat Technol 381:125125

    Article  CAS  Google Scholar 

  83. Martin PJ, Bendavid A, Cairney JM, Hoffman M (2005) Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition. Surf Coat Technol 200(7):2228–2235

    Article  CAS  Google Scholar 

  84. Chen L, Wang SQ, Du Y, Zhou SZ, Gang T, Fen JC, Chang KK, Li YW, Xiong X (2010) Machining performance of Ti-Al-Si-N coated inserts. Surf Coat Technol 205(2):582–586

    Article  CAS  Google Scholar 

  85. Chang Y-Y, Hsiao C-Y (2009) High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings. Surf Coat Technol 204(6–7):992–996

    Article  CAS  Google Scholar 

  86. Rachbauer R, Blutmager A, Holec D, Mayrhofer PH (2012) Effect of Hf on structure and age hardening of Ti-Al-N thin films. Surf Coat Technol 206(10):2667–2672

    Article  CAS  Google Scholar 

  87. Xu YX, Chen L, Pei F, Du Y, Liu Y, Yue JL (2014) Influence of Hf on the structure, thermal stability and oxidation resistance of Ti-Al-N coatings. Thin Solid Films 565:25–31

    Article  CAS  Google Scholar 

  88. Glatz SA, Moraes V, Koller CM, Riedl H, Bolvardi H, Kolozsvári S, Mayrhofer PH (2017) Effect of Mo on the thermal stability, oxidation resistance, and tribo-mechanical properties of arc evaporated Ti-Al-N coatings. J Vac Sci Technol A 35:061515

    Article  CAS  Google Scholar 

  89. Kim KH, Choi EY, Hong SG, Park BG, Yoon JH, Yong JH (2006) Syntheses and mechanical properties of Cr–Mo–N coatings by a hybrid coating system. Surf Coat Technol 201:4068–4072

    Article  CAS  Google Scholar 

  90. Klimashin FF, Mayrhofer PH (2017) Ab initio-guided development of super-hard Mo–Al–Cr–N coatings. Scr Mater 140:27–30

    Article  CAS  Google Scholar 

  91. Hu C, Xu YX, Chen L, Pei F, Zhang LJ, Du Y (2018) Structural, mechanical and thermal properties of CrAlNbN coatings. Surf Coat Technol 349:894–900

    Article  CAS  Google Scholar 

  92. Li WZ, Liu HW, Evaristo M, Polcar T, Cavaleiro A (2013) Influence of Al content on the mechanical properties and thermal stability in protective and oxidation atmospheres of Zr–Cr–Al–N coatings. Surf Coat Technol 236:239–245

    Article  CAS  Google Scholar 

  93. Li WZ, Chen QZ, Polcar T, Serra R, Cavaleiro A (2014) Influence of Zr alloying on the mechanical properties, thermal stability and oxidation resistance of Cr-Al-N coatings. Appl Surf Sci 317:269–277

    Article  CAS  Google Scholar 

  94. Raab R, Koller CM, Kolozsvári S, Ramm J, Mayrhofer PH (2017) Interfaces in arc evaporated Al-Cr-N/Al-Cr-O multilayers and their impact on hardness. Surf Coat Technol 324:236–242

    Article  CAS  Google Scholar 

  95. Bobzin K, Brögelmann T, Kruppe NC, Carlet M (2019) Nanocomposite (Ti,Al,Cr,Si)N HPPMS coatings for high performance cutting tools. Surf Coat Technol 378:124857

    Article  CAS  Google Scholar 

  96. Paternoster C, Fabrizi A, Cecchini R, Spigarelli S, Kiryukhantsev-Korneev PV, Sheveyko A (2008) Thermal evolution and mechanical properties of hard Ti-Cr-B-N and Ti-Al-Si-B-N coatings. Surf Coat Technol 203(5–7):736–740

    Article  CAS  Google Scholar 

  97. Jung DH, Moon KI, Shin SY, Lee CS (2013) Influence of ternary elements (X = Si, B, Cr) on TiAlN coating deposited by magnetron sputtering process with single alloying targets. Thin Solid Films 546:242–245

    Article  CAS  Google Scholar 

  98. Stein C, Keunecke M, Bewilogua K, Chudoba T, Kölker W, den Berg HV (2011) Cubic boron nitride based coating systems with different interlayers for cutting inserts. Surf Coat Technol 205(Suppl 2):103–S106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the state assignment of the Ministry of Science and Higher Education of the Russian Federation, project No. 0707-2020-0025.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vereschaka, A.A., Grigoriev, S.N. (2021). Nanostructured Composite Modifying Coatings for Highly Efficient Environmentally Friendly Dry Cutting. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_83

Download citation

Publish with us

Policies and ethics