Skip to main content

Sustainable Synthesis of Greener Nanomaterials: Principles, Processes, and Products

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

The evolution of nanotechnology has revolutionized every industrial sector. The cumulative market share of all types of nanomaterials is expected to cross $10 billion mark by 2020. The most of nanomaterial synthesis relies on lithography, milling, etching, vapor deposition, sol-gel, precipitation, pyrolysis, solvothermal, mechanochemistry, ultrasound, microwave irradiation, and chemical reduction which are energy-, labor-, and cost-intensive. Current improvements in nanoscience are inducted by environmentally friendly methods for the synthesis of novel nanomaterials, known as “greener nanotechnology.” Greener nanotechnology works on 12 principles of green chemistry for nanoparticle synthesis in a safer, energy-efficient, and less toxic manner. The new greener methods utilize the biological properties in nature and gain energy from photochemistry and metabolic reactions of algae, plants, bacteria, fungi, and viruses for nanomaterial formulation. Biological/greener synthesis of nanomaterial depends on microorganisms, exotic proteins, enzymes, or highly specific biomolecules and biomineralizing organisms that enable accumulation of minerals within the cell as nanoparticles and govern the formation of nanostructures extracellularly. Besides conventional nanomaterials like inorganic metal oxides, the advanced method also enables the formulation of the nanomaterials with vitamins, sugars, plant polyphenols, and agricultural waste residues. Greener synthesis approach is advantageous over chemical and physical route, but it also has to answer for some challenges including controlling the shape, size, and other properties of nanomaterials and their scale-up strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  2. Tiwari DK, Behari J, Sen P (2008) Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci 95(5):647–655

    CAS  Google Scholar 

  3. Luechinger NA, Grass RN, Athanassiou EK et al (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160

    Article  CAS  Google Scholar 

  4. Chauhan RPS, Gupta C, Prakash D (2012) Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. Int J Bioassays 1(7):6–10

    Google Scholar 

  5. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  6. Li X, Xu H, Chen ZS et al (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 270974:1–16

    Google Scholar 

  7. Singh J, Dutta T, Kim K et al (2018) Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  8. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechnol 4:2

    Article  Google Scholar 

  9. Joerger R, Klaus T (2016) Biologically produced silver carbon composite materials for optically functional thin-film coatings. Adv Mater 12(6):407–409

    Article  Google Scholar 

  10. Unterlass MM (2016) Green synthesis of inorganic–organic hybrid materials: state of the art and future perspectives. Eur J Inorg Chem 2016:1135–1156

    Article  CAS  Google Scholar 

  11. Patwardhan SV, Manning JRH, Chiacchia M (2018) Bioinspired synthesis as a potential green method for the preparation of nanomaterials: opportunities and challenges. Curr Opin Green Sustain Chemistry 12:110–116. https://doi.org/10.1016/j.cogsc.2018.08.004

    Article  Google Scholar 

  12. Ajayan PM (2004) Nanotechnology: how does a nanofibre grow? Nature 427(6973):402–403

    Article  CAS  Google Scholar 

  13. Somorjai GA, Park JY (2008) Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top Catal 49(3–4):126–135

    Article  CAS  Google Scholar 

  14. Pennycook TJ, McBride JR, Rosenthal SJ et al (2012) Dynamic fluctuations in ultrasmall nanocrystals induce white light emission. Nano Lett 12(6):3038–3042

    Article  CAS  Google Scholar 

  15. Baker S, Rakshith S, Kavitha KS et al (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3(3):111–117

    CAS  Google Scholar 

  16. Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 417305:1–12. https://doi.org/10.1155/2014/417305

    Article  CAS  Google Scholar 

  17. Shapira P, Youtie J (2015) The economic contributions of nanotechnology to green and sustainable growth. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer International Publishing, Switzerland, pp 409–434. https://doi.org/10.1007/978-3-319-15461-9_15

    Chapter  Google Scholar 

  18. Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  Google Scholar 

  19. Gupta SD, Agarwal A, Pradhan S (2018) Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol Environ Saf 161:624–633

    Article  CAS  Google Scholar 

  20. Tarafdar JC, Raliya R, Mahawar H et al (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  21. Delfani M, Firouzabadi MB, Farrokhi N et al (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:11. https://doi.org/10.1080/00103624.2013.863911

    Article  CAS  Google Scholar 

  22. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148. https://doi.org/10.1007/s11270-008-9797-6

    Article  CAS  Google Scholar 

  23. Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3:43–55. https://doi.org/10.13140/2.1.1648.1926

    Article  Google Scholar 

  24. Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. https://doi.org/10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  25. Dao VD, Choi Y, Yong K et al (2014) Graphene-based nanohybrid materials as the counter electrode for highly efficient quantum dot-sensitized solar cells. Carbon 84:383–389

    Article  Google Scholar 

  26. Tetreault N, Arsenault E, Heiniger L et al (2011) High-efficiency dye sensitized solar cell with three-dimensional photoanode. Nano Lett 11:4579–4584. https://doi.org/10.1021/nl201792r

    Article  CAS  Google Scholar 

  27. Geng H, Peng Y, Qu L et al (2020) Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv Energy Mater 1903030. https://doi.org/10.1002/aenm.201903030

  28. Davenas J, Ltaief A, Barlier V et al (2008) Nanomaterials for photovoltaic conversion. J Mater Sci Eng C 28744–28750. https://doi.org/10.1016/j.msec.2007.10.055

  29. Fu X, Xu L, Li J et al (2018) Flexible solar cells based on carbon nanomaterials. Carbon 139:1063–1073. https://doi.org/10.1016/j.carbon.2018.08.017

    Article  CAS  Google Scholar 

  30. Santhosh C, Velmurugan V, Jacob G et al (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137. https://doi.org/10.1016/j.cej.2016.08.053

    Article  CAS  Google Scholar 

  31. Stafiej A, Pyrzynska K (2008) Solid phase extraction of metal ions using carbon nanotubes. Microchem J 89(1):29–33. https://doi.org/10.1016/j.microc.2007.11.001

    Article  CAS  Google Scholar 

  32. Wu E, Yang Y, Zhou H et al (2012) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224:1–8

    Google Scholar 

  33. Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  34. Xiong Z, Zhang LL, Ma J et al (2010) Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem Commun 46:6099–6101

    Article  CAS  Google Scholar 

  35. Goh P, Ismail A (2015) Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination 356:115–128

    Article  CAS  Google Scholar 

  36. Cohen-Tanugi D, Grossman JC (2015) Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366:59–70

    Article  CAS  Google Scholar 

  37. Kong L, Zhang D, Shao Z et al (2014) Superior effect of TEMPO-oxidized cellulose nanofibrils (TOCNs) on the performance of cellulose triacetate (CTA) ultrafiltration membrane. Desalination 332(1):117–125. https://doi.org/10.1016/j.desal.2013.11.005

    Article  CAS  Google Scholar 

  38. Ren Y, Zhang J, Xu Q et al (2014) Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes. RSC Adv 4:23412–23419

    Article  CAS  Google Scholar 

  39. Ma MG (2015) Green synthesis: properties and potential applications in nanomaterials and biomass nanocomposites. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer International Publishing, Switzerland, pp 119–161. https://doi.org/10.1007/978-3-319-15461-9_5

    Chapter  Google Scholar 

  40. Jia N, Li SM, Zhu JF et al (2010) Microwave-assisted synthesis and characterization of cellulose-carbonated hydroxyapatite nanocomposites in NaOH–urea aqueous solution. Mater Lett 64:2223–2225. https://doi.org/10.1016/j.matlet.2010.07.029

    Article  CAS  Google Scholar 

  41. Ma MG, Dong YY, Fu LH et al (2010) Cellulose/CaCO3 nanocomposites: Microwave ionic liquid synthesis, characterization, and biological activity. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2012.11.034

  42. Jia N, Li SM, Ma MG et al (2012) Rapid microwave-assisted fabrication of cellulose/F-substituted hydroxyapatite nanocomposites using green ionic liquids as additive. Mater Lett 68:44–46. https://doi.org/10.1016/j.matlet.2011.10.027

    Article  CAS  Google Scholar 

  43. Wu J, Zuo L, Song Y et al (2016) Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J Alloys Compd 656:745–752. https://doi.org/10.1016/j.jallcom.2015.10.063

    Article  CAS  Google Scholar 

  44. Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polymer Sci 35. https://doi.org/10.1155/2011/837875

  45. Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Techn 37:161–164. https://doi.org/10.1007/s10971-005-6621-2

    Article  CAS  Google Scholar 

  46. Alschinger M, Maniak M, Stietz F et al (2003) Application of metal nanoparticles in confocal laser scanning microscopy: improved resolution by optical field enhancement. Appl Phys B Lasers Opt 76:771–774. https://doi.org/10.1007/s00340-003-1182-y

    Article  CAS  Google Scholar 

  47. Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev 3(2):55–67. https://doi.org/10.1002/cben.201500018

    Article  Google Scholar 

  48. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Scholarly Res Notices 18. https://doi.org/10.1155/2014/359316

  49. Slawson RM, Van Dyke MI, Lee H et al (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27:72–79

    Article  CAS  Google Scholar 

  50. Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46:1800–1807. https://doi.org/10.1016/j.procbio.2011.06.008

    Article  CAS  Google Scholar 

  51. Kalishwaralal K, Deepak V, Ramkumarpandian S et al (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413. https://doi.org/10.1016/j.matlet.2008.06.051

    Article  CAS  Google Scholar 

  52. Bharde A, Wani A, Shouche Y et al (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327. https://doi.org/10.1021/ja0508469

    Article  CAS  Google Scholar 

  53. He S, Guo Z, Zhang Y et al (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18):3984–3987. https://doi.org/10.1016/j.matlet.2007.01.018

    Article  CAS  Google Scholar 

  54. Kaweeteerawat C, Ubol PN, Sangmuang S et al (2017) Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J Toxicol Environ Health A 80(23–24):1276–1289. https://doi.org/10.1080/15287394.2017.1376727

    Article  CAS  Google Scholar 

  55. Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34:41–81. https://doi.org/10.1146/annurev.matsci.34.052803.090949

    Article  CAS  Google Scholar 

  56. Thakkar KN, Snehit MS (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262. https://doi.org/10.1016/j.nano.2009.07.002

    Article  CAS  Google Scholar 

  57. Ahmad A, Senapati S, Khan MI et al (2005) Extra/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53. https://doi.org/10.1166/jbn.2005.012

    Article  CAS  Google Scholar 

  58. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13. https://doi.org/10.1016/j.cis.2010.02.001

    Article  CAS  Google Scholar 

  59. Mukherjee P, Ahmad A, Mandal D et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585

    Google Scholar 

  60. Shankar SS, Ahmad A, Pasricha R et al (2003) Bio reduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826. https://doi.org/10.1039/b303808b

    Article  CAS  Google Scholar 

  61. Khan SA, Ahmad A (2013) Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2013.06.038

  62. Hoseinpour V, Ghaemi N (2018) Green synthesis of manganese nanoparticles: applications and future perspective –a review. J Photochem Photobiol B Biol 189:234–243. https://doi.org/10.1016/j.jphotobiol.2018.10.022

    Article  CAS  Google Scholar 

  63. Molnár Z, Bódai V, Szakacs G et al (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:3943. https://doi.org/10.1038/s41598-018-22112-3

    Article  CAS  Google Scholar 

  64. Singh R, Shedbalkar UU, Wadhwani SA et al (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593. https://doi.org/10.1007/s00253-015-6622-1

    Article  CAS  Google Scholar 

  65. Silva LP, Reis IG, Bonatto CC (2015) Green synthesis of metal nanoparticles by plants: current trends and challenges. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer International Publishing, Switzerland, pp 259–275. https://doi.org/10.1007/978-3-319-15461-9_9

    Chapter  Google Scholar 

  66. Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317. https://doi.org/10.1016/j.jscs.2012.04.007

    Article  Google Scholar 

  67. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157. https://doi.org/10.1002/jctb.2023

    Article  CAS  Google Scholar 

  68. Banerjee P, Satapathy M, Mukhopahayay A et al (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources Bioprocessing 1:3. https://doi.org/10.1186/s40643-014-0003-y

    Article  Google Scholar 

  69. Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55(36):9557–9577. https://doi.org/10.1021/acs.iecr.6b00861

    Article  CAS  Google Scholar 

  70. Ponarulselvam S, Panneerselvam C, Murugan K et al (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their anti-plasmodial activities. Asian Pac J Trop Biomed 2(7):574–580. https://doi.org/10.1016/S2221-1691(12)60100-2

    Article  CAS  Google Scholar 

  71. Zuas O, Hamim N, Sampora Y (2014) Bio-synthesis of silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant). Mater Lett 123:156–159. https://doi.org/10.1016/j.matlet.2014.03.026

    Article  CAS  Google Scholar 

  72. Alshammari A, Kalevaru VN, Martin A (2016) Metal nanoparticles as emerging green catalysts. In: Larramendy ML, Soloneski S (eds) Green nanotechnology - overview and further prospects. IntechOpen, London, pp 1–33. https://doi.org/10.5772/63314.

    Chapter  Google Scholar 

  73. Shahwan T, Abu Sirriah S, Nairat M et al (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172(1):258–266. https://doi.org/10.1016/j.cej.2011.05.103

    Article  CAS  Google Scholar 

  74. Kuang Y, Wang Q, Chen Z et al (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73. https://doi.org/10.1016/j.jcis.2013.08.020

    Article  CAS  Google Scholar 

  75. Murgueitio E, Cumbal L, Abril M et al (2018) Green synthesis of iron nanoparticles: application on the removal of petroleum oil from contaminated water and soils. J Nanotechnol 8. https://doi.org/10.1155/2018/4184769

  76. Ebrahiminezhad A, Zare-Hoseinabadi A, Berenjian A et al (2017) Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process Synthesis 6(5):469–475. https://doi.org/10.1515/gps-2016-0133

    Article  CAS  Google Scholar 

  77. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  CAS  Google Scholar 

  78. Ebrahiminezhad A, Zare-Hoseinabadi A, Sarmah AK et al (2018) Plant-mediated synthesis and applications of iron nanoparticles. Mol Biotechnol 60:154–168. https://doi.org/10.1007/s12033-017-0053-4

    Article  CAS  Google Scholar 

  79. Zamare D, Vutukuru SS, Ravindra B (2016) Biosynthesis of nanoparticles from agro-waste: a sustainable approach. Int J Eng Appl Sci Technol 1(12):85–92

    Google Scholar 

  80. Zamani A, Marjani AP, Mousavi Z (2019) Agricultural waste biomass-assisted nanostructures: synthesis and application. Green Process Synthesis 8(1):421–429

    Article  CAS  Google Scholar 

  81. Xu H, Wang L, Su H et al (2015) Making good use of food wastes: green synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial activity. Food Biophys 10(1):12–18

    Article  Google Scholar 

  82. Lakshmipathy R, Palakshi Reddy B, Sarada NC et al (2015) Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci 5(2):223–228

    Article  CAS  Google Scholar 

  83. Rangaraj S, Venkatachalam R (2017) A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance. Appl Nanosci 7:145–153

    Article  CAS  Google Scholar 

  84. Patel KG, Misra NM, Vekariya RH et al (2018) One-pot multicomponent synthesis in aqueous medium of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and derivatives using a green and reusable nano-SiO2 catalyst from agricultural waste. Res. Chem Int 44:289–304

    Article  CAS  Google Scholar 

  85. Jabasingh SA, Belachew H, Yimam A (2018) Iron oxide induced bagasse nanoparticles for the sequestration of Cr6+ ions from tannery effluent using a modified batch reactor. J Appl Polym Sci 135:46683

    Article  Google Scholar 

  86. Yan D, Zhang H, Chen L et al (2014) Supercapacitive properties of Mn3O4 nanoparticles bio-synthesized from banana peel extract. RSC Adv 4:23649–23652

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thangadurai, D. et al. (2021). Sustainable Synthesis of Greener Nanomaterials: Principles, Processes, and Products. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_30

Download citation

Publish with us

Policies and ethics