Skip to main content

Production and Application of Doubled Haploid in Brassica Improvement

  • Chapter
  • First Online:
Brassica Improvement

Abstract

Brassica is one of the most important genera in the Brassicaceae family that encompasses both oilseed and vegetable crops. Haploid and doubled haploid technology are one of the easiest ways through which plant breeding can be accelerated. In almost all the Brassica species, haploids and doubled haploids routinely generated through tissue culture–mediated approaches. Both anther and microspore culture are tissue culture dependent, and the success of these methods is dependent on several factors, such as genotype and growth condition of the plant, stage of the microspore, medium composition, stress, and others. Apart from these tissue culture methods, in the recent past, haploid inducer lines were developed through which haploids can be produced by simple crossing. These doubled haploids have several applications in Brassica breeding, such as mutagenesis, transformation, developing improved varieties, genomics, and in basic studies. Several genes and QTLs have been identified related to anther and microspore culture in Brassica spp. Apart from these advantages and applications, there are various challenges in doubled haploid technology which need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajisaka H, Kuginuki Y, Shiratori M, Ishiguro K, Enomoto S, Hirai M (1999) Mapping of loci affecting the culturing efficiency of microspore culture of Brassica rapa L. syn. Campestris L. using DNA polymorphism. Breed Sci 49:187–192

    Article  CAS  Google Scholar 

  • Ali MM, Mian MAK, Custers JBM, Khuram MMH (2008) Microspore culture and the performance of microspore derived doubled haploid in Brassica juncea (L.). Bangladesh J Agric Res 33(3):571–578

    Google Scholar 

  • Babbar SB, Agarwal PK, Sahay S, Bhojwani SS (2004) Isolated microspore culture of Brassica: an experimental tool for developmental studies and crop improvement. Indian J Plant Biotechnol 3:185–202

    Google Scholar 

  • Baillie AMR, Epp DJ, Hutcheson D, Keller WA (1992) In vitro culture of isolated microspores and regeneration of plants in Brassica campestris. Plant Cell Rep 11:234–237

    CAS  PubMed  Google Scholar 

  • Barro F, Martin A (1999) Response of different genotypes of Brassica carinata to microspore culture. Plant Breed 118:79–81

    Article  Google Scholar 

  • Bettey M, Finch-Savage WE, King GJ, Lynn JR (2000) Quantitative genetic analysis of seed vigour and pre-emergence seedling growth traits in Brassica oleracea. New Phytol 148:277–286. https://doi.org/10.1046/j.1469-8137.2000.00760.x

    Article  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, vol 7. Elsevier, Amsterdam, pp 177–201

    Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson weed, Datura stramonium. Science 55:646–647

    Article  CAS  PubMed  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749. https://doi.org/10.1105/tpc.001941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbulis N, Malinauskaite R, Kott L (2001) Oil quality improvement through in vitro mutagenesis and haploid selection in Lithuanian winter Brassica napus germplasm. Proc Latv Acad Sci 55:197–200

    Google Scholar 

  • Burnett L (1992) Embryogenesis and plant regeneration from isolated microspores of Brassica rapa L. ssp oleifera. Plant Cell Rep 11:215–218

    Article  CAS  PubMed  Google Scholar 

  • Cegielska-Taras T, Pniewski T, Szala L (2008) Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J Appl Genet 49:343–347

    Article  PubMed  Google Scholar 

  • Cerosimo A, Sorrentino C (1996) Haploidy in Nicotiana spp. In: Mohan JS, Sopory SK, Ricahrd V (eds) In vitro haploid production in higher plants, vol 5. Kluwcr Academic, Dordrecht, pp 135–163

    Google Scholar 

  • Chen ZZ, Snyder S, Fan ZG, Loh WH (1994) Efficient production of doubled haploid plants through chromosome doubling of isolated microspores in Brassica napus. Plant Breed 113:217–221. https://doi.org/10.1111/j.1439-0523.1994.tb00725.x

    Article  Google Scholar 

  • Chuong PV, Beversdorf WD (1985) High frequency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant Sci 39:219–226

    Article  Google Scholar 

  • Chuong PV, Deslauriers C, Kott LS, Beversdorf WD (1988) Effects of donor genotype and bud sampling on microspore culture of Brassica napus. Can J Bot 6:1653–1657

    Article  Google Scholar 

  • Clausen RE, Mann MC (1924) Inheritance in Nicotiana tabacum: V. The occurrence of haploid plants in interspecific progenies. Proc Natl Acad Sci U S A 10:121–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier S, Cappadocia M, Landry BS (1995) Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations. Theor Appl Genet 91:841–847

    Article  CAS  PubMed  Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382. https://doi.org/10.1086/282098

    Article  Google Scholar 

  • Dhaka N, Mukhopadhyay A, Paritosh K (2017a) Identification of genic SSRs and construction of a SSR-based linkage map in Brassica juncea. Euphytica 213(15). https://doi.org/10.1007/s10681-016-1814-z

  • Dhaka N, Rout K, Yadava SK, Sodhi YS, Gupta V, Pental D, Pradhan AK (2017b) Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool lines of Brassica juncea. Theor Appl Genet. https://doi.org/10.1007/s00122-016-2811-2

  • Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CL, Voermans W, Woudenberg L, de Wit JPC, Reinink K, Schut JW, vab der Zeeuw E, Vogelaar A, Freymark G, Gutteling EWKMN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, De Jong H, Wijnker E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunwell JM (2010) Haploid in flowering plants: origin and exploitation. Plant Biotechnol J 8:377–424. https://doi.org/10.1111/j.1467-7652.2009.00498.x

    Article  CAS  PubMed  Google Scholar 

  • Elahi N, Duncan RW, Stasolla C (2016) Effects of altered expression of LEAFY COTYLEDON1 and FUSCA3 on microspore-derived embryogenesis of Brassica napus L. J Genet Eng Biotechnol 14:19–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrie AMR, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386

    Article  Google Scholar 

  • Ferrie AMR, Taylor DC, Mackenzie SL, Keller WA (1999) Microspore embryogenesis of high sn-2 erucic acid Brassica oleracea germplasm. Plant Cell Tiss Org Cult 57:79–84

    Article  CAS  Google Scholar 

  • Ferrie AMR, Taylor DC, MacKenzie SL, Rakow G, Raney JP, Keller WA (2008) Microspore mutagenesis of Brassica species for fatty acid modifications: a preliminary evaluation. Plant Breed 127:501–506

    Article  Google Scholar 

  • Fu S, Yin L, Xu M, Li Y, Wang M, Yang J, Tingdong F, Wang J, Shen J, Ali A, Zou Q, Yi B, Wen J, Tao L, Kang Z, Tang R (2018) Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 247(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep 17:323–328

    Article  CAS  PubMed  Google Scholar 

  • Gil-Humanes J, Barro F (2009) Production of doubled haploids in Brassica. In: Touraev et al (eds) Advances in haploid production in higher pants. Springer, New York, pp 65–73

    Chapter  Google Scholar 

  • Gilles LM, Khaled A, Laffaire JP, Chaignon S, Gendort G, Laplaige J, Berges H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J-P, Rogowsky PM, Widiez T (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717. https://doi.org/10.15252/embj.201796603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gland A, Lichter R, Schweiger HG (1988) Genetic and exogenous factors affecting embryogenesis in isolated microspore cultures of Brassica napus L. J Plant Physiol 132:613–617

    Article  Google Scholar 

  • Guerche P, Charbonnier M, Jouanin L, Tourneur C, Paszkowski J, Pelletier G (1987) Direct gene transfer by electroporation in Brassica napus. Plant Sci 52:111–116

    Article  CAS  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Guo YD, Pulli S (1996) High-frequency embryogenesis in Brassica campestris microspore culture. Plant Cell Tiss Org Cult 46:219–225

    Article  Google Scholar 

  • Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:1–12. https://doi.org/10.3389/fpls.2018.00617

    Article  CAS  Google Scholar 

  • He Y, Chen SB, Jin ZL, Wan GL, Xu L, Tang GX, Zhou WJ (2007) Effects of mutagenic treatments of isolated microspores and microspore-derived embryos on embryogenesis and plant regeneration in oilseed rape (Brassica napus L.). In: GCIRC proceedings of the 12th international rapeseed congress, GCIRC, Wuhan, China, vol 2, pp 69–72

    Google Scholar 

  • Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 67:421–438. https://doi.org/10.1146/annurev-arplant-043014-114714

    Article  CAS  PubMed  Google Scholar 

  • Jagannath A, Sodhi Y, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma P, Pradhan A, Pental D (2011) Eliminating expression of erucic acidencoding loci allows the identification of “hidden” QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet 122:1091–1103

    Google Scholar 

  • Jones-Villeneuve E, Huang B, Prudhomme I, Bird S, Kemble R, Hattori J, Miki B (1995) Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell Tiss Org Cult 40:97–100

    Article  Google Scholar 

  • Kameya T, Hinata K (1970) Induction of haploid plants from pollen grains of Brassica. Jpn J Breed 20:82–87

    Article  Google Scholar 

  • Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K, Weiss O, Demidov D, Schmidt K, Kumlehn J, Houben A (2015) Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci U S A 112(36):11211–11216. https://doi.org/10.1073/pnas.1504333112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller WA, Rajhathy T, Lacapra J (1975) In vitro production of plants from pollen in Brassica campestris. Can J Genet Cytol 17:655–665

    Article  CAS  Google Scholar 

  • Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414. https://doi.org/10.3389/fpls.2016.00414

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109. https://doi.org/10.1038/nature20827

    Article  CAS  PubMed  Google Scholar 

  • Kitashiba H, Taguchi K, Kaneko I, Inaba K, Yokoi S, Takahata Y, Nishio T (2016) Identification of loci associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis. Plant Cell Rep 35:2197–2204. https://doi.org/10.1007/s00299-016-2029-4

    Article  CAS  PubMed  Google Scholar 

  • Kott LS, Beversdorf WD (1990) Enhanced plant regeneration from microspore-derived embryos of Brassica napus by chilling, partial desiccation and age selection. Plant Cell Tiss Org Cult 23:187–192

    Google Scholar 

  • Kott LS, Polsoni L, Berversdorf WD (1988) Cytological aspects of isolated microspore culture of Brassica napus. Can J Bot 66:1658–1664

    Article  Google Scholar 

  • Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SWL (2015) Point mutations in centromeric histone induce postzygotic incompatibility and uniparental inheritance. PLoS Genet 11(9):e1005494. https://doi.org/10.1371/journal.pgen.1005494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZY, Ge XH (2007) Unique chromosome behavior and genetic control in Brassica x Orychophragmus wide hybrids: a review. Plant Cell Rep 26:701–710

    Article  CAS  PubMed  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434

    Article  Google Scholar 

  • Liu S, Wang H, Zhang J, Fitt BDL, Xu Z, Evans N, Liu Y, Yang W, Guo X (2005) In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24:133–144

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10(3):520–522. https://doi.org/10.1016/j.molp.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 11(1):e1004970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClinchey SL, Kott LS (2008) Production of mutants with high cold tolerance in spring canola. Euphytica 162:51–67

    Article  CAS  Google Scholar 

  • Mollers CC (1994) Efficient production of doubled haploid Brassica napus plants by colchicine treatment of microspores. Euphytica 75:95–104

    Article  Google Scholar 

  • Murovec J, Bohanec B (2011) Haploids and doubled haploids in plant breeding. In: Abdurakhmonov IY (eds) Plant breeding. InTech. https://doi.org/10.5772/29982

  • Niemirowicz-Szczytt K (1997) Excessive homozygosity in doubled haploids-advantages and disadvantages for plant breeding and fundamental research. Acta Physiol Plant 19(2):155–167

    Article  Google Scholar 

  • Ohkawa Y, Bevis E, Keller WA (1988) Validity study of microspore culture method in Brassica crops. Cruciferae Newslett 13:75

    Google Scholar 

  • Padmaja LK, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2014) Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet 127:339–347

    Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113

    Google Scholar 

  • Panjabi-Massand P, Yadava SK, Sharma P, Kaur A, Kumar A, Arumugam N, Sodhi YS, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasm of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145. http://doi.org/10.1007/s00122-010-1297-6

    Google Scholar 

  • Pechan PM (1989) Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep 8:387–390

    Article  CAS  PubMed  Google Scholar 

  • Pechan PM, Keller WA (1988) Identification of potentially embryogenic microspores in Brassica napus. Physiol Plant 74:377–384

    Article  Google Scholar 

  • Pink D, Bailey L, McClement S, Hand P, Mathas E, Buchanan-Wollaston V, Astley D, King G, Teakle G (2008) Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica 164:509–514

    Article  CAS  Google Scholar 

  • Powell W, Borrino EM, Allison MJ, Griffiths DW, Asher MJC, Dunwell JM (1986) Genetical analysis of microspore derived plants of barley (Hordeum vulgare). Theor Appl Genet 72:619–626

    Article  CAS  PubMed  Google Scholar 

  • Pradhan AK, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D (2003) A high density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106:607–614

    Article  CAS  PubMed  Google Scholar 

  • Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007a) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of major oilseed crop of dry land areas. Theor Appl Genet 115:807–817

    Article  CAS  PubMed  Google Scholar 

  • Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007b) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Chan SWL (2010) Haploid plants produced by centromere mediated genome elimination. Nature 464:615–619. https://doi.org/10.1038/nature08842

    Article  CAS  PubMed  Google Scholar 

  • Rout K, Yadav BG, Yadava SK, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2018) QTL landscape for oil content in Brassica juncea: analysis in multiple bi-parental populations in high and “0” erucic background. Front Plant Sci 9:1448. https://doi.org/10.3389/fpls.2018.01448

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolf K, Bohanec B, Hansen N (1999) Microspore culture of white cabbage, Brassica oleracea var. capitata L.: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed 118:237–241

    Article  CAS  Google Scholar 

  • Sankaranarayanan S, Higashiyama T (2018) Capacitation in plant and animal fertilization. Trends Plant Sci 23:129–139

    Article  CAS  PubMed  Google Scholar 

  • Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled haploid mapping populations. Theor Appl Genet 100:75–81. https://doi.org/10.1007/s001220050011

    Article  CAS  Google Scholar 

  • Siebel J, Pauls KP (1989) A comparison of anther and microspore culture as a breeding tool in Brassica napus. Theor Appl Genet 78:473–479

    Article  CAS  PubMed  Google Scholar 

  • da Silva Dias JC (1999) Effect of activated charcoal on Brassica oleracea microspore culture embryogenesis. Euphytica 108:65–69

    Article  Google Scholar 

  • Takahata Y, Keller WA (1991) High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci 74:235–242

    Article  Google Scholar 

  • Thomas E, Wenzel G (1975) Embryogenesis from microspores of Brassica napus. Z Pflanzenzuecht 74:77–81

    Google Scholar 

  • Tu Y, Sun J, Ge X, Li Z (2009) Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot 103:1039–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.): construction of an RFLP linkage map and localization of QTLs for seed glucosinolates content. Theor Appl Genet 90:194–204

    Article  CAS  PubMed  Google Scholar 

  • Valdés A, Clemens R, Möllers C (2018) Mapping of quantitative trait loci for microspore embryogenesis-related traits in the oilseed rape doubled haploid population DH4069 × Express 617. Mol Breed 38:65. https://doi.org/10.1007/s11032-018-0822-1

    Article  CAS  Google Scholar 

  • Voorrips RE, Jongerius MC, Kanne HJ (1997) Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94:75–82. https://doi.org/10.1007/s001220050384

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SL, Bai YQ, Mun JH, Bancroft I, Cheng F, Huang SW, Li XX et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Watts A, Kumar V, Bhat SR (2016) Centromeric histone H3 protein: from basic study to plant breeding applications. J Plant Biochem Biotechnol 25:339–348

    Article  CAS  Google Scholar 

  • Yadava SK, Arumugam N, Mukhopadhyay A, Sodhi YS, Gupta V, Pental D, Pradhan AK (2012) QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines. Theor Appl Genet 125(7):1553–1564

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z et al (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homeolog gene expression influencing selection. Nat Genet 48(10):1225–1232

    Google Scholar 

  • Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in Indica rice. Nat Plants 4(8):530–533

    Article  CAS  PubMed  Google Scholar 

  • Zhang FL, Takahata Y (2001) Inheritance of microspore embryogenic ability in Brassica crops. Theor Appl Genet 103:254–258

    Article  CAS  Google Scholar 

  • Zhang F, Aoki S, Takahata Y (2003) RAPD markers linked to microspore embryogenic ability in Brassica crops. Euphytica 131:207–213

    Article  CAS  Google Scholar 

  • Zhou WWJ, Tang GGX, Hagberg PP (2002) Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regul 37:185–192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watts, A., Sankaranarayanan, S., Raipuria, R.K., Watts, A. (2020). Production and Application of Doubled Haploid in Brassica Improvement. In: Wani, S., Thakur, A., Jeshima Khan, Y. (eds) Brassica Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-34694-2_4

Download citation

Publish with us

Policies and ethics