Skip to main content

Sperm Physiology and Assessment of Spermatogenesis Kinetics In Vivo

  • Chapter
  • First Online:
Male Infertility

Abstract

Adult men produce millions of spermatozoa daily, dependent on adequate testicular environment and hormonal control. Spermatogenesis and steroidogenesis are regulated by a master switch (gonadotropin-releasing hormone [GnRH] pulse generator) that controls two separate and independent feedback systems, namely, the androgen production (luteinizing hormone[LH]-testosterone) and sperm production (follicle-stimulating hormone [FSH]-inhibin). The pituitary gonadotropins, LH and FSH, which are secreted in response to hypothalamic GnRH, stimulate the testis. Their action on germ cell development is affected by androgen and FSH receptors on Leydig and Sertoli cells, respectively. While FSH acts directly on the germinative epithelium, LH stimulates secretion of testosterone by the Leydig cells. Testosterone stimulates sperm production and virilization, and also feeds back the hypothalamus and pituitary to regulate GnRH secretion. FSH stimulates Sertoli cells to support spermatogenesis and to secrete inhibin B that negatively feedback FSH secretion. When spermatozoa leave the testis, they are neither fully motile nor able to recognize or fertilize oocytes. Human spermatozoa must migrate through the epididymis and undergo a specific maturation process in order to become a functional gamete. The epididymis is a dynamic organ which promotes sperm maturation under the influence of androgens. It also provides a place for sperm storage and plays a role in the transport of the spermatozoa from the testis to the ejaculatory duct. In addition, the epididymis protects the male gametes from harmful substances and reabsorbs both fluids and products of sperm breakdown, thus enabling the sperm to fertilize the ovum and to contribute to the formation of a healthy embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abou-Haila A, Tulsiani DR. Mammalian sperm acrosome: formation, contentes, and function. Arch Biochem Biophys. 2000;379:173–82.

    Article  CAS  PubMed  Google Scholar 

  2. Adeoya-Osiguwa SA, Markoulaki S, Pocock V, Milligan SR, Fraser LR. 17b-Estradiol and environmental estrogens significantly affect mammalian sperm function. Hum Reprod. 2003;18(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9(4):331–45.

    Article  CAS  PubMed  Google Scholar 

  4. Agarwal A, Cho CL, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6(Suppl 4):S720–33.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alukal JP, Lamb DJ, Niederberger CS, Makhlouf AA. Spermatogenesis in the adult. In: Lipshultz LI, Howards SS, Niederberger CS, editors. Infertility in the male. Cambridge: Cambridge University Press; 2009. p. 74–89.

    Chapter  Google Scholar 

  6. Alukal JP, Lamb DJ. The Sertoli cell: morphology, function, and regulation. In: Lipshultz LI, Howards SS, Niederberger CS, editors. Infertility in the male. Cambridge: Cambridge University Press; 2009. p. 48–73.

    Chapter  Google Scholar 

  7. Alves MG, Rato L, Carvalho RA, Moreira PI, Socorro S, Oliveira PF. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol Life Sci. 2012;70:777. https://doi.org/10.1007/s00018-012-1079-1.

    Article  CAS  PubMed  Google Scholar 

  8. Amann RP. A critical review of methods for evaluation of spermatogenesis from seminal characteristics. J Androl. 1981;2(1):37–58.

    Article  Google Scholar 

  9. Amann RP. Can fertility potential of a seminal sample be predicted accurately? J Androl. 1989;16:89–98.

    Article  Google Scholar 

  10. Aoki VW, Emery BR, Liu I, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27:890–8.

    Article  CAS  PubMed  Google Scholar 

  11. Apa DD, Cayan S, Polat A, Akbay E. Mast cells and fibrosis on testicular biopsies in male infertility. Arch Androl. 2002;48(5):337–44.

    Article  CAS  PubMed  Google Scholar 

  12. Aquila S, Sisci D, Gentile M, Carpino A, Middea E, Catalano S, et al. Towards a physiological role for cytochrome P450 aromatase in ejaculated human sperm. Hum Reprod. 2003;18(8):1650–9.

    Article  CAS  PubMed  Google Scholar 

  13. Aquila S, Sisci D, Gentile M, Middea E, Siciliano L, Andò S. Human ejaculated spermatozoa contain active P450 aromatase. J Clin Endocrinol Metab. 2002;87:3385–90.

    Article  CAS  PubMed  Google Scholar 

  14. Arroteia KF, Braga DPAF, Justino ML, Pereira LAVD. Fisiologia reprodutiva. In: Borges Jr E, Cortezzi SS, LMS F, editors. Reprodução Humana Assistida. São Paulo: Editora Atheneu; 2011. p. 3–19.

    Google Scholar 

  15. Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci. 2000;5(1):110–23.

    Article  Google Scholar 

  16. Bielfeld P, Anderson RA, Mack SR, De Jonge CJ, Zaneveld LJ. Are capacitation or calcium ion influx required for the human sperm acrosome reaction? Fertil Steril. 1994;62(6):1255–61.

    Article  CAS  PubMed  Google Scholar 

  17. Birnabaumer L, Pohl SL, Rodbell M. Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J Biol Chem. 1969;244(13):3468–76.

    Google Scholar 

  18. Breitbart H, Spungin B. The biochemistry of the acrosome reaction. Mol Hum Reprod. 1997;3(3):195–202.

    Article  CAS  PubMed  Google Scholar 

  19. Brucker C, Lipford GB. The human sperm acrosome reaction: physiology and regulatory mechanisms. Updat Hum Reprod Update. 1995;1(1):51–62.

    Article  CAS  Google Scholar 

  20. Burrello N, Vicari E, D’Amico L, Satta A, D’Agata R, Calogero AE. Human follicular fluid stimulates the sperm acrosome reaction by interacting with the gamma-aminobutyric acid receptors (abstract). Fertil Steril. 2004;82(Suppl 3):1086–90.

    Article  CAS  PubMed  Google Scholar 

  21. Cai K, Hua G, Ahmad S, Liang A, Han L, Wu C, Yang F, Yang L. Action mechanism of inhibin α-subunit on the development of Sertoli cells and first wave of spermatogenesis in mice. PLoS One. 2011;6(10):e25585. https://doi.org/10.1371/jornal.pone.0025585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caroppo E. Male hypothalamic-pituitary-gonadal axis. In: Lipshultz LI, Howards SS, Niederberger CS, editors. Infertility in the male. Cambridge: Cambridge University Press; 2009. p. 14–28.

    Chapter  Google Scholar 

  23. Carreau S, Hess RA. Oestrogens and spermatogenesis. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365(1546):1517–35.

    Article  CAS  Google Scholar 

  24. Carrell DT, Liu I. Altered protamine 2 expression is uncommon in donos of known fertility, but uncommon among men with poor fertility capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22:604–10.

    CAS  PubMed  Google Scholar 

  25. Castillo J, Simon L, de Mateo S, Lewis S, Oliva R. Protamine/DNA ratios and DNA damage in native and density gradiente centrifuged sperm from infertile patients. J Androl. 2011;32(3):324–32.

    Article  CAS  PubMed  Google Scholar 

  26. Chang TH, Jih MH, Wu TC. Relationship of sperm antibodies in women and men to human in vitro fertilization, cleavage, and pregnancy rate. Am J Reprod Immunol. 1993;30(2–3):108–12.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng CY, Mruk DD. The biology of spermatogenesis: the past, presente and future. Philos Trans R Soc Lond Biol Sci. 2010;365(1546):1459–63.

    Article  Google Scholar 

  28. Cheng CY, Mruk DD. The blood-testis barrier and its implication for male contraception. Pharmacol Rev. 2012;64(1):16–64. https://doi.org/10.1124/pr.110.002790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiu PC, Wong BS, Lee CL, Lam KK, Chung MK, Lee KF, et al. Zona pellucida-induced acrosome reaction in human spermatozoa is potentiated by glycodelin-a via down-regulation of extracellular signal-regulated kinases and up-regulation of zona pellucida-induced calcium influx. Hum Reprod. 2010;25(11):2721–33.

    Article  CAS  PubMed  Google Scholar 

  30. Chiu PCN, Wong BST, Chung MK, Lam KKW, Pang RTK, Lee KF, et al. Effects of native human zona pellucida glycoproteins 3 and 4 on acrosome reaction and zona pellucida binding of human spermatozoa. Biol Reprod. 2008;79(5):869–77.

    Article  CAS  PubMed  Google Scholar 

  31. Chiu WW, Chamley LW. Clinical associations and mechanisms of action of antisperm antibodies. Fertil Steril. 2004;82(2):529–35.

    Article  CAS  PubMed  Google Scholar 

  32. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198–236.

    Article  CAS  PubMed  Google Scholar 

  33. Cross NL. Effect of cholesterol and other sterols on human sperm acrosomal responsiveness. Mol Reprod Dev. 1996;45(2):212–7.

    Article  CAS  PubMed  Google Scholar 

  34. Cummins JM, Fleming AD, Crozet N, Kuehl TJ, Kosower NS, Yanagimachi R. Labelling of living mammalian spermatozoa with the fluorescent thiol alkylating agent, monobromobimane (MB): immobilization upon exposure to ultraviolet light and analysis of acrosomal status. J Exp Zool. 1986;237(3):375–82.

    Article  CAS  PubMed  Google Scholar 

  35. De Almeida M, Gazagne I, Jeulin C, Herry M, Belaisch-Allart J, Frydman R, et al. In-vitro processing of sperm with autoantibodies and in-vitro fertilization results. Hum Reprod. 1989;4(1):49–53.

    Article  PubMed  Google Scholar 

  36. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, Claessens F, Lécureuil C, Heyns W, Carmeliet P, Guillou F, Sharpe RM, Verhoeven G. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A. 2004;101(5):1327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Jonge CJ, Han HL, Lawrie H, Mack SR, Zaneveld LJ. Modulation of the human sperm acrosome reaction by effectors of the adenylate cyclase/cyclic AMP second-messenger pathway. J Exp Zool. 1991;258(1):113–25.

    Article  PubMed  Google Scholar 

  38. Doherty CM, Tarchala SM, Radwanska E, De Jonge CJ. Characterization of two second messenger pathways and their interactions in eliciting the human sperm acrosome reaction. J Androl. 1995;16(1):36–46.

    CAS  PubMed  Google Scholar 

  39. Dufau ML. The luteinizing hormone receptor. Annu Rev Physiol. 1998;60:461–96.

    Article  CAS  PubMed  Google Scholar 

  40. Dun MD, Aitken RJ, Nixon B. The role of molecular chaperones in spermatogenesis and post-testicular maturation of mammalian spermatozoa. Hum Reprod Update. 2012;18(4):420–35.

    Article  PubMed  Google Scholar 

  41. Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male infertility: biological and clinical aspects. Asian J Androl. 2006;8:11–29.

    Article  CAS  PubMed  Google Scholar 

  42. Esteves SC, Agarwal A. Novel concepts in male infertility. Int Braz J Urol. 2011;37(1):5–15.

    Article  PubMed  Google Scholar 

  43. Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A. Cryopreservation of human spermatozoa with pentoxifylline improves the post-thaw agonist-induced acrosome reaction rate. Hum Reprod. 1998a;13(12):3384–9.

    Article  CAS  PubMed  Google Scholar 

  44. Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A. Effect of in vitro incubation on spontaneous acrosome reaction in fresh and cryopreserved human spermatozoa. Int J Fertil Womens Med. 1998b;43(5):235–42.

    CAS  PubMed  Google Scholar 

  45. Feng HL, Han YB, Hershlag A, Zheng LJ. Impact of Ca2+ flux inhibitors on acrosome reaction of hamster spermatozoa. J Androl. 2007;28(4):561–4.

    Article  CAS  PubMed  Google Scholar 

  46. Florman HM, Jungnickel MK, Sutton KA. Regulating the acrosome reaction. Int J Dev Biol. 2008;52(5–6):503–10.

    Article  CAS  PubMed  Google Scholar 

  47. França LR, Avelar GF, Almeida FF. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology. 2005;63(2):300–18.

    Article  PubMed  Google Scholar 

  48. Fraser LR. Mechanisms controlling mammalian fertilization. In: Clarke JR, editor. Oxford Reviews of Reproductive Biology. Oxford: Oxford University Press; 1984. p. 173.

    Google Scholar 

  49. Ganguly A, Bukovsky A, Sharma RK, Bansal P, Bhandari B, Gupta SK. In humans, zona pellucida glycoprotein-1 binds to spermatozoa and induces acrosomal exocytosis. Hum Reprod. 2010;25(7):1643–56.

    Article  CAS  PubMed  Google Scholar 

  50. Gill-Sharma MK. Prolactin and male fertility: the long and short feedback regulation. Int J Endocrinol. 2009;2009:687259. https://doi.org/10.1155/2009/687259.

    Article  CAS  PubMed  Google Scholar 

  51. Gray JP. Cyclic AMP and cyclic GMP in gametes. Ph.D. Dissertation. Nashville: Vanderbilt University; 1971.

    Google Scholar 

  52. Gulkesen KH, Erdogru T, Sargin CF, Karpuzoglu G. Expression of extracellular matrix proteins and vimentin in testes of azoospermic man: an immunohistochemical andmorphometric study. Asian J Androl. 2002;4(1):55–60.

    CAS  PubMed  Google Scholar 

  53. Gupta SK, Bansal P, Ganguly A, Bhandari B, Chakrabarti K. Human zona pellucida glycoproteins: functional relevance during fertilization. J Reprod Immunol. 2009;83(1–2):50–5.

    Article  CAS  PubMed  Google Scholar 

  54. Gupta SK, Chakravarty S, Suraj K, Bansal P, Ganguly A, Jain MK, Bhandari B. Structural and functional attributes of zona pellucida glycoproteins (abstract). Soc Reprod Fertil. 2007;63(Suppl):203–16.

    CAS  Google Scholar 

  55. Henkel R, Muller C, Miska W, Gips H, Schill WB. Determination of the acrosome reaction in human spermatozoa is predictive of fertilization in vitro. Hum Reprod. 1993;8(12):2128–32.

    Article  CAS  PubMed  Google Scholar 

  56. Heller CG, Clermont Y. Spermatogenesis in man: an estimate of its duration. Science. 1963;140:184–6.

    Article  CAS  PubMed  Google Scholar 

  57. Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol. 2003;1:107.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Inaba K, Akazome Y, Morisawa M. Two high molecular mass proteases from sea urchin sperm. Biochem Biophys Res Commun. 1992;182(2):667–74.

    Article  CAS  PubMed  Google Scholar 

  59. Johnson L, Varner DD. Effect of daily sperm production but not age on the transit times of spermatozoa through the human epididymis. Biol Reprod. 1988;39(4):812–7.

    Article  CAS  PubMed  Google Scholar 

  60. Junk SM, Matson PL, Yovich JM, Bootsma B, Yovich JL. The fertilization of human oocytes by spermatozoa from men with antispermatozoal antibodies in semen. J In Vitro Fert Embryo Transf. 1986;3(6):350–2.

    Article  CAS  PubMed  Google Scholar 

  61. Katz DF, Drobnis EA, Overstreet JW. Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments. Gamete Res. 1989;22:443.

    Article  CAS  PubMed  Google Scholar 

  62. Kilani Z, Ismail R, Ghunaim S, Mohamed H, Hughes D, Brewis I, et al. Evaluation and treatment of familial globozoospermia in five brothers. Fertil Steril. 2004;82(5):1436–9.

    Article  PubMed  Google Scholar 

  63. Kopf GS, Gerton GL. The mammalian sperm acrosome and the acrosome reaction. In: Wasserman PM, editor. Elements of mammalian fertilization. Boston: CRC Press; 1991. p. 153–203.

    Google Scholar 

  64. Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998;13(Suppl 1):1–8.

    Article  PubMed  Google Scholar 

  65. Kumi-Diaka J, Townsend J. Toxic potential of dietary genistein isoflavone and beta-lapachone on capacitation and acrosome reaction of epididymal spermatozoa. J Med Food. 2003;6(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  66. Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3(3):175–94.

    Article  PubMed  Google Scholar 

  67. Lazaros L, Xita N, Takenaka A, Sofikitis N, Makrydimas G, Stefos T, Kosmas I, Zikopoulos K, Hatzi E, Georgiou I. Semen quality is influenced by androgen receptor and aromatase gene synergism. Hum Reprod. 2012;27(12):3385–92.

    Article  CAS  PubMed  Google Scholar 

  68. LeBlond C, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952;55:548–73.

    Article  CAS  PubMed  Google Scholar 

  69. Lee NP, Cheng CY. Ectoplasmic specialization, a testis-specific cell-cell actin-based adherens junction type: is this a potential target for male contraceptive development? Hum Reprod Update. 2004;10:349–69.

    Article  CAS  PubMed  Google Scholar 

  70. Lindemann CB, Kanous KS. Regulation of mammalian sperm motility. Arch Androl. 1989;23(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  71. Luisi S, Florio P, Reis FM, Petraglia F. Review Inhibins in female and male reproductive physiology: role in gametogenesis, conception, implantation and early pregnancy. Hum Reprod Update. 2005;11(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  72. Macallan DC, Fullerton CA, Neese RA, Haddock K, Park SS, Hellerstein MK. Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans. Proc Natl Acad Sci U S A. 1998;95:708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mansour RT, Serour MG, Abbas AM, Nevine AK, Tawab A, Aboulghar MA, et al. The impact of spermatozoa preincubation time and spontaneous acrosome reaction in intracytoplasmic sperm injection: a controlled randomized study. Fertil Steril. 2008;90(3):584–91.

    Article  PubMed  Google Scholar 

  74. Matson PL, Junk SM, Spittle JW, Yovich JL. Effect of antispermatozoal antibodies in seminal plasma upon spermatozoal function. Int J Androl. 1988;11(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  75. Matsumura K, Aketa K. Proteasome (multi catalytic proteinase) of sea urchin sperm and its possible participation in the acrosome reaction. Mol Reprod Dev. 1991;29(2):189–99.

    Article  CAS  PubMed  Google Scholar 

  76. Meinertz H, Linnet L, Fogh-Andersen P, Hjort T. Antisperm antibodies and fertility after vasovasostomy: a follow-up study of 216 men. Fertil Steril. 1990;54(2):315–21.

    Article  CAS  PubMed  Google Scholar 

  77. Misell LM, Holochwost D, Boban D, Santi N, Shefi N, Hellerstein MK, Turek PJ. A stable isotope-mass spectrometric method for measuring human spermatogenesis kinetics in vivo. J Urol. 2006;175:242–6.

    Article  CAS  PubMed  Google Scholar 

  78. Morales P, Kong M, Pizarro E, Pasten C. Participation of the sperm proteasome in human fertilization. Hum Reprod. 2003;18(5):1010–7.

    Article  CAS  PubMed  Google Scholar 

  79. Mortimer D. From the semen to oocyte: the long route in vivo and in vitro short cut. In: Testart J, Frydman R, editors. Human in-vitro fertilization: actual problems and prospects. Amsterdam: Elsevier Science Publishers; 1985. p. 93.

    Google Scholar 

  80. Mortimer D. Practical laboratory andrology. New York: Oxford University Press; 1994.

    Google Scholar 

  81. Mruk DD, Cheng CY. Cell-cell interactions at the ectoplasmic specialization in the testis. Trends Endocrinol Metab. 2004;15:439–47.

    Article  CAS  PubMed  Google Scholar 

  82. Neto FT, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol. 2016;59:10–26.

    Article  PubMed  Google Scholar 

  83. Neese RA, Misell LM, Turner S, Chu A, Kim J, Cesar D, et al. Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc Natl Acad Sci U S A. 2002;99:15345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neese RA, Siler SQ, Cesar D, Antelo F, Lee D, Misell L, et al. Advances in the stable isotope-mass spectro photometric measurement of DNA synthesis and cell proliferation. Anal Biochem. 2001;298:189–95.

    Article  CAS  PubMed  Google Scholar 

  85. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.

    Article  CAS  PubMed  Google Scholar 

  86. Pacheco A, Garcia-Velasco JA. Sperm DNa integrity: from ‘promising’ to standardization. Transl Androl Urol. 2017;6(Suppl 4):S341–2.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Raleigh D, O’Donnell L, Southwick GJ, de Kretser DM, McLachlan RI. Stereological analysis of the human testis after vasectomy indicates impairment of spermatogenic efficiency with increasing obstructive interval. Fertil Steril. 2004;81(6):1595–603.

    Article  PubMed  Google Scholar 

  88. Roaiah MM, Khatab H, Mostafa T. Mast cells in testicular biopsies of azoospermic men. Andrologia. 2007;39(5):185–9.

    Article  CAS  PubMed  Google Scholar 

  89. Robison GA, Sutherland EW. Cyclic AMP and the function of eukaryotic cells: an introduction. Ann N Y Acad Sci. 1971;185(M2):5–9.

    Article  CAS  PubMed  Google Scholar 

  90. Romano F, Tripiciano A, Muciaccia B, De Cesaris P, Ziparo E, Palombi F, Filippini A. The contractile phenotype of peritubular smooth muscle cells is locally controlled: possible implications in male infertility. Contraception. 2005;72(4):294–7.

    Article  PubMed  Google Scholar 

  91. Roth MY, Lin K, Amory JK, Matsumoto AM, Anawalt BD, Snyder CN, Kalhorn TF, Bremner WJ, Page ST. Serum LH correlates highly with intratesticular steroid levels in normal men. J Androl. 2010;31(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  92. Saez JM. Leydig cells: endocrine, paracrine and autocrine regulation. Endocr Rev. 1994;15:574–626.

    Article  CAS  PubMed  Google Scholar 

  93. Schell C, Albrecht M, Mayer C, Shwarzer JU, Frungieri MB, Mayerhofer A. Exploring human testicular peritubular cells: identification of secretory products and regulation by tumor necrosis factor-alpha. Endocrinology. 2008;149(4):1678–86.

    Article  CAS  PubMed  Google Scholar 

  94. Schlegel PN, Hardy MP, Goldstein M. Male reproductive physiology. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-Walsh urology. Philadelphia: Elsevier; 2007. p. 577–608.

    Google Scholar 

  95. Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N. Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol. 2008;109(3–5):323–30.

    Article  CAS  PubMed  Google Scholar 

  96. Solov’eva L, Svetlova M, Bodinski D, Zalensky AO. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosom Res. 2004;12:817–23.

    Article  CAS  Google Scholar 

  97. Song HW, Wilkinson MF. In vitro spermatogenesis: a long journey to get tails. Spermatogenesis. 2012;2(4):238–44.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. Fertil Steril. 2000;73:43–50.

    Article  CAS  PubMed  Google Scholar 

  99. Sun JG, Jurisicova A, Casper RF. Deletion of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56:602–7.

    Article  CAS  PubMed  Google Scholar 

  100. Svechnikov K, Izzo G, Landreh L, Weisser J, Söder O. Endocrine disruptors and Leydig cell function. J Biomed Biotechnol. 2010;2010. pii: 684504. https://doi.org/10.1155/2010/684504.

  101. Tesarik J, Mendoza C. Alleviation of acrosome reaction prematurity by sperm treatment with egg yolk. Fertil Steril. 1995;63(1):153–7.

    Article  CAS  PubMed  Google Scholar 

  102. Thomas P, Meizel S. Phosphatidylinositol 4,5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca2+ influx. Biochem J. 1989;264(2):539–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Toshimori K, Ito C. Formation and organization of the mammalian sperm head. Arch Histol Cytol. 2003;66(5):383–96.

    Article  PubMed  Google Scholar 

  104. Turek P. Male reproductive physiology. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, editors. Campbell-Walsh urology. 11th ed. Philadelphia: Elsevier Saunders; 2016. p. 516–37.

    Google Scholar 

  105. Turner TT, Gleavy JL, Harris JM. Fluid movement in the lumen of the rat epididymis: effect of vasectomy and subsequent vasovasostomy. J Androl. 1990;11:422–8.

    CAS  PubMed  Google Scholar 

  106. Turner TT. The epididymis and accessory sex organs. In: Lipshultz LI, Howards SS, Niederberger CS, editors. Infertility in the male. Cambridge: Cambridge University Press; 2009. p. 90–103.

    Chapter  Google Scholar 

  107. Verhoeven G, Hoeben E, De Gendt K. Peritubular cell-Sertoli cell interactions: factors involved in PmodS activity. Andrologia. 2000;32(1):42–5.

    CAS  PubMed  Google Scholar 

  108. Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. 2011;1(2):116–20.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ward WS, Zalensky AO. The unique, complex organization of the transcriptionally silent sperm chromatin. Crit Rev Eukaryot Gene Expr. 1996;6:139–47.

    Article  CAS  PubMed  Google Scholar 

  110. White BA. Os sistemas reprodutores masculino e feminino. In: Koeppen BM, Stanton BA, editors. Berne & Levy: Fisiologia. Rio de Janeiro: Elsevier; 2009. p. 765–75.

    Google Scholar 

  111. WHO. WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999. p. 19.

    Google Scholar 

  112. Yanagimachi R, Bhattacharyya A. Acrosome-reacted Guinea pig spermatozoa become fusion competent in the presence of extracellular potassium ions. J Exp Zool. 1988;248(3):354–60.

    Article  CAS  PubMed  Google Scholar 

  113. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD, Ewing LL, Markert CL, Greenwald GS, Pfall DW, editors. The physiology of reproduction. New York: Raven Press; 1994. p. 189.

    Google Scholar 

  114. Zaneveld LJ, De Jonge CJ, Anderson RA, Mack SR. Human sperm capacitation and the acrosome reaction. Hum Reprod. 1991;6(9):1265–74.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang JQ, Qin DN, Cui HY. Relationship between ferm cell apoptosis and Sertoli cell vimentin in prepubertal rats induced by local exposure to heat. Zhonghua Nan KeXue. 2006;12(3):202–6.

    CAS  Google Scholar 

  116. Zhao M, Baker SD, Yan X, Zhao Y, Wright WW, Zirkin BR, Jarow JP. Simultaneous determination of steroid composition of human testicular fluid using liquid chromatography tandem mass spectrometry. Steroids. 2004;69(11–12):721–6.

    Article  CAS  PubMed  Google Scholar 

  117. Zhou Q, Nie R, Prins GS, PTK S, Katzenellenbogen BS, Hess RA. Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl. 2002;23:870–81.

    CAS  PubMed  Google Scholar 

  118. Zirkin BR. Spermatogenesis: its regulation by testosterone and FSH. Semin Cell Dev Biol. 1998;9(4):417–21.

    Article  CAS  PubMed  Google Scholar 

  119. Esteves SC, Myiaoka R. Sperm physiology and assessment of spermatogenesis kinetics in vivo. In: Watson RR, editor. Handbook of fertility: nutrition, diet, lifestyle and reproductive health. 1st ed. Amsterdam: Academic Press; 2015. p. 383–96.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro C. Esteves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roque, M., Bedoschi, G., Esteves, S.C. (2020). Sperm Physiology and Assessment of Spermatogenesis Kinetics In Vivo. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics