Skip to main content

Chapter 2: Challenges and Considerations in the Design of Antibody-Drug Conjugates

  • Chapter
  • First Online:
Development of Biopharmaceutical Drug-Device Products

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 35))

  • 2691 Accesses

Abstract

Antibody-drug conjugates (ADCs) have emerged as a new class of anti-cancer drugs where the strengths of cytotoxic small molecules are combined with specificity/selectivity of antibodies to enhance the therapeutic efficacy and safety of the drug. All components that comprise the ADC come with liabilities, and their understanding is central to the successful development of an ADC. This chapter describes in detail the mechanism of action of ADCs, the capabilities/limitations of all the components of the molecule, and considerations for the conjugation process and drug-to-antibody ratio (DAR) and provides guidance with respect to the impact of ADC attributes on pharmacokinetics and pharmaceutical stability. Special reference has been made to the necessary considerations in designing formulations for ADCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malhotra V, Perry MC. Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther. 2003;2(sup1):1–3.

    Article  Google Scholar 

  2. Goldman B. Multidrug resistance: can new drugs help chemotherapy score against cancer? J Natl Cancer Inst. 2003;95(4):255–7.

    Article  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15.

    PubMed  PubMed Central  Google Scholar 

  6. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278.

    Article  CAS  PubMed  Google Scholar 

  7. Green MC, Murray JL, Hortobagyi GN. Monoclonal antibody therapy for solid tumors. Cancer Treat Rev. 2000;26(4):269–86.

    Article  CAS  PubMed  Google Scholar 

  8. Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006;5:147.

    Article  CAS  PubMed  Google Scholar 

  9. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001;1:118.

    Article  CAS  PubMed  Google Scholar 

  10. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126.

    Article  CAS  PubMed  Google Scholar 

  11. Reichert JM. Monoclonal antibodies in the clinic. Nat Biotechnol. 2001;19:819.

    Article  CAS  PubMed  Google Scholar 

  12. Lambert JM. Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol. 2013;76(2):248–62.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Schultz PG. Expanding the genetic code. Angew Chem Int Ed. 2005;44(1):34–66.

    Article  CAS  Google Scholar 

  14. Dubowchik GM, Walker MA. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol Ther. 1999;83(2):67–123.

    Article  CAS  PubMed  Google Scholar 

  15. Trail PA. Antibody drug conjugates as cancer therapeutics. Antibodies. 2013;2(1):113–29.

    Article  CAS  Google Scholar 

  16. Lucas AT, Price LSL, Schorzman AN, Storrie M, Piscitelli JA, Razo J, Zamboni WC. Factors affecting the pharmacology of antibody–drug conjugates. Antibodies. 2018;7:1–28.

    Article  CAS  Google Scholar 

  17. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.

    Article  CAS  PubMed  Google Scholar 

  18. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh D-Y, Diéras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K, EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Casi G, Neri D. Antibody–drug conjugates: basic concepts, examples and future perspectives. J Control Release. 2012;161(2):422–8.

    Article  CAS  PubMed  Google Scholar 

  20. Iyer U, Kadambi VJ. Antibody drug conjugates — Trojan horses in the war on cancer. J Pharmacol Toxicol Methods. 2011;64(3):207–12.

    Article  CAS  PubMed  Google Scholar 

  21. Alley SC, Okeley NM, Senter PD. Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol. 2010;14(4):529–37.

    Article  CAS  PubMed  Google Scholar 

  22. Goldmacher VS, Kovtun YV. Antibody–drug conjugates: using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther Deliv. 2011;2(3):397–416.

    Article  CAS  PubMed  Google Scholar 

  23. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64(1):15–29.

    Article  CAS  PubMed  Google Scholar 

  24. Liu R, Wang RE, Wang F. Antibody-drug conjugates for non-oncological indications. Expert Opin Biol Ther. 2016;16(5):591–3.

    Article  PubMed  Google Scholar 

  25. Deonarain MP, Yahioglu G, Stamati I, Pomowski A, Clarke J, Edwards BM, Diez-Posada S, Stewart AC. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies. 2018;7:16.

    Article  CAS  PubMed Central  Google Scholar 

  26. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nolting B. Linker technologies for antibody–drug conjugates. In: Ducry L, editor. Antibody-drug conjugates. Totowa: Humana Press; 2013. p. 71–100.

    Chapter  Google Scholar 

  28. Damaghi M, Wojtkowiak JW, Gillies RJ. pH sensing and regulation in cancer. Front Physiol. 2013;4:370.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715.

    Article  CAS  PubMed  Google Scholar 

  30. Thudium K, Bilic S, Leipold D, Mallet W, Kaur S, Meibohm B, Erickson H, Tibbitts J, Zhao H, Gupta M. American Association of Pharmaceutical Scientists National Biotechnology Conference Short Course: translational challenges in developing antibody-drug conjugates: May 24, 2012, San Diego, CA. MAbs. 2013;5(1):5–12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vater CA, Goldmacher VS. Antibody–cytotoxic compound conjugates for oncology. In: Reddy LH, Couvreur P, editors. Macromolecular anticancer therapeutics. New York: Springer New York; 2010. p. 331–69.

    Chapter  Google Scholar 

  32. Teicher BA. Antibody-drug conjugate targets. Curr Cancer Drug Targets. 2009;9(8):982–1004.

    Article  CAS  PubMed  Google Scholar 

  33. Nessler I, Khera E, Thurber GM. Quantitative pharmacology in antibody-drug conjugate development: armed antibodies or targeted small molecules? Oncoscience. 2018;5(5–6):161–3.

    PubMed  PubMed Central  Google Scholar 

  34. Teicher BA, Chari RVJ. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17(20):6389–97.

    Article  CAS  PubMed  Google Scholar 

  35. Mack F, Ritchie M, Sapra P. The next generation of antibody drug conjugates. Semin Oncol. 2014;41(5):637–52.

    Article  CAS  PubMed  Google Scholar 

  36. Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, Borzilleri RM. Antibody–drug conjugates: current status and future directions. Drug Discov Today. 2014;19(7):869–81.

    Article  CAS  PubMed  Google Scholar 

  37. Boyiadzis M, Foon KA. Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther. 2008;8(8):1151–8.

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, Schahin-Reed D, Dow GJ, Shelton A, Stawicki S, Watts RJ, Zhang J, Choy R, Howard P, Kadyk L, Yan M, Zha J, Callahan CA, Hymowitz SG, Siebel CW. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464:1052.

    Article  CAS  PubMed  Google Scholar 

  39. Mukherjee S, Richardson AM, Rodriguez-Canales J, Ylaya K, Erickson HS, Player A, Kawasaki ES, Pinto PA, Choyke PL, Merino MJ, Albert PS, Chuaqui RF, Emmert-Buck MR. Identification of EpCAM as a molecular target of prostate cancer stroma. Am J Pathol. 2009;175(6):2277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hofmeister V, Schrama D, Becker JC. Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother. 2008;57(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  41. Schliemann C, Neri D. Antibody-based vascular tumor targeting. In: Liersch R, Berdel WE, Kessler T, editors. Angiogenesis inhibition. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 201–16.

    Chapter  Google Scholar 

  42. Sapra P, Damelin M, DiJoseph J, Marquette K, Geles KG, Golas J, Dougher M, Narayanan B, Giannakou A, Khandke K, Dushin R, Ernstoff E, Lucas J, Leal M, Hu G, O’Donnell CJ, Tchistiakova L, Abraham RT, Gerber H-P. Long-term tumor regression induced by an antibody–drug conjugate that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells. Mol Cancer Ther. 2013;12(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  43. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJP, Weiner LM, Marks JD, Adams GP. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res. 2011;71(6):2250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Albanell J, Codony J, Rovira A, Mellado B, Gascón P. Mechanism of action of Anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. In: Llombart-Bosch A, Felipo V, editors. New trends in cancer for the 21st century. Proceedings of the International symposium on cancer: new trends in cancer for the 21st century, held November 10–13, 2002, in Valencia, Spain. Boston, MA: Springer US; 2003. p. 253–68.

    Google Scholar 

  46. Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34.

    Article  CAS  PubMed  Google Scholar 

  47. Natsume A, Niwa R, Satoh M. Improving effector functions of antibodies for cancer treatment: enhancing ADCC and CDC. Drug Des Devel Ther. 2009;3:7–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Seidel UJE, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol. 2013;4:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gelderman KA, Tomlinson S, Ross GD, Gorter A. Complement function in mAb-mediated cancer immunotherapy. Trends Immunol. 2004;25(3):158–64.

    Article  CAS  PubMed  Google Scholar 

  50. Jefferis R. Antibody therapeutics. Expert Opin Biol Ther. 2007;7(9):1401–13.

    Article  CAS  PubMed  Google Scholar 

  51. Salfeld JG. Isotype selection in antibody engineering. Nat Biotechnol. 2007;25:1369.

    Article  CAS  PubMed  Google Scholar 

  52. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G, Pazdur R. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.

    CAS  PubMed  Google Scholar 

  53. Oflazoglu E, Stone IJ, Gordon KA, Grewal IS, van Rooijen N, Law C-L, Gerber H-P. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood. 2007;110(13):4370–2.

    Article  CAS  PubMed  Google Scholar 

  54. Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4):e00225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Feld J, Barta SK, Schinke C, Braunschweig I, Zhou Y, Verma AK. Linked-in: design and efficacy of antibody drug conjugates in oncology. Oncotarget. 2013;4(3):397–412.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem. 2005;13(17):5043–54.

    Article  CAS  PubMed  Google Scholar 

  57. Patil R, Portilla-Arias J, Ding H, Konda B, Rekechenetskiy A, Inoue S, Black KL, Holler E, Ljubimova JY. Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(β-l-malic acid). Int J Mol Sci. 2012;13(9):11681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petersdorf S, Kopecky K, Stuart RK, Larson RA, Nevill TJ, Stenke L, Slovak ML, Tallman MS, Willman CL, Erba H, Appelbaum FR. Preliminary results of Southwest Oncology Group Study S0106: an international intergroup phase 3 randomized trial comparing the addition of gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia. Blood. 2009;114(22):790.

    Article  Google Scholar 

  59. Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell Biochem Funct. 2004;22(6):343–52.

    Article  CAS  PubMed  Google Scholar 

  60. Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta. 2000;291(2):113–35.

    Article  CAS  PubMed  Google Scholar 

  61. Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S, de Sauvage FJ, Eaton D, Elkins K, Elliott JM, Frantz G, Fuji RN, Gray A, Harden K, Ingle GS, Kljavin NM, Koeppen H, Nelson C, Prabhu S, Raab H, Ross S, Stephan J-P, Scales SJ, Spencer SD, Vandlen R, Wranik B, Yu S-F, Zheng B, Ebens A. Antibody-drug conjugates for the treatment of non–Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res. 2009;69(6):2358–64.

    Article  CAS  PubMed  Google Scholar 

  62. Dosio F, Brusa P, Cattel L. Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins. 2011;3(7):848–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kovtun YV, Goldmacher VS. Cell killing by antibody–drug conjugates. Cancer Lett. 2007;255(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  64. Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blättler WA, Goldmacher VS. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66(6):3214–21.

    Article  CAS  PubMed  Google Scholar 

  65. Christiansen J, Rajasekaran AK. Biological impediments to monoclonal antibody–based cancer immunotherapy. Mol Cancer Ther. 2004;3(11):1493–501.

    CAS  PubMed  Google Scholar 

  66. Hamblett KJ, Jacob AP, Gurgel JL, Tometsko ME, Rock BM, Patel SK, Milburn RR, Siu S, Ragan SP, Rock DA, Borths CJ, O’Neill JW, Chang WS, Weidner MF, Bio MM, Quon KC, Fanslow WC. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 2015;75(24):5329–40.

    Article  CAS  PubMed  Google Scholar 

  67. Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 2010;46(3):308–16.

    Article  CAS  PubMed  Google Scholar 

  68. Shih LB, Goldenberg DM, Xuan H, Lu HWZ, Mattes MJ, Hall TC. Internalization of an intact doxorubicin immunoconjugate. Cancer Immunol Immunother. 1994;38(2):92–8.

    Article  CAS  PubMed  Google Scholar 

  69. Smyth MJ, Pietersz GA, McKenzie IFC. The mode of action of methotrexate-monoclonal antibody conjugates. Immunol Cell Biol. 1987;65(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  70. Hartley JA. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin Investig Drugs. 2011;20(6):733–44.

    Article  CAS  PubMed  Google Scholar 

  71. Smets LA. Programmed cell death (apoptosis) and response to anti-cancer drugs. Anti-Cancer Drugs. 1994;5(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  72. Tercel M, McManaway SP, Leung E, Liyanage HDS, Lu G-L, Pruijn FB. The cytotoxicity of duocarmycin analogues is mediated through alkylation of DNA, not aldehyde dehydrogenase 1: a comment. Angew Chem Int Ed. 2013;52(21):5442–6.

    Article  CAS  Google Scholar 

  73. Rahman KM, Thompson AS, James CH, Narayanaswamy M, Thurston DE. The pyrrolobenzodiazepine dimer SJG-136 forms sequence-dependent intrastrand DNA cross-links and monoalkylated adducts in addition to interstrand cross-links. J Am Chem Soc. 2009;131(38):13756–66.

    Article  CAS  PubMed  Google Scholar 

  74. Poon KA, Flagella K, Beyer J, Tibbitts J, Kaur S, Saad O, Yi J-H, Girish S, Dybdal N, Reynolds T. Preclinical safety profile of trastuzumab emtansine (T-DM1): mechanism of action of its cytotoxic component retained with improved tolerability. Toxicol Appl Pharmacol. 2013;273(2):298–313.

    Article  CAS  PubMed  Google Scholar 

  75. Mark S. Duocarmycins – natures prodrugs? Curr Pharm Des. 2002;8(15):1375–89.

    Article  Google Scholar 

  76. Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9:790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamel E. Natural products which interact with tubulin in the vinca domain: maytansine, rhizoxin, phomopsin a, dolastatins 10 and 15 and halichondrin B. Pharmacol Ther. 1992;55(1):31–51.

    Article  CAS  PubMed  Google Scholar 

  78. Oroudjev E, Lopus M, Wilson L, Audette C, Provenzano C, Erickson H, Kovtun Y, Chari R, Jordan MA. Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther. 2010;9(10):2700–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, Senter PD, Alley SC. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res. 2010;16(3):888–97.

    Article  CAS  PubMed  Google Scholar 

  80. Pei Z, Chen C, Chen J, Cruz-Chuh J d, Delarosa R, Deng Y, Fourie-O’Donohue A, Figueroa I, Guo J, Jin W, Khojasteh SC, Kozak KR, Latifi B, Lee J, Li G, Lin E, Liu L, Lu J, Martin S, Ng C, Nguyen T, Ohri R, Lewis Phillips G, Pillow TH, Rowntree RK, Stagg NJ, Stokoe D, Ulufatu S, Verma VA, Wai J, Wang J, Xu K, Xu Z, Yao H, Yu S-F, Zhang D, Dragovich PS. Exploration of pyrrolobenzodiazepine (PBD)-dimers containing disulfide-based prodrugs as payloads for antibody–drug conjugates. Mol Pharm. 2018;15(9):3979–96.

    Article  CAS  PubMed  Google Scholar 

  81. Zhou Q, Stefano JE, Manning C, Kyazike J, Chen B, Gianolio DA, Park A, Busch M, Bird J, Zheng X, Simonds-Mannes H, Kim J, Gregory RC, Miller RJ, Brondyk WH, Dhal PK, Pan CQ. Site-specific antibody–drug conjugation through glycoengineering. Bioconjug Chem. 2014;25(3):510–20.

    Article  CAS  PubMed  Google Scholar 

  82. Popp MW-L, Antos JM, Ploegh HL. Site-specific protein labeling via sortase-mediated transpeptidation. Curr Protoc Protein Sci. 2009;56(1):15.3.1–9.

    Article  Google Scholar 

  83. Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat. 2011;128(2):347–56.

    Article  CAS  PubMed  Google Scholar 

  84. Chen XN, Nguyen M, Jacobson F, Ouyang J. Charge-based analysis of antibodies with engineered cysteines: from multiple peaks to a single main peak. MAbs. 2009;1(6):563–71.

    Article  PubMed  Google Scholar 

  85. Sunbul M, Yin J. Site specific protein labeling by enzymatic posttranslational modification. Org Biomol Chem. 2009;7(17):3361–71.

    Article  CAS  PubMed  Google Scholar 

  86. Hofer T, Skeffington LR, Chapman CM, Rader C. Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry. 2009;48(50):12047–57.

    Article  CAS  PubMed  Google Scholar 

  87. Liu W, Brock A, Chen S, Chen S, Schultz PG. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods. 2007;4:239.

    Article  CAS  PubMed  Google Scholar 

  88. Behrens CR, Liu B. Methods for site-specific drug conjugation to antibodies. MAbs. 2014;6(1):46–53.

    Article  PubMed  Google Scholar 

  89. Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ, Madlansacay MR, Tran C, Uter NT, Yin G, Rivers PJ, Yam AY, Wang WD, Steiner AR, Bajad SU, Penta K, Yang W, Hallam TJ, Thanos CD, Sato AK. Production of site-specific antibody–drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem. 2014;25(2):351–61.

    Article  CAS  PubMed  Google Scholar 

  90. Jeger S, Zimmermann K, Blanc A, Grünberg J, Honer M, Hunziker P, Struthers H, Schibli R. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed. 2010;49(51):9995–7.

    Article  CAS  Google Scholar 

  91. Sedlacek HH, Seemann G, Hoffmann D, Czech J, Lorenz P, Kolar C, Bosslet K. Antibodies as carriers of cytotoxicity. Contrib Oncol. 1992;43:1–10.

    Article  Google Scholar 

  92. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33:733.

    Article  CAS  PubMed  Google Scholar 

  94. Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6(26):22496–512.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Levengood MR, Zhang X, Hunter JH, Emmerton KK, Miyamoto JB, Lewis TS, Senter PD. Orthogonal cysteine protection enables homogeneous multi-drug antibody-drug conjugates. Angew Chem (International ed. in English). 2017;56(3):733–7.

    Article  CAS  Google Scholar 

  96. Ducry L, Stump B. Antibody−drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  97. Guo J, Kumar S, Prashad A, Starkey J, Singh SK. Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol- maleimide chemistry. Pharm Res. 2014;31(7):1710–23.

    Article  CAS  PubMed  Google Scholar 

  98. Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug Chem. 2014;25(4):656–64.

    Article  CAS  PubMed  Google Scholar 

  99. McDonagh CF, Turcott E, Westendorf L, Webster JB, Alley SC, Kim K, Andreyka J, Stone I, Hamblett KJ, Francisco JA, Carter P. Engineered antibody–drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel. 2006;19(7):299–307.

    Article  CAS  PubMed  Google Scholar 

  100. Wakankar AA, Feeney MB, Rivera J, Chen Y, Kim M, Sharma VK, Wang YJ. Physicochemical stability of the antibody−drug conjugate trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem. 2010;21(9):1588–95.

    Article  CAS  PubMed  Google Scholar 

  101. Mills BJ, Laurence Chadwick JS. Effects of localized interactions and surface properties on stability of protein-based therapeutics. J Pharm Pharmacol. 2018;70(5):609–24.

    Article  CAS  PubMed  Google Scholar 

  102. Wang L, Amphlett G, Blättler WA, Lambert JM, Zhang W. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci. 2005;14(9):2436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ross PL, Wolfe JL. Physical and chemical stability of antibody drug conjugates: current status. J Pharm Sci. 2016;105(2):391–7.

    Article  CAS  PubMed  Google Scholar 

  104. Luo Q, Chung HH, Borths C, Janson M, Wen J, Joubert MK, Wypych J. Structural characterization of a monoclonal antibody–maytansinoid immunoconjugate. Anal Chem. 2016;88(1):695–702.

    Article  CAS  PubMed  Google Scholar 

  105. Beckley NS, Lazzareschi KP, Chih H-W, Sharma VK, Flores HL. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug Chem. 2013;24(10):1674–83.

    Article  CAS  PubMed  Google Scholar 

  106. Guo J, Kumar S, Chipley M, Marcq O, Gupta D, Jin Z, Tomar DS, Swabowski C, Smith J, Starkey JA, Singh SK. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug Chem. 2016;27(3):604–15.

    Article  CAS  PubMed  Google Scholar 

  107. Buecheler JW, Winzer M, Tonillo J, Weber C, Gieseler H. Impact of payload hydrophobicity on the stability of antibody–drug conjugates. Mol Pharm. 2018;15(7):2656–64.

    Article  CAS  PubMed  Google Scholar 

  108. Zhao RY, Wilhelm SD, Audette C, Jones G, Leece BA, Lazar AC, Goldmacher VS, Singh R, Kovtun Y, Widdison WC, Lambert JM, Chari RVJ. Synthesis and evaluation of hydrophilic linkers for antibody–maytansinoid conjugates. J Med Chem. 2011;54(10):3606–23.

    Article  CAS  PubMed  Google Scholar 

  109. Singh SK, Luisi DL, Pak RH. Antibody-drug conjugates: design, formulation and physicochemical stability. Pharm Res. 2015;32(11):3541–71.

    Article  CAS  PubMed  Google Scholar 

  110. Lyon RP, Setter JR, Bovee TD, Doronina SO, Hunter JH, Anderson ME, Balasubramanian CL, Duniho SM, Leiske CI, Li F, Senter PD. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol. 2014;32:1059.

    Article  CAS  PubMed  Google Scholar 

  111. Kern JC, Cancilla M, Dooney D, Kwasnjuk K, Zhang R, Beaumont M, Figueroa I, Hsieh S, Liang L, Tomazela D, Zhang J, Brandish PE, Palmieri A, Stivers P, Cheng M, Feng G, Geda P, Shah S, Beck A, Bresson D, Firdos J, Gately D, Knudsen N, Manibusan A, Schultz PG, Sun Y, Garbaccio RM. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates. J Am Chem Soc. 2016;138(4):1430–45.

    Article  CAS  PubMed  Google Scholar 

  112. Dubowchik GM, Radia S, Mastalerz H, Walker MA, Firestone RA, Dalton King H, Hofstead SJ, Willner D, Lasch SJ, Trail PA. Doxorubicin immunoconjugates containing bivalent, lysosomally-cleavable dipeptide linkages. Bioorg Med Chem Lett. 2002;12(11):1529–32.

    Article  CAS  PubMed  Google Scholar 

  113. King HD, Dubowchik GM, Mastalerz H, Willner D, Hofstead SJ, Firestone RA, Lasch SJ, Trail PA. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J Med Chem. 2002;45(19):4336–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feroz Jameel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jameel, F., Mills, B.J., Moussa, E.M., Sisodiya, V., Cano, T., Haight, A.R. (2020). Chapter 2: Challenges and Considerations in the Design of Antibody-Drug Conjugates. In: Jameel, F., Skoug, J., Nesbitt, R. (eds) Development of Biopharmaceutical Drug-Device Products. AAPS Advances in the Pharmaceutical Sciences Series, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-31415-6_2

Download citation

Publish with us

Policies and ethics