Skip to main content

Advertisement

Log in

Assessment of Physical Stability of an Antibody Drug Conjugate by Higher Order Structure Analysis: Impact of Thiol- Maleimide Chemistry

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC).

Methods

ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques.

Results

ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate.

Conclusions

Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADC:

Antibody drug conjugate

ANS:

8-Anilino-1-naphthalenesulfonic acid

CD:

Circular dichroism

DAR:

Drug: antibody ratio

DCVJ:

4-(dicyanovinyl)Julolidine

DMSO:

Dimethyl sulfoxide

DSC:

Differential scanning calorimetry

DSF:

Differential scanning fluorimetry

Fab:

Fragment antigen binding

Fc:

Fragment crystallizable

HC:

Heavy chain

LC:

Light chain

LP:

Linker plus payload

mAb:

Monoclonal antibody

OD:

Optical density

PDB:

Protein Data Bank

RMSD:

Root mean square deviation

REFERENCES

  1. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23(9):1137–46.

    Article  CAS  PubMed  Google Scholar 

  2. Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  3. Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. 2008;19(3):759–65.

    Article  CAS  PubMed  Google Scholar 

  4. Baldwin AD, Kiick KL. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem. 2011;22(10):1946–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chih HW, Gikanga B, Yang Y, Zhang B. Identification of amino acid residues responsible for the release of free drug from an antibody-drug conjugate utilizing lysine-succinimidyl ester chemistry. J Pharm Sci. 2011;100(7):2518–25.

    Article  CAS  PubMed  Google Scholar 

  6. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(20):7063–70.

    Article  CAS  Google Scholar 

  7. Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem. 2005;16(5):1282–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wakankar A, Chen Y, Gokarn Y, Jacobson FS. Analytical methods for physicochemical characterization of antibody drug conjugates. mAbs. 2011;3(2):161–72.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wakankar AA, Feeney MB, Rivera J, Chen Y, Kim M, Sharma VK, et al. Physicochemical stability of the antibody-drug conjugate Trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem. 2010;21(9):1588–95.

    Article  CAS  PubMed  Google Scholar 

  10. Hu L, Olsen C, Maddux N, Joshi SB, Volkin DB, Middaugh CR. Investigation of protein conformational stability employing a multimodal spectrometer. Anal Chem. 2011;83(24):9399–405.

    Article  CAS  PubMed  Google Scholar 

  11. Fan H, Ralston J, Dibiase M, Faulkner E, Middaugh CR. Solution behavior of IFN-beta-1a: an empirical phase diagram based approach. J Pharm Sci. 2005;94(9):1893–911.

    Article  CAS  PubMed  Google Scholar 

  12. Kayser V, Chennamsetty N, Voynov V, Helk B, Trout BL. Conformational stability and aggregation of therapeutic monoclonal antibodies studied with ANS and Thioflavin T binding. mAbs. 2011;3(4):408–11.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ramsey JD, Gill ML, Kamerzell TJ, Price ES, Joshi SB, Bishop SM, et al. Using empirical phase diagrams to understand the role of intramolecular dynamics in immunoglobulin G stability. J Pharm Sci. 2009;98(7):2432–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Guo J, Harn N, Robbins A, Dougherty R, Middaugh CR. Stability of helix-rich proteins at high concentrations. Biochemistry. 2006;45(28):8686–96.

    Article  CAS  PubMed  Google Scholar 

  15. Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, Rudd PM, et al. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science. 2001;293(5532):1155–9.

    Article  CAS  PubMed  Google Scholar 

  16. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Franey H, Brych SR, Kolvenbach CG, Rajan RS. Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates. Protein Sci Publ Protein Soc. 2010;19(9):1601–15.

    Article  CAS  Google Scholar 

  18. Agrawal NJ, Kumar S, Wang X, Helk B, Singh SK, Trout BL. Aggregation in protein-based biotherapeutics: computational studies and tools to identify aggregation-prone regions. J Pharm Sci. 2011;100(12):5081–95.

    Article  CAS  PubMed  Google Scholar 

  19. Sreerama N, Manning MC, Powers ME, Zhang JX, Goldenberg DP, Woody RW. Tyrosine, phenylalanine, and disulfide contributions to the circular dichroism of proteins: circular dichroism spectra of wild-type and mutant bovine pancreatic trypsin inhibitor. Biochemistry. 1999;38(33):10814–22.

    Article  CAS  PubMed  Google Scholar 

  20. Kueltzo LA, Ersoy B, Ralston JP, Middaugh CR. Derivative absorbance spectroscopy and protein phase diagrams as tools for comprehensive protein characterization: a bGCSF case study. J Pharm Sci. 2003;92(9):1805–20.

    Article  CAS  PubMed  Google Scholar 

  21. Nonoyama A, Laurence JS, Garriques L, Qi H, Le T, Middaugh CR. A biophysical characterization of the peptide drug pramlintide (AC137) using empirical phase diagrams. J Pharm Sci. 2008;97(7):2552–67.

    Article  CAS  PubMed  Google Scholar 

  22. He F, Hogan S, Latypov RF, Narhi LO, Razinkov VI. High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci. 2010;99(4):1707–20.

    CAS  PubMed  Google Scholar 

  23. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem. 2005;33(6):415–25.

    Article  CAS  PubMed  Google Scholar 

  24. Haidekker MA, Theodorakis EA. Environment-sensitive behavior of fluorescent molecular rotors. J Biol Eng. 2010;4:11.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hawe A, Filipe V, Jiskoot W. Fluorescent molecular rotors as dyes to characterize polysorbate-containing IgG formulations. Pharm Res. 2010;27(2):314–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kung CE, Reed JK. Fluorescent molecular rotors: a new class of probes for tubulin structure and assembly. Biochemistry. 1989;28(16):6678–86.

    Article  CAS  PubMed  Google Scholar 

  27. Lindgren M, Sorgjerd K, Hammarstrom P. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys J. 2005;88(6):4200–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature. 2005;435(7043):773–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature. 2007;447(7143):453–7.

    Article  CAS  PubMed  Google Scholar 

  30. Brummitt RK, Nesta DP, Chang L, Kroetsch AM, Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms. J Pharm Sci. 2011;100(6):2104–19.

    Article  CAS  PubMed  Google Scholar 

  31. Mason BD, Zhang L, Remmele Jr RL, Zhang J. Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid-liquid phase separation. J Pharm Sci. 2011;100(11):4587–96.

    Article  CAS  PubMed  Google Scholar 

  32. Ionescu RM, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci. 2008;97(4):1414–26.

    Article  CAS  PubMed  Google Scholar 

  33. Buck PM, Kumar S, Wang X, Agrawal NJ, Trout BL, Singh SK. Computational methods to predict therapeutic protein aggregation. Methods Mol Biol. 2012;899:425–51.

    Article  CAS  PubMed  Google Scholar 

  34. Sahin E, Grillo AO, Perkins MD, Roberts CJ. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci. 2010;99(12):4830–48.

    Article  CAS  PubMed  Google Scholar 

  35. Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20(9):1325–36.

    Article  CAS  PubMed  Google Scholar 

  36. Lee HJ, McAuley A, Schilke KF, McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev. 2011;63(13):1160–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 951 kb)

Figure S2

(DOCX 1378 kb)

Figure S3

(DOCX 1341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Kumar, S., Prashad, A. et al. Assessment of Physical Stability of an Antibody Drug Conjugate by Higher Order Structure Analysis: Impact of Thiol- Maleimide Chemistry. Pharm Res 31, 1710–1723 (2014). https://doi.org/10.1007/s11095-013-1274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1274-2

KEY WORDS

Navigation