Skip to main content

Antibody–Cytotoxic Compound Conjugates for Oncology

  • Chapter
  • First Online:
Macromolecular Anticancer Therapeutics

Part of the book series: Macromolecular Anticancer Therapeutics ((CDD&D))

Abstract

The original rationale underlying the development of antibody–cytotoxic compound conjugates (ACC) was to improve the selectivity of cytotoxic anti-cancer drugs by targeting them to tumors with the help of antibodies. The ACC concept has since matured significantly, following several key advancements: (i) generation of technologies for creating humanized and fully human monoclonal antibodies; (ii) development of conjugatable cytotoxic compounds of sufficient potency to be effective in eradicating tumor cells in an antigen-selective manner; (iii) advances in knowledge and antibody engineering to maximize anti-tumor cell effect or functions; and (iv) optimization of linkers used to conjugate cytotoxic compounds to antibodies in order to achieve both maximal stability of the ACC in the circulation and maximal release of the active cytotoxic component within targeted tumor cells. In this chapter we will focus on our present understanding of what makes an effective ACC for the treatment of oncology patients. We will discuss parameters that are important for the selection of antigen targets, antibodies, cytotoxic compounds, and linkers, and current approaches being taken to further improve the efficacy of ACCs. In addition, we will review preclinical and clinical experiences with the current generation of ACCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most early studies were done with conjugates of antibodies with approved anti-cancer drugs, hence the term “antibody drug conjugates, ADC.” The field has since advanced in creating conjugates of cytotoxic compounds that were developed specifically for attachment to antibodies and are not approved as anti-cancer treatments on their own. Therefore, the use of the term “ADC” is inaccurate for the current generation of conjugates, and so we have replaced it with “antibody–cytotoxic compound conjugates,” abbreviated “ACC.”

Abbreviations

ACC:

Antibody–cytotoxic compound conjugate

ADC:

Antibody–drug conjugate

ADCC:

Antibody-dependent cellular cytotoxicity

AML:

Acute myelogenous leukemia

CDC:

Complement-dependent cytotoxicity

CDR:

Complementarity determining region

CR:

Complete response

CSC:

Cancer stem cell

DM1:

N-methyl-N-[3-mercapto-1-oxopropyl]-l-alanine ester of maytansinol

DM4:

N-methyl-N-[4-mercapto-4-methyl-1-oxopentyl]-l-alanine ester of maytansinol

FcRn:

neonatal Fc receptor

FcγR:

IgG Fc receptor

FDA:

US Food and Drug Administration

IHC:

Immunohistochemistry

MDR:

Multi-drug resistance

MGBA:

Minor groove-binding alkylating agent

MMAE:

monomethylauristatin E

MMAF:

monomethylauristatin F

MTD:

Maximum tolerated dose

PR:

Partial response

PSMA:

Prostate-specific membrane antigen

SD:

Stable disease

T-DM1:

Trastuzumab-SMCC-DM1

References

  1. Carter, P. J., P. D. Senter (2008). “Antibody-drug conjugates for cancer therapy.” Cancer J 14(3): 154–69.

    Article  PubMed  CAS  Google Scholar 

  2. Chari, R. V. (1998). “Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy.” Adv Drug Deliv Rev 31(1–2): 89–104.

    Article  PubMed  CAS  Google Scholar 

  3. Goldmacher, V. S., W. A. Blattler, J. M., Lambert, R. V. J. Chari (2002). Immunotoxins and antibody-drug conjugates for cancer treatment. Biomedical Aspects of Drug Targeting. V. Muzykantov and V. Torchilin (eds.). Boston/Dordrecht/London, Kluwer Academic Publishers: 291–309.

    Google Scholar 

  4. Lambert, J. M. (2005). “Drug-conjugated monoclonal antibodies for the treatment of cancer.” Curr Opin Pharmacol 5(5): 543–9.

    Article  PubMed  CAS  Google Scholar 

  5. Pastan, I., R. Hassan, et al. (2007). “Immunotoxin treatment of cancer.” Annu Rev Med 58: 221–37.

    Article  PubMed  CAS  Google Scholar 

  6. Payne, G. (2003). “Progress in immunoconjugate cancer therapeutics.” Cancer Cell 3(3): 207–12.

    Article  PubMed  CAS  Google Scholar 

  7. Chari, R. V. (2008). “Targeted cancer therapy: conferring specificity to cytotoxic drugs.” Acc Chem Res 41(1): 98–107.

    Article  PubMed  CAS  Google Scholar 

  8. Schrama, D., R. A. Reisfeld, et al. (2006). “Antibody targeted drugs as cancer therapeutics.” Nat Rev Drug Discov 5(2): 147–59.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, M. D., T. M. Dunne, M. M. Siegel, C. C. Chang, G. O., Morton, D. B. Borders (1987). “Calicheamicins, a novel family of antitumor antibiotics. I. Chemistry and partial structure of calicheamicin g1.” J Am Chem Soc 109: 3463–3466.

    Google Scholar 

  10. Smith, A. L., K. C. Nicolaou (1996). The enediyne antibiotics. J Med Chem 39: 2103–17.

    Article  PubMed  CAS  Google Scholar 

  11. Zein, N., A. M. Sinha, et al. (1988). “Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically.” Science 240(4856): 1198–201.

    Article  PubMed  CAS  Google Scholar 

  12. Chari, R. V., K. A. Jackel, et al. (1995). “Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation.” Cancer Res 55(18): 4079–84.

    PubMed  CAS  Google Scholar 

  13. Chari, R. V., B. A. Martell, et al. (1992). “Immunoconjugates containing novel maytansinoids: promising anticancer drugs.” Cancer Res 52(1): 127–31.

    PubMed  CAS  Google Scholar 

  14. Kupchan, S. M., Y. Komoda, et al. (1977). “The maytansinoids. Isolation, structural elucidation, and chemical interrelation of novel ansa macrolides.” J Org Chem 42(14): 2349–57.

    Article  PubMed  CAS  Google Scholar 

  15. Kupchan, S. M., Y. Komoda, et al. (1972). “Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus.” J Am Chem Soc 94(4): 1354–6.

    Article  PubMed  CAS  Google Scholar 

  16. Remillard, S., L. I. Rebhun, et al. (1975). “Antimitotic activity of the potent tumor inhibitor maytansine.” Science 189(4207): 1002–5.

    Article  PubMed  CAS  Google Scholar 

  17. Doronina, S. O., B. A. Mendelsohn, et al. (2006). “Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity.” Bioconjug Chem 17(1): 114–24.

    Article  PubMed  CAS  Google Scholar 

  18. Doronina, S. O., B. E. Toki, et al. (2003). “Development of potent monoclonal antibody auristatin conjugates for cancer therapy.” Nat Biotechnol 21(7): 778–84.

    Article  PubMed  CAS  Google Scholar 

  19. Almagro, J. C., J. Fransson (2008). “Humanization of antibodies.” Front Biosci 13: 1619–33.

    PubMed  CAS  Google Scholar 

  20. Carter, P. J. (2006). “Potent antibody therapeutics by design.” Nat Rev Immunol 6(5):343–57.

    Article  PubMed  CAS  Google Scholar 

  21. Lonberg, N. (2005). “Human antibodies from transgenic animals.” Nat Biotechnol 23(9): 1117–25.

    Article  PubMed  CAS  Google Scholar 

  22. Singh R., H. Erickson (2009). Antibody-cytotoxic agent conjugates: preparation and characterization. Methods Mol Biol 525: 445–67.

    Google Scholar 

  23. Bross, P. F., J. Beitz, et al. (2001). “Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia.” Clin Cancer Res 7(6): 1490–6.

    PubMed  CAS  Google Scholar 

  24. Beeram, M., H. A. Burris, S. Modi, M. Birkner, S. Girish, J. Tibbitts, S. N. Holden, S. G. Lutzker, I. E. Krop (2008). “A Phase I study of Trastuzumab-DM1, a first-in-class HER2 antibody-drug conjugate (ADC), given every 3 weeks to patients with HER2+ metastatic breast cancer.” American Society of Clinical Oncology Annual Meeting Proceedings: Abstract #1028.

    Google Scholar 

  25. Burris, H. A., S. Vukelja, H. S. Rugo, C. Vogel, R. Borson, E. Tan-Chiu, M. Birkner, S. N. Holden, S. Girish, B. Klencke, J. O’Shaughnessy (2008). “A Phase II study of Trastuzumab-DM1 (T-DM1), a HER2 antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer.” ASCO Breast Cancer Symposium Proceedings: Abstract #155.

    Google Scholar 

  26. Holden, S. N., M. Beeram, I. E. Krop, H. A. Burris, M Birkner, S Girish, J Tibbitts, S. G Lutzker, S. Modi (2008). “A Phase I study of weekly dosing of Trastuzumab-DM1 (T-DM1) in patients with advanced HER2+ breast cancer.” American Society of Clinical Oncology Annual Meeting Proceedings: Abstract #1029.

    Google Scholar 

  27. Younes, A., A. Forero-Torres, N. L. Bartlett, J. P. Leonard, B. Rege, D. A. Kennedy, J. M. Lorenz, E. L. Sievers (2008). “Objective responses in a Phase I dose-escalation study of SGN-35, a novel antibody-drug conjugate (ADC) targeting CD30, in patients with relapsed or refractory Hodgkin lymphoma.” American Society of Clinical Oncology Annual Meeting Proceedings: 8526.

    Google Scholar 

  28. Pastan, I., R. Hassan, et al. (2006). “Immunotoxin therapy of cancer.” Nat Rev Cancer 6(7): 559–65.

    Article  PubMed  CAS  Google Scholar 

  29. Polakis, P. (2005). “Arming antibodies for cancer therapy.” Curr Opin Pharmacol 5(4): 382–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ricart, A. D., A. W. Tolcher (2007). “Technology insight: cytotoxic drug immunoconjugates for cancer therapy.” Nat Clin Pract Oncol 4(4): 245–55.

    Article  PubMed  CAS  Google Scholar 

  31. Senter, P. D., C. J. Springer (2001). “Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates.” Adv Drug Deliv Rev 53(3): 247–64.

    Article  PubMed  CAS  Google Scholar 

  32. Carter, P., L. Smith, et al. (2004). “Identification and validation of cell surface antigens for antibody targeting in oncology.” Endocr Relat Cancer 11(4): 659–87.

    Article  PubMed  CAS  Google Scholar 

  33. Xie, H., W. A. Blattler (2006). “In vivo behaviour of antibody-drug conjugates for the targeted treatment of cancer.” Expert Opin Biol Ther 6(3): 281–91.

    Article  PubMed  CAS  Google Scholar 

  34. Kononen, J., L. Bubendorf, et al. (1998). “Tissue microarrays for high-throughput molecular profiling of tumor specimens.” Nat Med 4(7): 844–7.

    Article  PubMed  CAS  Google Scholar 

  35. Baeckstrom, D., G. C. Hansson, et al. (1991). “Purification and characterization of a membrane-bound and a secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Lea epitope on distinct core proteins.” J Biol Chem 266(32): 21537–47.

    PubMed  CAS  Google Scholar 

  36. Blumenthal, R. D., E. Leon, et al. (2007). “Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers.” BMC Cancer 7: 2.

    Article  PubMed  CAS  Google Scholar 

  37. Carrigan C., S. W., Payne G. (2007). “huC242 recognizes a carbohydrate epitope on the CD44 antigen.” Keystone Conference Proceedings: Abstract #107.

    Google Scholar 

  38. Hakomori, S. (2001). “Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines.” Adv Exp Med Biol 491: 369–402.

    PubMed  CAS  Google Scholar 

  39. Johansson, C., O. Nilsson, et al. (1991). “Novel epitopes on the CA50-carrying antigen: chemical and immunochemical studies.” Tumour Biol 12(3): 159–70.

    Article  PubMed  CAS  Google Scholar 

  40. Pukel, C. S., K. O. Lloyd, et al. (1982). “GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody.” J Exp Med 155(4): 1133–47.

    Article  PubMed  CAS  Google Scholar 

  41. Schietinger, A., M. Philip, et al. (2006). “A mutant chaperone converts a wild-type protein into a tumor-specific antigen.” Science 314(5797): 304–8.

    Article  PubMed  CAS  Google Scholar 

  42. Yin, B. W., K. O. Lloyd (2001). “Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16.” J Biol Chem 276(29): 27371–5.

    Article  PubMed  CAS  Google Scholar 

  43. Kovtun, Y. V., C. A. Audette, et al. (2006). “Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen.” Cancer Res 66(6): 3214–21.

    Article  PubMed  CAS  Google Scholar 

  44. Liu, C., B. M. Tadayoni, et al. (1996). “Eradication of large colon tumor xenografts by targeted delivery of maytansinoids.” Proc Natl Acad Sci U S A 93(16): 8618–23.

    Article  PubMed  CAS  Google Scholar 

  45. Carmeliet, P., R. K. Jain (2000). “Angiogenesis in cancer and other diseases.” Nature 407(6801): 249–57.

    Article  PubMed  CAS  Google Scholar 

  46. Minchinton, A. I., I. F. Tannock (2006). “Drug penetration in solid tumours.” Nat Rev Cancer 6(8): 583–92.

    Article  PubMed  CAS  Google Scholar 

  47. Thurber, G. M., M. M. Schmidt, et al. (2008). “Factors determining antibody distribution in tumors.” Trends Pharmacol Sci 29(2): 57–61.

    PubMed  CAS  Google Scholar 

  48. Helft, P. R., R. L. Schilsky, et al. (2004). “A phase I study of cantuzumab mertansine administered as a single intravenous infusion once weekly in patients with advanced solid tumors.” Clin Cancer Res 10(13): 4363–8.

    Article  PubMed  CAS  Google Scholar 

  49. Bhaskar, V., D. A. Law, et al. (2003). “E-selectin up-regulation allows for targeted drug delivery in prostate cancer.” Cancer Res 63(19): 6387–94.

    PubMed  CAS  Google Scholar 

  50. Walter, R. B., B. W. Raden, et al. (2005). “Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity.” Blood 105(3): 1295–302.

    Article  PubMed  CAS  Google Scholar 

  51. Oflazoglu, E., I. J. Stone, et al. (2008). “Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker.” Clin Cancer Res 14(19): 6171–80.

    Article  PubMed  CAS  Google Scholar 

  52. Smith, L. M., A. Nesterova, et al. (2006). “Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97.” Mol Cancer Ther 5(6): 1474–82.

    Article  PubMed  CAS  Google Scholar 

  53. Smith, L. M., A. Nesterova, et al. (2008). “CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers.” Br J Cancer 99(1): 100–9.

    Article  PubMed  CAS  Google Scholar 

  54. John, B., B. R. Herrin, et al. (2003). “The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction.” J Immunol 170(7): 3534–43.

    PubMed  CAS  Google Scholar 

  55. Walter, R. B., B. W. Raden, et al. (2008). “ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2.” J Leukoc Biol 83(1): 200–11.

    Article  PubMed  CAS  Google Scholar 

  56. Ingle, G. S., P. Chan, et al. (2008). “High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate.” Br J Haematol 140(1): 46–58.

    PubMed  CAS  Google Scholar 

  57. Press, M. F., C. Cordon-Cardo, et al. (1990). “Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues.” Oncogene 5(7): 953–62.

    PubMed  CAS  Google Scholar 

  58. Craig, F. E., K. A. Foon (2008). “Flow cytometric immunophenotyping for hematologic neoplasms.” Blood 111(8): 3941–67.

    Article  PubMed  CAS  Google Scholar 

  59. Das, S., Y. Hahn, et al. (2008). “Topology of NGEP, a prostate-specific cell:cell junction protein widely expressed in many cancers of different grade level.” Cancer Res 68(15): 6306–12.

    Article  PubMed  CAS  Google Scholar 

  60. DeGeorge, J. J., C. H. Ahn, et al. (1998). “Regulatory considerations for preclinical development of anticancer drugs.” Cancer Chemother Pharmacol 41(3): 173–85.

    Article  PubMed  CAS  Google Scholar 

  61. Chanan-Khan, A. A., S. Jagannath, N. C. Munshi, R. L. Schlossman, K. C. Anderson, K. Lee, D. DePaolo, K. C. Miller, S. Zildjian, R. J. Fram, A. Qui (2007). “Phase I study of huN901-DM1 (BB-10901) in patients with relapsed and relapsed/refractory CD56-positive multiple myeloma.” ASH Annual Meeting Abstracts, Part 1 110: 1174.

    Google Scholar 

  62. McCann J., F. Fossella, M.A. Villalona-Calero, A.W. Tolcher, P. Fidias , R. Raju , S. Zildjian, R. Guild, R. Fram (2007). “Phase II trial of huN901-DM1 in patients with relapsed small cell lung cancer (SCLC) and CD56-positive small cell carcinoma.” American Society of Clinical Oncology Annual Meeting Proceedings 25: 18084.

    Google Scholar 

  63. Tolcher, A. W., B. Forouzesh, H. McCreery, L. Hammond, A. Patnaik, J. Lambert, H. Xie, M. Hoffee, R. Zentgraf, R. Zinner, B. Glisson, Y. Clinch, P. Barrinton, E. Rowinsky, F. Fossella (2005). “A Phase I and pharmacokinetic study of BB-10901, a maytansinoid immunoconjugate, in CD56-expressing tumors.” EORTC-NCI-AACR-2005, Molecular targets and cancer therapeutics.

    Google Scholar 

  64. Tolcher, A. W., L. Ochoa, et al. (2003). “Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study.” J Clin Oncol 21(2): 211–22.

    Article  PubMed  CAS  Google Scholar 

  65. Galsky, M. D., M. Eisenberger, et al. (2008). “Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer.” J Clin Oncol 26(13): 2147–54.

    Article  PubMed  CAS  Google Scholar 

  66. Giles, F., R. Morariu-Zamfir, J. M. Lambert, S. Verstovsek, D. Thomas, F. Ravandi, D. Deangelo (2006). “Phase I study of AVE9633, an anti-CD33-maytansinoid immunoconjugate, administered as an intravenous infusion in patients with refractory/relapsed CD33-positive acute myeloid leukemia (AML).” American Society of Hematology Annual Meeting Proceedings.

    Google Scholar 

  67. Stasi, R. (2008). “Gemtuzumab ozogamicin: an anti-CD33 immunoconjugate for the treatment of acute myeloid leukaemia.” Expert Opin Biol Ther 8(4): 527–40.

    Article  PubMed  CAS  Google Scholar 

  68. Rupp, U., E. Schoendorf-Holland, et al. (2007). “Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study.” Anticancer Drugs 18(4): 477–85.

    Article  PubMed  CAS  Google Scholar 

  69. Sauter, A., C. Kloft, et al. (2007). “Pharmacokinetics, immunogenicity and safety of bivatuzumab mertansine, a novel CD44v6-targeting immunoconjugate, in patients with squamous cell carcinoma of the head and neck.” Int J Oncol 30(4): 927–35.

    PubMed  CAS  Google Scholar 

  70. Tijink, B. M., J. Buter, et al. (2006). “A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus.” Clin Cancer Res 12(20 Pt 1): 6064–72.

    Article  PubMed  CAS  Google Scholar 

  71. Qin, A. W., J. Mastico, R. A. Lutz, R. J. O‘Keeffe, J. Zildjian, S. Mita, A. Phan, A. Tolcher. (2008). “The pharmacokinetics and pharmacodynamics of IMGN242 (huC242-DM4) in patients with CanAg-expressing solid tumors.” American Society of Clinical Oncology Annual Meeting Proceedings: 3066.

    Google Scholar 

  72. van der Velden, V. H., N. Boeckx, et al. (2004). “High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg) treatment in acute myeloid leukemia patients.” Leukemia 18(5): 983–8.

    Article  PubMed  CAS  Google Scholar 

  73. Davies, Q., A. C. Perkins, et al. (1997). “The effect of circulating antigen on the biodistribution of the engineered human antibody hCTM01 in a nude mice model.” Eur J Nucl Med 24(2): 206–9.

    Article  PubMed  CAS  Google Scholar 

  74. Hamann, P. R., L. M. Hinman, et al. (2005). “An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance.” Bioconjug Chem 16(2): 346–53.

    Article  PubMed  CAS  Google Scholar 

  75. Baselga, J., D. Tripathy, et al. (1996). “Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer.” J Clin Oncol 14(3): 737–44.

    PubMed  CAS  Google Scholar 

  76. Pegram, M. D., A. Lipton, et al. (1998). “Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment.” J Clin Oncol 16(8): 2659–71.

    PubMed  CAS  Google Scholar 

  77. Polson, A. (2008). “Antibody-Drug Conjugates for the Treatment of Non-Hodgkin’s Lymphoma.” Drug Discovery and Development of InnovativeTherapeutics Conference.

    Google Scholar 

  78. Boyiadzis, M., K. A. Foon (2008). “Approved monoclonal antibodies for cancer therapy.” Expert Opin Biol Ther 8(8): 1151–8.

    Article  PubMed  CAS  Google Scholar 

  79. Reichert, J. M. (2001). “Monoclonal antibodies in the clinic.” Nat Biotechnol 19(9): 819–22.

    Article  PubMed  CAS  Google Scholar 

  80. Harries, M., I. Smith (2002). “The development and clinical use of trastuzumab (Herceptin).” Endocr Relat Cancer 9(2): 75–85.

    Article  PubMed  CAS  Google Scholar 

  81. Roepstorff, K., L. Grovdal, et al. (2008). “Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer.” Histochem Cell Biol 129(5):563–78.

    Article  PubMed  CAS  Google Scholar 

  82. Wahl, A. F., K. Klussman, et al. (2002). “The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease.” Cancer Res 62(13): 3736–42.

    PubMed  CAS  Google Scholar 

  83. Bartlett, N. L., A. Younes, et al. (2008). “A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies.” Blood 111(4): 1848–54.

    Article  PubMed  CAS  Google Scholar 

  84. Grillo-Lopez, A. J. (2003). “Rituximab (Rituxan/MabThera): the first decade (1993–2003).” Expert Rev Anticancer Ther 3(6): 767–79.

    Article  PubMed  CAS  Google Scholar 

  85. Dijoseph, J. F., M. M. Dougher, et al. (2007). “Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia.” Leukemia 21(11): 2240–5.

    Article  PubMed  CAS  Google Scholar 

  86. Law, C. L., C. G. Cerveny, et al. (2004). “Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates.” Clin Cancer Res 10(23): 7842–51.

    Article  PubMed  CAS  Google Scholar 

  87. Dijoseph, J. F., M. M. Dougher, et al. (2007). “CD20-specific antibody-targeted chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab.” Cancer Immunol Immunother 56(7): 1107–17.

    Article  PubMed  CAS  Google Scholar 

  88. Press, O. W., A. G. Farr, et al. (1989). “Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies.” Cancer Res 49(17): 4906–12.

    PubMed  CAS  Google Scholar 

  89. Kovtun, Y. V., V. S. Goldmacher (2007). “Cell killing by antibody-drug conjugates.” Cancer Lett 255(2): 232–40.

    Article  PubMed  CAS  Google Scholar 

  90. Coffman, K. T., M. Hu, et al. (2003). “Differential EphA2 epitope display on normal versus malignant cells.” Cancer Res 63(22): 7907–12.

    PubMed  CAS  Google Scholar 

  91. Kiewlich, D., J. Zhang, et al. (2006). “Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth.” Neoplasia 8(1): 18–30.

    Article  PubMed  CAS  Google Scholar 

  92. Carrigan, C., C. Zuany-Amorim, M. F. Mayo, D. J. Tavares, R. J. Lutz, A. E. Kellogg, V. Blanc, P. Vrignaud, M.-C. Bissery, G. Payne (2008). “Preclinical evaluation of SAR566658 (huDS6-DM4) in mice bearing human tumor xenografts of breast, ovarian, lung, cervical and pancreatic cancer.” EORTC Meeting Abstracts Annual Meeting: Abstract #525.

    Google Scholar 

  93. Hamann, P. R., L. M. Hinman, et al. (2005). “A calicheamicin conjugate with a fully humanized anti-MUC1 antibody shows potent antitumor effects in breast and ovarian tumor xenografts.” Bioconjug Chem 16(2): 354–60.

    Article  PubMed  CAS  Google Scholar 

  94. Hinman, L. M., P. R. Hamann, et al. (1993). “Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics.” Cancer Res 53(14): 3336–42.

    PubMed  CAS  Google Scholar 

  95. Mayo, M. F., A. P. Leung, L. Wang, P. Wunderli, G. Payne, H. Xie, R. J. Lutz (2008). “In vivo stability in mice of SAR566658 (huDS6-DM4), an immunoconjugate targeting solid tumors.” EORTC-NCI-AACR Proceedings 2008: Abstract #533.

    Google Scholar 

  96. Chen, Y., S. Clark, et al. (2007). “Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models.” Cancer Res 67(10): 4924–32.

    Article  PubMed  CAS  Google Scholar 

  97. Junutula, J. R., H. Raab, et al. (2008). “Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index.” Nat Biotechnol 26(8): 925–32.

    Article  PubMed  CAS  Google Scholar 

  98. Boghaert, E. R., L. Sridharan, et al. (2004). “Antibody-targeted chemotherapy with the calicheamicin conjugate hu3S193-N-acetyl gamma calicheamicin dimethyl hydrazide targets Lewisy and eliminates Lewisy-positive human carcinoma cells and xenografts.” Clin Cancer Res 10(13): 4538–49.

    Article  PubMed  CAS  Google Scholar 

  99. Henry, M. D., S. Wen, et al. (2004). “A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer.” Cancer Res 64(21): 7995–8001.

    Article  PubMed  CAS  Google Scholar 

  100. Ma, D., C. E. Hopf, et al. (2006). “Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen.” Clin Cancer Res 12(8): 2591–6.

    Article  PubMed  CAS  Google Scholar 

  101. Pan, C., J. Terrett, et al. (2008). “Human antibody conjugates of potential utility for prostate cancer therapy: a comparison of MGBA conjugates with antibodies targeting a cell surface target (prostate-specific membrane antigen) and an extracellular matrix target (Mindin/RG-1).” AACR Meeting Abstracts 2008 (Apr.2008): 4062.

    Google Scholar 

  102. Ross, S., S. D. Spencer, et al. (2002). “Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate.” Cancer Res 62(9): 2546–53.

    PubMed  CAS  Google Scholar 

  103. Tassone, P., V. S. Goldmacher, et al. (2004). “Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells.” Blood 104(12): 3688–96.

    Article  PubMed  CAS  Google Scholar 

  104. Afar, D. E., V. Bhaskar, et al. (2004). “Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer.” Mol Cancer Ther 3(8): 921–32.

    PubMed  CAS  Google Scholar 

  105. Tse, K. F., M. Jeffers, et al. (2006). “CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma.” Clin Cancer Res 12(4): 1373–82.

    Article  PubMed  CAS  Google Scholar 

  106. Boghaert, E. R., L. Sridharan, et al. (2008). “The oncofetal protein, 5T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin.” Int J Oncol 32(1): 221–34.

    PubMed  CAS  Google Scholar 

  107. Tassone, P., A. Gozzini, et al. (2004). “In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2'-deacetyl-N2'-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells.” Cancer Res 64(13): 4629–36.

    Article  PubMed  CAS  Google Scholar 

  108. Chen, Q., H. J. Millar, et al. (2007). “Alphav integrin-targeted immunoconjugates regress established human tumors in xenograft models.” Clin Cancer Res 13(12): 3689–95.

    Article  PubMed  CAS  Google Scholar 

  109. Terrett, J., L. Li-Sheng, V. Devasthali, D. King, M. Huber, C. Rao-Naik, S. Gangwar, V. Guerlavais, A. Zhang, B. Sufi, L. Chen, P. Cardarelli, J. Phillips, B. Chen, H. Huang, D. Yao, M. Coccia (2008). “Preclinical development of anti B7-H4 therapeutic antibodies.” AACR Meeting Abstracts 2008 (Apr.2008): 4986.

    Google Scholar 

  110. Lode, H. N., R. A. Reisfeld, et al. (1998). “Targeted therapy with a novel enediyene antibiotic calicheamicin theta(I)1 effectively suppresses growth and dissemination of liver metastases in a syngeneic model of murine neuroblastoma.” Cancer Res 58(14): 2925–8.

    PubMed  CAS  Google Scholar 

  111. Aboukameel, A., A. S. Goustin, R. Mohammad, C. Zuany-Amorim, M.-C. Bissery, A. M. Al-Katib (2007). “Superior anti-tumor activity of the CD19-directed immunotoxin, SAR3419 to rituximab in non-Hodgkin’s xenograft animal models: preclinical evaluation.” ASH Annual Meeting Abstracts 2007 110: Abstract #2339.

    Google Scholar 

  112. Gerber, H.-P., M. Kung-Sutherland, I. Stone, C. Morris-Tilden, J. Miyamoto, R. McCormick, S. Alley, N. Okeley, B. Hayes, F. J. Hernandez-Ilizaliturri, D. Benjamin, I. S. Grewal (2008). “Potent antitumor activity of the anti-CD19 auristatin antibody-drug conjugate SGN-19A in rituximab sensitive and resistant lymphomas.” EORTC Meeting Abstracts: Abstract #507.

    Google Scholar 

  113. DiJoseph, J. F., D. C. Armellino, et al. (2004). “Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies.” Blood 103(5): 1807–14.

    Article  PubMed  CAS  Google Scholar 

  114. DiJoseph, J. F., M. E. Goad, et al. (2004). “Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma.” Clin Cancer Res 10(24): 8620–9.

    Article  PubMed  CAS  Google Scholar 

  115. Hamann, P. R., L. M. Hinman, et al. (2002). “An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker.” Bioconjug Chem 13(1): 40–6.

    Article  PubMed  CAS  Google Scholar 

  116. Hamann, P. R., L. M. Hinman, et al. (2002). “Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia.” Bioconjug Chem 13(1): 47–58.

    Article  PubMed  CAS  Google Scholar 

  117. Polson, A. G., S. F. Yu, et al. (2007). “Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma.” Blood 110(2): 616–23.

    Article  PubMed  CAS  Google Scholar 

  118. Mao, W., E. Luis, et al. (2004). “EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer.” Cancer Res 64(3): 781–8.

    Article  PubMed  CAS  Google Scholar 

  119. Ryan, M. C., M. Hering, et al. (2007). “Antibody targeting of B-cell maturation antigen on malignant plasma cells.” Mol Cancer Ther 6(11): 3009–18.

    Article  PubMed  CAS  Google Scholar 

  120. Kim, K. M., C. F. McDonagh, et al. (2008). “Anti-CD30 diabody-drug conjugates with potent antitumor activity.” Mol Cancer Ther 7(8): 2486–97.

    Article  PubMed  CAS  Google Scholar 

  121. Bianco, C., H. B. Adkins, et al. (2002). “Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells.” Mol Cell Biol 22(8): 2586–97.

    Article  PubMed  CAS  Google Scholar 

  122. Shani, G., W. H. Fischer, et al. (2008). “GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth.” Mol Cell Biol 28(2): 666–77.

    Article  PubMed  CAS  Google Scholar 

  123. Cardarelli, P., D. King, et al. (2008). “Efficacy and safety of a human anti-CD70 antibody-MGBA conjugate.” AACR Meeting Abstracts 2008 (Apr.2008): 4061.

    Google Scholar 

  124. King, D., J. Terrett, et al. (2008). “Mechanism of activation of a human anti-cd70 antibody-mgba conjugate and efficacy in a nude rat model of renal carcinoma.” AACR Meeting Abstracts 2008 (Apr. 2008): 4057.

    Google Scholar 

  125. Law, C. L., K. A. Gordon, et al. (2006). “Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody-drug conjugates.” Cancer Res 66(4): 2328–37.

    Article  PubMed  CAS  Google Scholar 

  126. McDonagh, C. F., K. M. Kim, et al. (2008). “Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index.” Mol Cancer Ther 7(9): 2913–23.

    Article  PubMed  CAS  Google Scholar 

  127. Jain, R. K. (2005). “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.” Science 307(5706): 58–62.

    Article  PubMed  CAS  Google Scholar 

  128. Schliemann, C., D. Neri (2007). “Antibody-based targeting of the tumor vasculature.” Biochim Biophys Acta 1776(2): 175–92.

    PubMed  CAS  Google Scholar 

  129. Hanahan, D., R. A. Weinberg (2000). “The hallmarks of cancer.” Cell 100(1): 57–70.

    Article  PubMed  CAS  Google Scholar 

  130. Mahadevan, D., D. D. Von Hoff (2007). “Tumor-stroma interactions in pancreatic ductal adenocarcinoma.” Mol Cancer Ther 6(4): 1186–97.

    Article  PubMed  CAS  Google Scholar 

  131. Vater, C. A., C. Manning , H. Millar, F. McCabe, Q. Chen, G. M. Anderson, R. Steeves, K. Lai, R. J. Lutz (2008). Anti-tumor efficacy of the integrin-targeted immunoconjugate IMGN388 in preclinical models. EORTC-NCI-AACR-2008, Molecular targets and cancer therapeutics, Geneva, Switzerland.

    Google Scholar 

  132. Ostermann, E., P. Garin-Chesa, et al. (2008). “Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts.” Clin Cancer Res 14(14): 4584–92.

    Article  PubMed  CAS  Google Scholar 

  133. Terrett J. A., Devasthali V., C. Pan, S. Gangwar, D. King, L. Lu, P. Cardarelli, O. Cortez, C. Ching, R. Dai, C. Rao-Naik, M. Huber, S. Pogue, R. Lee, D. Passmore, H. Huang, V. Rangan, A. Zhang, B. Sufi, V. Guerlavais, L. Chen (2008). “Ptk7 as a direct and tumor stroma target in multiple solid malignancies.” 99th Annual Meeting of the American Association for Cancer Research: Abstract #1526.

    Google Scholar 

  134. Namkoong, H., S. M. Shin, et al. (2006). “The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein.” BMC Cancer 6: 74.

    Article  PubMed  CAS  Google Scholar 

  135. Piccirillo, S. G., B. A. Reynolds, et al. (2006). “Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells.” Nature 444(7120): 761–5.

    Article  PubMed  CAS  Google Scholar 

  136. Sneddon, J. B., H. H. Zhen, et al. (2006). “Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation.” Proc Natl Acad Sci U S A 103(40): 14842–7.

    Article  PubMed  CAS  Google Scholar 

  137. Stabile, H., S. Mitola, et al. (2007). “Bone morphogenic protein antagonist Drm/gremlin is a novel proangiogenic factor.” Blood 109(5): 1834–40.

    Article  PubMed  CAS  Google Scholar 

  138. Boman, B. M., M. S. Wicha (2008). “Cancer stem cells: a step toward the cure.” J Clin Oncol 26(17): 2795–9.

    Article  PubMed  Google Scholar 

  139. Okamoto, O. K., J. F. Perez (2008). “Targeting cancer stem cells with monoclonal antibodies: a new perspective in cancer therapy and diagnosis.” Expert Rev Mol Diagn 8(4): 387–93.

    Article  PubMed  CAS  Google Scholar 

  140. Bonnet, D., J. E. Dick (1997). “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.” Nat Med 3(7): 730–7.

    Article  PubMed  CAS  Google Scholar 

  141. Clarke, M. F., J. E. Dick, et al. (2006). “Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells.“ Cancer Res 66(19): 9339–44.

    Article  PubMed  CAS  Google Scholar 

  142. Gil, J., A. Stembalska, et al. (2008). “Cancer stem cells: the theory and perspectives in cancer therapy.” J Appl Genet 49(2): 193–9.

    Article  PubMed  Google Scholar 

  143. Jones, R. J., W. H. Matsui, et al. (2004). “Cancer stem cells: are we missing the target?” J Natl Cancer Inst 96(8): 583–5.

    Article  PubMed  Google Scholar 

  144. Bao, S., Q. Wu, et al. (2006). “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.” Nature 444(7120): 756–60.

    Article  PubMed  CAS  Google Scholar 

  145. Bao, S., Q. Wu, et al. (2006). “Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor.” Cancer Res 66(16): 7843–8.

    Article  PubMed  CAS  Google Scholar 

  146. Dylla, S. J., L. Beviglia, et al. (2008). “Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy.” PLoS ONE 3(6): e2428.

    Article  PubMed  CAS  Google Scholar 

  147. Eyler, C. E., J. N. Rich (2008). “Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis.” J Clin Oncol 26(17): 2839–45.

    Article  PubMed  CAS  Google Scholar 

  148. Hosen, N., C. Y. Park, et al. (2007). “CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia.” Proc Natl Acad Sci U S A 104(26): 11008–13.

    Article  PubMed  CAS  Google Scholar 

  149. Jin, L., K. J. Hope, et al. (2006). “Targeting of CD44 eradicates human acute myeloid leukemic stem cells.” Nat Med 12(10): 1167–74.

    Article  PubMed  CAS  Google Scholar 

  150. Kohler, G., C. Milstein (1975). “Continuous cultures of fused cells secreting antibody of predefined specificity.” Nature 256(5517): 495–7.

    Article  PubMed  CAS  Google Scholar 

  151. Hwang, W. Y., J. Foote (2005). “Immunogenicity of engineered antibodies.” Methods 36(1): 3–10.

    Article  PubMed  CAS  Google Scholar 

  152. Jones, P. T., P. H. Dear, et al. (1986). “Replacing the complementarity-determining regions in a human antibody with those from a mouse.” Nature 321(6069): 522–5.

    Article  PubMed  CAS  Google Scholar 

  153. Roguska, M. A., J. T. Pedersen, et al. (1996). “A comparison of two murine monoclonal antibodies humanized by CDR-grafting and variable domain resurfacing.” Protein Eng 9(10): 895–904.

    Article  PubMed  CAS  Google Scholar 

  154. Roguska, M. A., J. T. Pedersen, et al. (1994). “Humanization of murine monoclonal antibodies through variable domain resurfacing.” Proc Natl Acad Sci U S A 91(3): 969–73.

    Article  PubMed  CAS  Google Scholar 

  155. Hoogenboom, H. R (2005). “Selecting and screening recombinant antibody libraries.” Nat Biotechnol 23(9): 1105–16.

    Article  PubMed  CAS  Google Scholar 

  156. Lonberg, N (2008). “Fully human antibodies from transgenic mouse and phage display platforms.” Curr Opin Immunol 20(4): 450–9.

    Article  PubMed  CAS  Google Scholar 

  157. Kim, S. J., Y. Park, et al. (2005). “Antibody engineering for the development of therapeutic antibodies.” Mol Cells 20(1): 17–29.

    PubMed  CAS  Google Scholar 

  158. Mascelli, M. A., H. Zhou, et al. (2007). “Molecular, biologic, and pharmacokinetic properties of monoclonal antibodies: impact of these parameters on early clinical development.” J Clin Pharmacol 47(5): 553–65.

    Article  PubMed  CAS  Google Scholar 

  159. Sedlacek, H. H., Seemann, D., Hoffmann, D., et al. (1992). Antibodies as carriers of cytotoxicity.Contributions to Oncology. G. Riethmuller, H. Koprowski, S. von Kleist. (eds.) Basel, Switzerland, Karger: 43: 29–97.

    Google Scholar 

  160. Adams, G. P., R. Schier, et al. (2001). “High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules.” Cancer Res 61(12): 4750–5.

    PubMed  CAS  Google Scholar 

  161. Fujimori, K., D. G. Covell, et al. (1990). “A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier.” J Nucl Med 31(7): 1191–8.

    PubMed  CAS  Google Scholar 

  162. Jefferis, R. (2007). “Antibody therapeutics: isotype and glycoform selection.” Expert Opin Biol Ther 7(9): 1401–13.

    Article  PubMed  CAS  Google Scholar 

  163. Wang, S. Y., G. Weiner (2008). “Complement and cellular cytotoxicity in antibody therapy of cancer.” Expert Opin Biol Ther 8(6): 759–68.

    Article  PubMed  CAS  Google Scholar 

  164. Desjarlais, J. R., G. A. Lazar, et al. (2007). “Optimizing engagement of the immune system by anti-tumor antibodies: an engineer’s perspective.” Drug Discov Today 12(21–22): 898–910.

    PubMed  CAS  Google Scholar 

  165. Strome, S. E., E. A. Sausville, et al. (2007). “A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects.” Oncologist 12(9): 1084–95.

    Article  PubMed  CAS  Google Scholar 

  166. Salfeld, J. G. (2007). “Isotype selection in antibody engineering.” Nat Biotechnol 25(12): 1369–72.

    Article  PubMed  CAS  Google Scholar 

  167. van der Neut Kolfschoten, M., J. Schuurman, et al. (2007). “Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange.” Science 317(5844): 1554–7.

    Article  PubMed  CAS  Google Scholar 

  168. Yoo, E. M., L. A. Wims, et al. (2003). “Human IgG2 can form covalent dimers.” J Immunol 170(6): 3134–8.

    PubMed  CAS  Google Scholar 

  169. Cartron, G., L. Dacheux, et al. (2002). “Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene.” Blood 99(3): 754–8.

    Article  PubMed  CAS  Google Scholar 

  170. Musolino, A., N. Naldi, et al. (2008). “Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer.” J Clin Oncol 26(11): 1789–96.

    Article  PubMed  CAS  Google Scholar 

  171. Weng, W. K., R. Levy (2003). “Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma.” J Clin Oncol 21(21): 3940–7.

    Article  PubMed  CAS  Google Scholar 

  172. Zhang, W., M. Gordon, et al. (2007). “FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab.” J Clin Oncol 25(24): 3712–8.

    Article  PubMed  CAS  Google Scholar 

  173. Lazar, G. A., W. Dang, et al. (2006). “Engineered antibody Fc variants with enhanced effector function.” Proc Natl Acad Sci U S A 103(11): 4005–10.

    Article  PubMed  CAS  Google Scholar 

  174. Schuster, M., P. Umana, et al. (2005). “Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering.” Cancer Res 65(17): 7934–41.

    PubMed  CAS  Google Scholar 

  175. Shields, R. L., J. Lai, et al. (2002). “Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity.” J Biol Chem 277(30): 26733–40.

    Article  PubMed  CAS  Google Scholar 

  176. Shinkawa, T., K. Nakamura, et al. (2003). “The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity.” J Biol Chem 278(5): 3466–73.

    Article  PubMed  CAS  Google Scholar 

  177. Roopenian, D. C., S. Akilesh (2007). “FcRn: the neonatal Fc receptor comes of age.” Nat Rev Immunol 7(9): 715–25.

    Article  PubMed  CAS  Google Scholar 

  178. DiJoseph, J. F., M. M. Dougher, et al. (2006). “Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma.” Clin Cancer Res 12(1): 242–9.

    Article  PubMed  CAS  Google Scholar 

  179. Jordan, M. A., L. Wilson (2004). “Microtubules as a target for anticancer drugs.” Nat Rev Cancer 4(4): 253–65.

    Article  PubMed  CAS  Google Scholar 

  180. Lopus, M., E. Oroudjev, et al. (2008). “Maytansine derivatives and metabolites of antibody-maytansinoid conjugates inhibit microtubule polymerization and strongly suppress microtubule dynamics.” AACR Meeting Abstracts 2008 (Apr.2008): 1406.

    Google Scholar 

  181. Oroudjev, E., M. Lopus, et al. (2008). “Antibody-maytansinoid conjugates affect microtubule morphology and suppress microtubule dynamics in live cells.” AACR Meeting Abstracts 2008 (Apr.2008): 1403.

    Google Scholar 

  182. Cassady, J. M., K. K. Chan, et al. (2004). “Recent developments in the maytansinoid antitumor agents.” Chem Pharm Bull (Tokyo) 52(1): 1–26.

    Article  PubMed  CAS  Google Scholar 

  183. Yu, T. W., L. Bai, et al. (2002). “The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum.” Proc Natl Acad Sci U S A 99(12): 7968–73.

    Article  PubMed  CAS  Google Scholar 

  184. Drewinko, B., M. Patchen, et al. (1981). “Differential killing efficacy of twenty antitumor drugs on proliferating and nonproliferating human tumor cells.” Cancer Res 41(6): 2328–33.

    PubMed  CAS  Google Scholar 

  185. Chabner, B. A., A. S. Levine, et al. (1978). “Initial clinical trials of maytansine, an antitumor plant alkaloid.” Cancer Treat Rep 62(3): 429–33.

    PubMed  CAS  Google Scholar 

  186. Ravry, M. J., G. A. Omura, et al. (1985). “Phase II evaluation of maytansine (NSC 153858) in advanced cancer. A Southeastern Cancer Study Group trial.” Am J Clin Oncol 8(2): 148–50.

    Article  PubMed  CAS  Google Scholar 

  187. Widdison, W. C., S. D. Wilhelm, et al. (2006). “Semisynthetic maytansine analogues for the targeted treatment of cancer.” J Med Chem 49(14): 4392–408.

    Article  PubMed  CAS  Google Scholar 

  188. Murphy, M., S. Phinney, et al. (2008). “Immunohistochemical analysis of the glycotope targeted by huC242-DM4 indicates strong expression in several tumor types with unmet medical need.” AACR Meeting Abstracts 2008 (Apr.2008): 4898.

    Google Scholar 

  189. Stephan, J. P., P. Chan, et al. (2008). “Anti-CD22-MCC-DM1 and MC-MMAF conjugates: impact of assay format on pharmacokinetic parameters determination.” Bioconjug Chem 19(8): 1673–83.

    Article  PubMed  CAS  Google Scholar 

  190. Bai, R., G. R. Pettit, et al. (1990). “Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain.” Biochem Pharmacol 39(12): 1941–9.

    Article  PubMed  CAS  Google Scholar 

  191. Erickson, H. K., P. U. Park, et al. (2006). “Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing.” Cancer Res 66(8): 4426–33.

    Article  PubMed  CAS  Google Scholar 

  192. Grewal, I. S. (2008). “CD70 as a therapeutic target in human malignancies.” Expert Opin Ther Targets 12(3): 341–51.

    Article  PubMed  CAS  Google Scholar 

  193. Alley, S. C., D. R. Benjamin, et al. (2008). “Contribution of linker stability to the activities of anticancer immunoconjugates.” Bioconjug Chem 19(3): 759–65.

    Article  PubMed  CAS  Google Scholar 

  194. Wang, L., G. Amphlett, et al. (2005). “Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry.” Protein Sci 14(9): 2436–46.

    Article  PubMed  CAS  Google Scholar 

  195. Shields, R. L., A. K. Namenuk, et al. (2001). “High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R.” J Biol Chem 276(9): 6591–604.

    Article  PubMed  CAS  Google Scholar 

  196. Hamblett, K. J., P. D. Senter, et al. (2004). “Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate.” Clin Cancer Res 10(20): 7063–70.

    Article  PubMed  CAS  Google Scholar 

  197. McDonagh, C. F., E. Turcott, et al. (2006). “Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment.” Protein Eng Des Sel 19(7): 299–307.

    Article  PubMed  CAS  Google Scholar 

  198. Wu, G., Y. Z. Fang, et al. (2004). “Glutathione metabolism and its implications for health.” J Nutr 134(3): 489–92.

    PubMed  CAS  Google Scholar 

  199. Appenzeller-Herzog, C., L. Ellgaard (2008). “The human PDI family: versatility packed into a single fold.” Biochim Biophys Acta 1783(4): 535–48.

    Article  PubMed  CAS  Google Scholar 

  200. Ciechanover, A. (2006). “Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting.” Hematology Am Soc Hematol Educ Program: 1–12, 505–6.

    Google Scholar 

  201. Dowell, J. A., J. Korth-Bradley, et al. (2001). “Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse.” J Clin Pharmacol 41(11): 1206–14.

    Article  PubMed  CAS  Google Scholar 

  202. Lutz, R. J., H. Xie, et al. (2005). “HuC242-DM4, an antibody-maytansinoid conjugate with superior preclinical activity in human CanAg-positive tumor xenograft models in SCID mice.” AACR Meeting Abstracts 2005(1): 334–c-335.

    Google Scholar 

  203. Erickson, H., S. Wilhelm, et al. (2008). “Evaluation of the cytotoxic potencies of the major maytansinoid metabolites of antibody maytansinoid conjugates detected in vitro and in preclinical mouse models.” AACR Meeting Abstracts 2008 (Apr.2008): 2150.

    Google Scholar 

  204. Francisco, J. A., C. G. Cerveny, et al. (2003). “cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity.” Blood 102(4): 1458–65.

    Article  PubMed  CAS  Google Scholar 

  205. Sanderson, R. J., M. A. Hering, et al. (2005). “In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate.” Clin Cancer Res 11(2 Pt 1): 843–52.

    PubMed  CAS  Google Scholar 

  206. Doronina, S. O., T. D. Bovee, et al. (2008). “Novel peptide linkers for highly potent antibody-auristatin conjugate.” Bioconjug Chem 19(10): 1960–3.

    Article  PubMed  CAS  Google Scholar 

  207. Linenberger, M. L., T. Hong, et al. (2001). “Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin.” Blood 98(4): 988–94.

    Article  PubMed  CAS  Google Scholar 

  208. Walter, R. B., B. W. Raden, et al. (2003). “Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells.” Blood 102(4): 1466–73.

    Article  PubMed  CAS  Google Scholar 

  209. Gottesman, M. M., I. Pastan (1988). “The multidrug transporter, a double-edged sword.” J Biol Chem 263(25): 12163–6.

    PubMed  CAS  Google Scholar 

  210. Leonard, G. D., T. Fojo, et al. (2003). “The role of ABC transporters in clinical practice.” Oncologist 8(5): 411–24.

    Article  PubMed  CAS  Google Scholar 

  211. Takara, K., T. Sakaeda, et al. (2006). “An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy.” Curr Pharm Des 12(3): 273–86.

    Article  PubMed  CAS  Google Scholar 

  212. Sharom, F. J. (2008). “ABC multidrug transporters: structure, function and role in chemoresistance.” Pharmacogenomics 9(1): 105–27.

    Article  PubMed  CAS  Google Scholar 

  213. Guillemard, V., H. Uri Saragovi (2004). “Prodrug chemotherapeutics bypass p-glycoprotein resistance and kill tumors in vivo with high efficacy and target-dependent selectivity.” Oncogene 23(20): 3613–21.

    Article  PubMed  CAS  Google Scholar 

  214. Kovtun, Y., C. Audette, E. Maloney, M. Mayo, J. Jones, H. Doherty, H. Erickson, S. Wilhelm, R. Singh, G. Goldmacher, R. Chari (2008). “Novel antibody-maytansinoid conjugates with improved efficacy against multidrug-resistant tumors.” EORTC Proceedings: Abstract #518.

    Google Scholar 

  215. Mita, M. M., D. A. Ricart, A. C. Mita, A. Patnalk, J. Sarantopoulos, K. Sankhala, R. J. Fram, A. Qin, J. Watermill, A. W. Tolcher (2007). A phase I study of a CanAg-targeted immunoconjugate, huC242-DM4, in patients with CanAg-expressing solid tumors. J. Clin Oncol 2007 ASCO Annual Meeting Proceedings 25: 3062.

    Google Scholar 

  216. Tolcher A. W., A. Ricart, J. Rodon, A. Patnaik, A. Mita, M. Mita, S. Saratopolous, S. Zildjian, J. Watermill, R. J. Fram (2005). “A Phase I study of huC242-DM4 to assess the safety and pharmacokinetics of huC242-DM4 administered as a single intravenous infusion once every three weeks to subjects with solid tumors.” EORTC-NCI-AACR-2005, Molecular targets and cancer therapeutics, Philadelphia, PA 212: Abstract #212.

    Google Scholar 

  217. Jensen, M., F. Berthold (2007). “Targeting the neural cell adhesion molecule in cancer.” Cancer Lett 258(1): 9–21.

    Article  PubMed  CAS  Google Scholar 

  218. Whiteman, K. R., M. F. Murphy, K. P. Cohane, W. Sun, C. N. Carrigan, M. F. Mayo, Y. Li, R. J. Lutz (2008). “Preclinical evaluation of IMGN901 (huN901-DM1) as a potential therapeutic for ovarian cancer.” American Association of Clinical Research Annual Meeting: Abstract #2135.

    Google Scholar 

  219. Hwu, P., M. Sznol, A. Pavlick, H. Kluger, L. Rink, K. B. Kim, N. Papadopoulos, D. Sanders, P. Bossberg, C. E. Ool, O. Hamid (2008). “A Phase I/II study of CRO-11-vcMMAE, an antibody-drug conjugate, in patients with unresectable stage III or stage IV melanoma.” American Society for Clinical Oncology Annual Meeting Proceedings: 9029.

    Google Scholar 

  220. Oflazoglu, E., K. M. Kissler, et al. (2008). “Combination of the anti-CD30-auristatin-E antibody-drug conjugate (SGN-35) with chemotherapy improves antitumour activity in Hodgkin lymphoma.” Br J Haematol 142(1): 69–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues, Robert Lutz, John Lambert, Rajeeva Singh, Peter Park, Daniel Tavares, Ravi Chari, Yelena Kovtun, and Carol Hausner for critical reading of the manuscript and Yelena Kovtun for drawing the figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vater, C.A., Goldmacher, V.S. (2010). Antibody–Cytotoxic Compound Conjugates for Oncology. In: Reddy, L., Couvreur, P. (eds) Macromolecular Anticancer Therapeutics. Macromolecular Anticancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0507-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0507-9_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0506-2

  • Online ISBN: 978-1-4419-0507-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics