Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Since Alfred Werner published his work on coordination compounds in 1893, much progress has been made regarding this class of materials. Further studies evolved to the coordination polymers, among which the Metal-Organic Frameworks (MOFs), which are two- or three-dimensional coordination networks containing potentially empty cavities. Frequently, MOFs are crystalline materials with the coordination units repeating itself in an ordered manner in the structure, thus creating different topologies. However, synthetic parameters (pH, temperature, solvent) directly influence the kinetics and thermodynamics of the nucleation and growth of MOF crystals. In some cases, a material of low crystallinity may be formed, with short-range order. Most authors classify these compounds as Infinite Coordination Polymers (ICPs), Coordination Polymer Particles (CPPs) or Nanoscale Coordination Polymers (NCPs). Although not yet standardized by IUPAC, several articles, including recent review articles, name low-crystalline coordination polymers as ICPs. ICPs can show high tailorability regarding the particle size and morphology. They are usually obtained as micro- or nanoparticles, with spherical (mainly), cubic, rod-like and ring-like morphologies being reported. The major challenge in the study of ICPs lies in the structural elucidation, often performed by single crystal X-ray diffraction in crystalline MOFs. In this chapter, the synthetic routes, formation mechanisms, characterization techniques and potential applications of spherical ICP particles, such as in sensing, light-emitting devices, biomedicine, catalysis, gas sorption and separation, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batten, S.R., Champness, N.R.: Coordination polymers and metal-organic frameworks: materials by design. Philos Trans A Math Phys Eng Sci 375, 20160032 (2017)

    Article  Google Scholar 

  2. Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J.: Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003)

    Article  Google Scholar 

  3. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  Google Scholar 

  4. Batten, S.R., Champness, N.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O’Keeffe, M., Paik Suh, M., Reedijk, J.: Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013)

    Article  Google Scholar 

  5. Moghadam, P.Z., Li, A., Wiggin, S.B., Tao, A., Maloney, A.G.P., Wood, P.A., Ward, S.C., Fairen-Jimenez, D.: Development of a Cambridge structural database subset: a collection of metal-organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017)

    Article  Google Scholar 

  6. Kitagawa, S., Kitaura, R., Noro, S.I.: Functional porous coordination polymers. Angew. Chem.-Int. Ed. 43, 2334–2375 (2004)

    Article  Google Scholar 

  7. Batten, S.R., Champness, N.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O’Keeffe, M., Suh, M.P., Reedijk, J.: Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 14, 3001 (2012)

    Article  Google Scholar 

  8. Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., O’Keeffe, M., Yaghi, O.M.: Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001)

    Article  Google Scholar 

  9. Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F., Gascon, J.: Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 307, 147–187 (2015)

    Article  Google Scholar 

  10. Spokoyny, A.M., Kim, D., Sumrein, A., Mirkin, C.A.: Infinite coordination polymer nano- and microparticle structures. Chem. Soc. Rev. 38, 1218 (2009)

    Article  Google Scholar 

  11. Oh, M., Mirkin, C.A.: Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438, 651–654 (2005)

    Article  Google Scholar 

  12. Mohammadikish, M., Ghanbari, S.: Preparation of monodispersed metal-based infinite coordination polymer nanostructures and their good capability for metal oxide preparation. J. Solid State Chem. 264, 86–90 (2018)

    Article  Google Scholar 

  13. Zhang, R.Z., Quan, S., Xia, M., Wang, Q., Zhang, W., Yang, J.M.: Effect of surface charge status of amorphous porous coordination polymer particles on the adsorption of organic dyes from an aqueous solution. J. Colloid Interface Sci. 525, 54–61 (2018)

    Article  Google Scholar 

  14. Jin, L.N., Liu, Q., Yang, Y., Fu, H.G., Sun, W.Y.: Large-scale preparation of indium-based infinite coordination polymer hierarchical nanostructures and their good capability for water treatment. J. Colloid Interface Sci. 426, 1–8 (2014)

    Article  Google Scholar 

  15. Rieter, W.J., Pott, K.M., Taylor, K.M.L., Lin, W.: Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130, 11584–11585 (2008)

    Article  Google Scholar 

  16. Liu, D., Huxford, R.C., Lin, W.: Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging. Angew. Chem.-Int. Ed. 50, 3696–3700 (2011)

    Article  Google Scholar 

  17. D’Aquino, A.I., Kean, Z.S., Mirkin, C.A.: Infinite coordination polymer particles composed of stimuli-responsive coordination complex subunits. Chem. Mater. 29, 10284–10288 (2017)

    Article  Google Scholar 

  18. Wang, Y.M., Yang, Z.R., Xiao, L., Yin, X.B.: Lab-on-MOFs: color-coded multitarget fluorescence detection with white-light emitting metal-organic frameworks under single wavelength excitation. Anal. Chem. 90, 5758–5763 (2018)

    Article  Google Scholar 

  19. Kumar, P., Deep, A., Kim, K.-H., Brown, R.J.C.: Coordination polymers: opportunities and challenges for monitoring volatile organic compounds. Prog. Polym. Sci. 45, 102–118 (2015)

    Article  Google Scholar 

  20. Arroyos, G., Frem, R.C.G.: Rare earth phosphors based on spherical infinite coordination polymers. New J. Chem. 42, 19070–19075 (2018)

    Article  Google Scholar 

  21. Song, X., Ma, Y., Ge, X., Zhou, H., Wang, G., Zhang, H., Tang, X., Zhang, Y.: Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing. RSC Adv. 7, 8661–8669 (2017)

    Article  Google Scholar 

  22. Zhong, S.-L., Xu, R., Zhang, L.-F., Qu, W.-G., Gao, G.-Q., Wu, X.-L., Xu, A.-W.: Terbium-based infinite coordination polymer hollow microspheres: preparation and white-light emission. J. Mater. Chem. 21, 16574–16580 (2011)

    Article  Google Scholar 

  23. Li, W.-Z., Zhou, Y., Liu, F., Li, Y., Xia, M.-J., Han, E.-H., Wang, T., Zhang, X., Fu, Y.: Fabrication of monodisperse flower-like coordination polymers (CP) microparticles by spray technique. Nanomaterials 7, 237 (2017)

    Article  Google Scholar 

  24. Bennett, T.D., Cheetham, A.K.: Amorphous metal-organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014)

    Article  Google Scholar 

  25. Deng, J., Wu, F., Yu, P., Mao, L.: On-site sensors based on infinite coordination polymer nanoparticles: recent progress and future challenge. Appl. Mater. Today 11, 338–351 (2018)

    Article  Google Scholar 

  26. Zhang, Z., Wu, Y., He, S., Xu, Y., Li, G., Ye, B.: Ratiometric fluorescence sensing of mercuric ion based on dye-doped lanthanide coordination polymer particles. Anal. Chim. Acta 1014, 85–90 (2018)

    Article  Google Scholar 

  27. Ou-Yang, J., Li, C.Y., Li, Y.F., Yang, B., Li, S.J.: An infinite coordination polymer nanoparticles-based near-infrared fluorescent probe with high photostability for endogenous alkaline phosphatase in vivo. Sensor Actuat. B-Chem. 255, 3355–3363 (2018)

    Article  Google Scholar 

  28. Wang, Y.M., Liu, W., Yin, X.B.: Self-limiting growth nanoscale coordination polymers for fluorescence and magnetic resonance dual-modality imaging. Adv. Funct. Mater. 26, 8463–8470 (2016)

    Article  Google Scholar 

  29. Zhang, Y., Guo, Y., Wu, S., Liang, H., Xu, H.: Photodegradable coordination polymer particles for light-controlled cargo release. ACS Omega 2, 2536–2543 (2017)

    Article  Google Scholar 

  30. Nouri, R., Abedi, S., Morsali, A.: A novel synthesis route for preparation of tetrazole-based infinite coordination polymers and their application as an efficient catalyst for Michael addition reactions. J. Iran. Chem. Soc. 14, 1601–1612 (2017)

    Article  Google Scholar 

  31. Jeon, Y.M., Armatas, G.S., Heo, J., Kanatzidis, M.G., Mirkin, C.A.: Amorphous infinite coordination polymer microparticles: a new class of selective hydrogen storage materials. Adv. Mater. 20, 2105–2110 (2008)

    Article  Google Scholar 

  32. Jeon, Y.M., Armatas, G.S., Kim, D., Kanatzidis, M.G., Mirkin, C.A.: Tröger’s-base-derived infinite co-ordination polymer microparticles. Small 5, 46–50 (2009)

    Article  Google Scholar 

  33. Zhong, S., Jing, H., Li, Y., Yin, S., Zeng, C., Wang, L.: Coordination polymer submicrospheres: fast microwave synthesis and their conversion under different atmospheres. Inorg. Chem. 53, 8278–8286 (2014)

    Article  Google Scholar 

  34. Ma, D., Li, C., Wang, L., Liu, H., Zhong, S., Li, Y.: Preparation of RE2O2SO4 (RE = La, Pr-Lu) microspheres from rare-earth-based infinite coordination polymers. J. Nanopart. Res. 19, 341 (2017)

    Article  Google Scholar 

  35. Paddock, S.W.: Confocal Microscopy: Methods and Protocols, 2nd edn., 381p. Springer Protocols, Hatfield (2014)

    Google Scholar 

  36. Zou, H., Wang, L., Zeng, C., Gao, X., Wang, Q., Zhong, S.: Rare-earth coordination polymer micro/nanomaterials: preparation, properties and applications. Front. Mater. Sci. 12, 324–347 (2018)

    Article  Google Scholar 

  37. Lin, W., Rieter, W.J., Taylor, K.M.L.: Modular synthesis of functional nanoscale coordination polymers. Angew. Chem.-Int. Ed. 48, 650–658 (2009)

    Article  Google Scholar 

  38. Sun, X., Dong, S., Wang, E.: Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature. J. Am. Chem. Soc. 127, 13102–13103 (2005)

    Article  Google Scholar 

  39. Yang, M., Shen, Z., Chen, T., Bi, H., Yang, B., Xu, W.: Induced morphology control of Ln–asparagine coordination polymers from the macro to nanoscopic regime in polar solvent–water mixtures. Dalton Trans. 42, 1174–1179 (2013)

    Article  Google Scholar 

  40. Pan, H., Xu, S., Ni, Y.: Rare-earth post-modified Zn-based coordination polymer microspheres: Simple room-temperature preparation, fluorescent performances and application for detection of tryptophane. Sensor Actuat. B-Chem. 283, 731–739 (2019)

    Article  Google Scholar 

  41. Deng, J., Yu, P., Wang, Y., Mao, L.: Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal. Chem. 87, 3080–3086 (2015)

    Article  Google Scholar 

  42. Mohammadikish, M., Ahmadvand-Akradi, A.: Facile synthesis of novel zinc-based infinite coordination polymer nanoparticles. Inorg. Chem. Commun. 78, 48–51 (2017)

    Article  Google Scholar 

  43. Liu, B., Huang, Y., Shen, Q., Zhu, X., Hao, Y., Qu, P., Xu, M.: Turn-on fluorescence detection of ciprofloxacin in tablets based on lanthanide coordination polymer nanoparticles. RSC Adv. 6, 100743–100747 (2016)

    Article  Google Scholar 

  44. Jeon, Y.M., Heo, J., Mirkin, C.A.: Dynamic interconversion of amorphous microparticles and crystalline rods in salen-based homochiral infinite coordination polymers. J. Am. Chem. Soc. 129, 7480–7481 (2007)

    Article  Google Scholar 

  45. Deng, J., Shi, G., Zhou, T.: Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence. Anal. Chim. Acta 942, 96–103 (2016)

    Article  Google Scholar 

  46. Xiao, C., Xu, H., Zhong, S.: Au@Eu-based coordination polymers core-shell nanoparticles: photoluminescence and photothermal properties. Mater. Lett. 216, 106–109 (2018)

    Article  Google Scholar 

  47. Tao, P., Zeng, C.H., Zheng, K., Huang, C.Q., Zhong, S.L.: Uniform terbium coordination polymer microspheres: preparation and luminescence. J. Inorg. Organomet. Polym. Mater. 26, 1087–1094 (2016)

    Article  Google Scholar 

  48. Liu, R., Shuai, M., Xu, H., Zhong, S.: Uniform Gd-based coordination polymer hollow spheres: synthesis, formation mechanism and upconversion properties. J. Inorg. Organomet. Polym. Mater. 28, 137–145 (2018)

    Article  Google Scholar 

  49. Nie, Z.-W., Zeng, C.-H., Xie, G., Zhong, S.-L.: Uniform cerium-based coordination polymer microspheres: preparation and upconversion emission. J. Nanosci. Nanotechnol. 16, 3705–3709 (2016)

    Article  Google Scholar 

  50. Hu, X.G., Li, X., Yang, S.I.: Novel photochromic infinite coordination polymer particles derived from a diarylethene photoswitch. Chem. Commun. 51, 10636–10639 (2015)

    Article  Google Scholar 

  51. Chen, W., Li, S., Zeng, C.H., Zhong, S.: Eu-based coordination polymers micro-flowers: preparation and luminescence properties. J. Inorg. Organomet. Polym. Mater. 27, 598–604 (2017)

    Article  Google Scholar 

  52. Zhong, S., Ji, Y., Xie, Q., Wang, L., Li, Y., Jeong, J.H.: Coordination polymer nanospheres: preparation, upconversion properties and cytotoxicity study. Mater. Lett. 102–103, 19–21 (2013)

    Article  Google Scholar 

  53. Carné, A., Carbonell, C., Imaz, I., Maspoch, D.: Nanoscale metal–organic materials. Chem. Soc. Rev. 40, 291–305 (2011)

    Article  Google Scholar 

  54. Hu, D., Song, Y., Wang, L.: Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications. J. Nanoparticle Res. 17, 1–21 (2015)

    Article  Google Scholar 

  55. Zhao, D., Wang, L., Li, Y., Zhang, L., Lv, Y., Zhong, S.: Uniform europium-based infinite coordination polymer submicrospheres: fast microwave synthesis and characterization. Inorg. Chem. Commun. 20, 97–100 (2012)

    Article  Google Scholar 

  56. Billinge, S.J.L.: The rise of the X-ray atomic pair distribution function method: a series of fortunate events. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 377, 20180413 (2019)

    Article  Google Scholar 

  57. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  Google Scholar 

  58. Zhang, X., Wang, W., Hu, Z., Wang, G., Uvdal, K.: Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 284, 206–235 (2015)

    Article  Google Scholar 

  59. Cho, W., Lee, H.J., Choi, S., Kim, Y., Oh, M.: Highly effective heterogeneous chemosensors of luminescent silica@coordination polymer core-shell micro-structures for metal ion sensing. Sci Rep 4, 6518 (2014)

    Article  Google Scholar 

  60. Tan, H., Liu, B., Chen, Y.: Lanthanide coordination polymer nanoparticles for sensing of mercury(II) by photoinduced electron transfer. ACS Nano 6, 10505–10511 (2012)

    Article  Google Scholar 

  61. Gao, N., Zhang, Y., Huang, P., Xiang, Z., Wu, F.Y., Mao, L.: Perturbing tandem energy transfer in luminescent heterobinuclear lanthanide coordination polymer nanoparticles enables real-time monitoring of release of the anthrax biomarker from bacterial spores. Anal. Chem. 90, 7004–7011 (2018)

    Article  Google Scholar 

  62. Wang, H.S., Bao, W.J., Bin, Ren S., Chen, M., Wang, K., Xia, X.H.: Fluorescent sulfur-tagged europium(III) coordination polymers for monitoring reactive oxygen species. Anal. Chem. 87, 6828–6833 (2015)

    Article  Google Scholar 

  63. Zeng, H.H., Qiu, W.B., Zhang, L., Liang, R.P., Qiu, J.D.: Lanthanide coordination polymer nanoparticles as an excellent artificial peroxidase for hydrogen peroxide detection. Anal. Chem. 88, 6342–6348 (2016)

    Article  Google Scholar 

  64. Tan, H., Ma, C., Li, Q., Wang, L., Xu, F., Chen, S., Song, Y.: Functionalized lanthanide coordination polymer nanoparticles for selective sensing of hydrogen peroxide in biological fluids. Analyst 139, 5516–5522 (2014)

    Article  Google Scholar 

  65. Hou, Y.-L., Xu, H., Cheng, R.-R., Zhao, B.: Controlled lanthanide–organic framework nanospheres as reversible and sensitive luminescent sensors for practical applications. Chem. Commun. 51, 6769–6772 (2015)

    Article  Google Scholar 

  66. Tan, H., Zhang, L., Ma, C., Song, Y., Xu, F., Chen, S., Wang, L.: Terbium-based coordination polymer nanoparticles for detection of ciprofloxacin in tablets and biological fluids. ACS Appl. Mater. Interfaces 5, 11791–11796 (2013)

    Article  Google Scholar 

  67. Zhang, Z., Wang, L., Li, G., Ye, B.: Lanthanide coordination polymer nanoparticles as a turn-on fluorescence sensing platform for simultaneous detection of histidine and cysteine. Analyst 142, 1821–1826 (2017)

    Article  Google Scholar 

  68. SeethaLekshmi, S., Ramya, A.R., Reddy, M.L.P., Varughese, S.: Lanthanide complex-derived white-light emitting solids: a survey on design strategies. J. Photochem. Photobiol. C: Photochem. Rev. 33, 109–131 (2017)

    Article  Google Scholar 

  69. Novio, F., Simmchen, J., Vázquez-Mera, N., Amorín-Ferré, L., Ruiz-Molina, D.: Coordination polymer nanoparticles in medicine. Coord. Chem. Rev. 257, 2839–2847 (2013)

    Article  Google Scholar 

  70. Xing, L., Cao, Y., Che, S.: Synthesis of core-shell coordination polymer nanoparticles (CPNs) for pH-responsive controlled drug release. Chem. Commun. 48, 5995–5997 (2012)

    Article  Google Scholar 

  71. Nishiyabu, R., Hashimoto, N., Cho, T., et al.: Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc. 131, 2151–2158 (2009)

    Article  Google Scholar 

  72. Liao, Y., Li, Y., Wang, L., Zhao, Y., Ma, D., Wang, B., Wan, Y., Zhong, S.: Multi-shelled ceria hollow spheres with a tunable shell number and thickness and their superior catalytic activity. Dalton Trans. 46, 1634–1644 (2017)

    Article  Google Scholar 

  73. Mohammadikish, M., Talebi, M.: Rapid production of acid-functionalized in fi nite coordination polymer nanoparticles and their calcination to mineral metal oxide. Powder Technol. 313, 169–174 (2017)

    Article  Google Scholar 

  74. Wei, H., Li, B., Du, Y., Dong, S., Wang, E.: Nucleobase-metal hybrid materials: preparation of submicrometer-scale, spherical colloidal particles of adenine-gold(III) via a supramolecular hierarchical self-assembly approach. Chem. Mater. 19, 2987–2993 (2007)

    Article  Google Scholar 

  75. Park, J.U., Lee, H.J., Cho, W., Jo, C., Oh, M.: Facile synthetic route for thickness and composition tunable hollow metal oxide spheres from silica-templated coordination polymers. Adv. Mater. 23, 3161–3164 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Arroyos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arroyos, G., da Silva, C.M., Frem, R.C.G. (2020). Design and Applications of Spherical Infinite Coordination Polymers (ICPS). In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics