Skip to main content
Log in

Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Rare-earth coordination polymers (RECPs), as a family member of coordination polymers (CPs), have been prepared and studied widely. Thanks to their characteristic properties and functions, RECPs have already been used in various application fields ranging from catalysis to drug delivery. In recent years, CPs with tunable morphologies and sizes have drawn increasing interest and attractive attention. This review presents the recent research progress of RECP micro/nanomaterials, and emphasizes the preparation, properties and broad applications of these fascinating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao D, Timmons D J, Yuan D, et al. Tuning the topology and functionality of metal–organic frameworks by ligand design. Accounts of Chemical Research, 2011, 44(2): 123–133

    Google Scholar 

  2. Spokoyny A M, Kim D, Sumrein A, et al. Infinite coordination polymer nano-and microparticle structures. Chemical Society Reviews, 2009, 38(5): 1218–1227

    Google Scholar 

  3. Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordination polymers. Chemical Society Reviews, 2009, 38(5): 1228–1236

    Google Scholar 

  4. Yang Q, Xu Q, Jiang H L. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46(15): 4774–4808

    Google Scholar 

  5. Qiu S, Zhu G. Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 2009, 253(23–24): 2891–2911

    Google Scholar 

  6. Lin W, Rieter W J, Taylor K M L. Modular synthesis of functional nanoscale coordination polymers. Angewandte Chemie International Edition, 2009, 48(4): 650–658

    Google Scholar 

  7. Jin L N, Liu Q, Sun W Y. An introduction to synthesis and application of nanoscale metal-carboxylate coordination polymers. CrystEngComm, 2014, 16(19): 3816–3828

    Google Scholar 

  8. Masoomi M Y, Morsali A. Morphological study and potential applications of nano metal–organic coordination polymers. RSC Advances, 2013, 3(42): 19191–19218

    Google Scholar 

  9. Wen J, Wilkes G L. Organic/inorganic hybrid network materials by the sol–gel approach. Chemistry of Materials, 1996, 8(8): 1667–1681

    Google Scholar 

  10. Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chemical Reviews, 2008, 108(9): 3893–3957

    Google Scholar 

  11. Binnemans K. Lanthanide-based luminescent hybrid materials. Chemical Reviews, 2009, 109(9): 4283–4374

    Google Scholar 

  12. Freeman A J, Watson R E. Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions. Physical Review, 1962, 127(6): 2058–2075

    Google Scholar 

  13. Bünzli J C G. Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 2010, 110(5): 2729–2755

    Google Scholar 

  14. Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 2006, 39(1): 53–61

    Google Scholar 

  15. Wang X, Li Y. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chemistry, 2003, 9(22): 5627–5635

    Google Scholar 

  16. Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews, 2006, 35(7): 583–592

    Google Scholar 

  17. Albanese A, Tang P S, Chan W C W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16

    Google Scholar 

  18. Yan C H, Yan Z G, Du Y P, et al. Controlled synthesis and properties of rare earth nanomaterials. Handbook on the Physics and Chemistry of Rare Earths, 2011, 41: 275–472

    Google Scholar 

  19. Tian Y, Chen B, Hua R, et al. Synthesis and characterization of novel red emitting nanocrystal Gd6WO12: Eu3 + phosphors. Physica B: Condensed Matter, 2009, 404(20): 3598–3601

    Google Scholar 

  20. Zhang X, Yang P, Wang D, et al. La(OH)3:Ln3+ and La2O3:Ln3+ (Ln = Yb/Er, Yb/Tm, Yb/Ho) microrods: synthesis and upconversion luminescence properties. Crystal Growth & Design, 2012, 12(1): 306–312

    Google Scholar 

  21. Sun L D, Wang Y F, Yan C H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Accounts of Chemical Research, 2014, 47(4): 1001–1009

    Google Scholar 

  22. Rieter W J, Taylor K M L, Lin W. Surface modification and functionalization of nanoscale metal–organic frameworks for controlled release and luminescence sensing. Journal of the American Chemical Society, 2007, 129(32): 9852–9853

    Google Scholar 

  23. Taylor K M L, Rieter W J, Lin W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society, 2008, 130(44): 14358–14359

    Google Scholar 

  24. Rieter W J, Pott K M, Taylor K M L, et al. Nanoscale coordination polymers for platinum-based anticancer drug delivery. Journal of the American Chemical Society, 2008, 130 (35): 11584–11585

    Google Scholar 

  25. Daiguebonne C, Kerbellec N, Guillou O, et al. Structural and luminescent properties of micro-and nanosized particles of lanthanide terephthalate coordination polymers. Inorganic Chemistry, 2008, 47(9): 3700–3708

    Google Scholar 

  26. Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal–organic frameworks. Chemical Society Reviews, 2009, 38(5): 1330–1352

    Google Scholar 

  27. Horrocks W D, Sudnick D R. Lanthanide ion luminescence probes of the structure of biological macromolecules. Accounts of Chemical Research, 1981, 14(12): 384–392

    Google Scholar 

  28. Zhong S L, Xu R, Zhang L F, et al. Terbium-based infinite coordination polymer hollow microspheres: preparation and white-light emission. Journal of Materials Chemistry, 2011, 21(41): 16574–16580

    Google Scholar 

  29. Zhong S, Ji Y, Xie Q, et al. Coordination polymer nanospheres: Preparation, upconversion properties and cytotoxicity study. Materials Letters, 2013, 102–103: 19–21

    Google Scholar 

  30. Zhong S, Wang M, Wang L, et al. Preparation of 3D ceriumbased coordination polymer microstructures and their conversion to ceria. CrystEngComm, 2014, 16(2): 231–236

    Google Scholar 

  31. Liao Y, Li Y, Wang L, et al. Multi-shelled ceria hollow spheres with a tunable shell number and thickness and their superior catalytic activity. Dalton Transactions, 2017, 46(5): 1634–1644

    Google Scholar 

  32. Shi M, Zeng C, Wang L, et al. Straw-sheaf-like terbium-based coordination polymer architectures: microwave-assisted synthesis and their application as selective luminescent probes for heavy metal ions. New Journal of Chemistry, 2015, 39(4): 2973–2979

    Google Scholar 

  33. Huang S, Xu H, Wang M, et al. Rapid microwave synthesis and photoluminescence properties of rare earth-based coordination polymer core–shell particles. Optical Materials, 2016, 62: 538–542

    Google Scholar 

  34. Zhao D, Wang L, Li Y, et al. Uniform europium-based infinite coordination polymer submicrospheres: Fast microwave synthesis and characterization. Inorganic Chemistry Communications, 2012, 20: 97–100

    Google Scholar 

  35. Zhong S, Jing H, Li Y, et al. Coordination polymer submicrospheres: fast microwave synthesis and their conversion under different atmospheres. Inorganic Chemistry, 2014, 53(16): 8278–8286

    Google Scholar 

  36. Qian J J, Qiu L G, Wang Y M, et al. Fabrication of magnetically separable fluorescent terbium-based MOF nanospheres for highly selective trace-level detection of TNT. Dalton Transactions, 2014, 43(10): 3978–3983

    Google Scholar 

  37. Xiao C, Xu H, Zhong S. Au@Eu-based coordination polymers core–shell nanoparticles: Photoluminescence and photothermal properties. Materials Letters, 2018, 216: 106–109

    Google Scholar 

  38. Li B, Xu H, Xiao C, et al. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence. Journal of Colloid and Interface Science, 2016, 479: 15–19

    Google Scholar 

  39. Liu K, You H, Zheng Y, et al. Room-temperature synthesis of multi-morphological coordination polymer and tunable whitelight emission. Crystal Growth & Design, 2010, 10(1): 16–19

    Google Scholar 

  40. Zheng Y, Liu K, Qiao H, et al. Facile synthesis and catalytic properties of CeO2 with tunable morphologies from thermal transformation of cerium benzendicarboxylate complexes. Cryst-EngComm, 2011, 13(6): 1786–1788

    Google Scholar 

  41. Wang L, Zou H, Li Y, et al. Cerium-based coordination polymers micro/nanostructures: Room temperature synthesis and their thermolysis to ceria. Materials and Manufacturing Processes, 2017, 32(5): 484–488

    Google Scholar 

  42. Rieter W J, Taylor K M L, An H, et al. Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. Journal of the American Chemical Society, 2006, 128(28): 9024–9025

    Google Scholar 

  43. Geranmayeh S, Mohammadnejad M, Mohammadi S. Sonochemical synthesis and characterization of a new nano Ce(III) coordination supramolecular compound; highly sensitive direct fluorescent sensor for Cu2+. Ultrasonics Sonochemistry, 2018, 40(Pt A): 453–459

    Google Scholar 

  44. Etaiw S E H, Marie H. Ultrasonic synthesis of 1D-Zn(II) and La(III) supramolecular coordination polymers nanoparticles, fluorescence, sensing and photocatalytic property. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 478–491

    Google Scholar 

  45. Taylor K M L, Jin A, Lin W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angewandte Chemie International Edition, 2008, 47(40): 7722–7725

    Google Scholar 

  46. Zhao Y X, Nie Z W, Shi M M, et al. Cerium-based porous coordination polymers with hierarchical superstructures: fabrication, formation mechanism and their thermal conversion to hierarchical CeO2. Inorganic Chemistry Frontiers, 2015, 2(6): 567–575

    Google Scholar 

  47. Li S S, Ji Y H, Zhang S Q, et al. Fabrication of Yb3+/Er3+ codoped yttrium-based coordination polymer hierarchical micro/nanostructures: upconversion luminescence properties and thermal conversion to the corresponding oxides. CrystEng-Comm, 2016, 18(36): 6809–6816

    Google Scholar 

  48. Chen W, Li S, Zeng C H, et al. Eu-based coordination polymers micro-flowers: preparation and luminescence properties. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27(2): 598–604

    Google Scholar 

  49. Liu K, You H, Jia G, et al. Hierarchically nanostructured coordination polymer: facile and rapid fabrication and tunable morphologies. Crystal Growth & Design, 2010, 10(2): 790–797

    Google Scholar 

  50. Liu K, You H, Zheng Y, et al. Facile and rapid fabrication of metal–organic framework nanobelts and color-tunable photoluminescence properties. Journal of Materials Chemistry, 2010, 20(16): 3272–3279

    Google Scholar 

  51. Xiao J D, Qiu L G, Ke F, et al. Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(31): 8745–8752

    Google Scholar 

  52. Dou Z, Yu J, Xu H, et al. Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions. Microporous and Mesoporous Materials, 2013, 179: 198–204

    Google Scholar 

  53. Yan B, Qiao X F. Rare-earth/inorganic/organic polymeric hybrid materials: molecular assembly, regular microstructure and photoluminescence. The Journal of Physical Chemistry B, 2007, 111(43): 12362–12374

    Google Scholar 

  54. Hu S M, Niu H L, Qiu L G, et al. Facile synthesis of highly luminescent nanowires of a terbium-based metal–organic framework by an ultrasonic-assisted method and their application as a luminescent probe for selective sensing of organoamines. Inorganic Chemistry Communications, 2012, 17: 147–150

    Google Scholar 

  55. Huang P, Wu F, Mao L. Target-triggered switching on and off the luminescence of lanthanide coordination polymer nanoparticles for selective and sensitive sensing of copper ions in rat brain. Analytical Chemistry, 2015, 87(13): 6834–6841

    Google Scholar 

  56. Li Q, Yuan Z, Qian J, et al. Chemical stability and tunable luminescence of Ln(III)–K(I) coordination polymers featuring a tracery-like architecture. RSC Advances, 2015, 5(61): 49110–49114

    Google Scholar 

  57. Zhong S, Bai L, Zhao D, et al. Europium(III) coordination polymers micro/nanostructures: A ligand structure effect. Materials Letters, 2013, 96: 125–127

    Google Scholar 

  58. Zheng Y, Sun X, Su H, et al. Phenanthroline modulated selfassembly of nano/micro-scaled metal–organic frameworks. Inorganic Chemistry Communications, 2015, 60: 119–121

    Google Scholar 

  59. Wang F, Deng K, Wu G, et al. Facile and large-scale syntheses of nanocrystal rare earth metal–organic frameworks at room temperature and their photoluminescence properties. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22(4): 680–685

    Google Scholar 

  60. Sutar P, Suresh V M, Maji T K. Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator. Chemical Communications, 2015, 51(48): 9876–9879

    Google Scholar 

  61. Park J U, Lee H J, Cho W, et al. Facile synthetic route for thickness and composition tunable hollow metal oxide spheres from silica-templated coordination polymers. Advanced Materials, 2011, 23(28): 3161–3164

    Google Scholar 

  62. Islamoglu T, Atilgan A, Moon S Y, et al. Cerium(IV) vs zirconium(IV) based metal–organic frameworks for detoxification of a nerve agent. Chemistry of Materials, 2017, 29(7): 2672–2675

    Google Scholar 

  63. Xu G W, Wu Y P, Dong W W, et al. A multifunctional Tb-MOF for highly discriminative sensing of Eu3+/Dy3+ and as a catalyst support of Ag nanoparticles. Small, 2017, 13(22): 1602996

    Google Scholar 

  64. Malik M A, Wani M Y, Hashim M A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arabian Journal of Chemistry, 2012, 5(4): 397–417

    Google Scholar 

  65. Devaraju M K, Honma I. Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Advanced Energy Materials, 2012, 2(3): 284–297

    Google Scholar 

  66. Gao M R, Xu Y F, Jiang J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 2013, 42(7): 2986–3017

    Google Scholar 

  67. Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 2007, 53(2): 117–166

    Google Scholar 

  68. Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702

    Google Scholar 

  69. Nüchter M, Ondruschka B, Bonrath W, et al. Microwave assisted synthesis-acritical technology overview. Green Chemistry, 2004, 6(3): 128–141

    Google Scholar 

  70. Whittaker A G, Mingos D M P. The application of microwave heating to chemical syntheses. Journal of Microwave Power and Electromagnetic Energy, 1994, 29(4): 195–219

    Google Scholar 

  71. Yu J C, Hu X, Li Q, et al. Synthesis and characterization of core–shell selenium/carbon colloids and hollow carbon capsules. Chemistry, 2006, 12(2): 548–552

    Google Scholar 

  72. Bagheri S, Chandrappa K G, Hamid S B A. Facile synthesis of nano-sized ZnO by direct precipitation method. Der Pharma Chemica, 2013, 5(3): 265–270

    Google Scholar 

  73. Shamsipur M, Pourmortazavi S M, Hajimirsadeghi S S, et al. Applying Taguchi robust design to the optimization of synthesis of barium carbonate nanorods via direct precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 423: 35–41

    Google Scholar 

  74. Liu Y, Goebl J, Yin Y. Templated synthesis of nanostructured materials. Chemical Society Reviews, 2013, 42(7): 2610–2653

    Google Scholar 

  75. Jung S, Cho W, Lee H J, et al. Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angewandte Chemie International Edition, 2009, 48(8): 1459–1462

    Google Scholar 

  76. Liu F, Xue D. Chemical design of complex nanostructured metal oxides in solution. International Journal of Nanoscience, 2009, 8(6): 571–588

    Google Scholar 

  77. Husein M M, Nassar N N. Nanoparticle preparation using the single microemulsions scheme. Current Nanoscience, 2008, 4(4): 370–380

    Google Scholar 

  78. Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2003, 2(3): 145–150

    Google Scholar 

  79. Pileni M P. Mesostructured fluids in oil-rich regions: structural and templating approaches. Langmuir, 2001, 17(24): 7476–7486

    Google Scholar 

  80. López-Quintela M A, Tojo C, Blanco M C, et al. Microemulsion dynamics and reactions in microemulsions. Current Opinion in Colloid & Interface Science, 2004, 9(3–4): 264–278

    Google Scholar 

  81. Cushing B L, Kolesnichenko V L, O’Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews, 2004, 104(9): 3893–3946

    Google Scholar 

  82. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Advanced Drug Delivery Reviews, 2002, 54(Suppl 1): S77–S98

    Google Scholar 

  83. Lisiecki I, Billoudet F, Pileni M P. Syntheses of copper nanoparticles in gelified microemulsion and in reverse micelles. Journal of Molecular Liquids, 1997, 72(1–3): 251–261

    Google Scholar 

  84. Carné A, Carbonell C, Imaz I, et al. Nanoscale metal–organic materials. Chemical Society Reviews, 2011, 40(1): 291–305

    Google Scholar 

  85. Suslick K S, Flannigan D J. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annual Review of Physical Chemistry, 2008, 59(1): 659–683

    Google Scholar 

  86. Suslick K S. Sonochemistry. Science, 1990, 247(4949): 1439–1445

    Google Scholar 

  87. Xu H, Zeiger B W, Suslick K S. Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 2013, 42(7): 2555–2567

    Google Scholar 

  88. Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004, 11(2): 47–55

    Google Scholar 

  89. Suslick K S, Price G J. Applications of ultrasound to materials chemistry. Annual Review of Materials Science, 1999, 29(1): 295–326

    Google Scholar 

  90. Zaitoun M A, Al-Tarawneh S. Effect of varying lanthanide local coordination sphere on luminescence properties illustrated by selected inorganic and organic rare earth complexes synthesized in sol–gel host glasses. Journal of Luminescence, 2011, 131(8): 1795–1801

    Google Scholar 

  91. Cui Y, Yue Y, Qian G, et al. Luminescent functional metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162

    Google Scholar 

  92. Kim J S, Rieter W J, Taylor K M L, et al. Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. Journal of the American Chemical Society, 2007, 129(29): 8962–8963

    Google Scholar 

  93. Taylor K M L, Rieter W J, Lin W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society, 2008, 130(44): 14358–14359

    Google Scholar 

  94. Shang K X, Sun J, Hu D C, et al. Six Ln(III) coordination polymers with a semirigid tetracarboxylic acid ligand: bifunctional luminescence sensing, NIR-luminescent emission, and magnetic properties. Crystal Growth & Design, 2018, 18(4): 2112–2120

    Google Scholar 

  95. Della Rocca J, Lin W. Nanoscale metal–organic frameworks: magnetic resonance imaging contrast agents and beyond. European Journal of Inorganic Chemistry, 2010, 2010(24): 3725–3734

    Google Scholar 

  96. Della Rocca J, Liu D, Lin W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Accounts of Chemical Research, 2011, 44(10): 957–968

    Google Scholar 

  97. Ma Z, Moulton B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coordination Chemistry Reviews, 2011, 255(15–16): 1623–1641

    Google Scholar 

  98. An J, Geib S J, Rosi N L. Cation-triggered drug release from a porous zinc-adeninate metal–organic framework. Journal of the American Chemical Society, 2009, 131(24): 8376–8377

    Google Scholar 

  99. Leong W L, Vittal J J. One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chemical Reviews, 2011, 111(2): 688–764

    Google Scholar 

  100. Vittal J J, Ng M T. Chemistry of metal thio-and selenocarboxylates: precursors for metal sulfide/selenide materials, thin films, and nanocrystals. Accounts of Chemical Research, 2006, 39(11): 869–877

    Google Scholar 

  101. Masoomi M Y, Morsali A. Applications of metal–organic coordination polymers as precursors for preparation of nanomaterials. Coordination Chemistry Reviews, 2012, 256(23–24): 2921–2943

    Google Scholar 

  102. Meilikhov M, Yusenko K, Esken D, et al. Metals@MOFsloading MOFs with metal nanoparticles for hybrid functions. European Journal of Inorganic Chemistry, 2010, 2010(24): 3701–3714

    Google Scholar 

  103. Jiang H L, Xu Q. Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 2011, 47(12): 3351–3370

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21641008 and 91622105) and the Jiangxi Provincial Department of Science and Technology (Grant Nos. 20161BAB203083 and 20172BCB22008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengliang Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Wang, L., Zeng, C. et al. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications. Front. Mater. Sci. 12, 327–347 (2018). https://doi.org/10.1007/s11706-018-0444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-018-0444-x

Keywords

Navigation