Skip to main content

Composition and Organization of Major Repeat Components in the Brassica oleracea Genome

  • Chapter
  • First Online:
The Brassica oleracea Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 321 Accesses

Abstract

The release of the Brassica oleracea draft genome sequence opens numerous opportunities to understand its genome structure and evolution. A 515-Mb (82% of the total genome) high-quality draft assembly was made up of 56% repetitive elements (REs). Although the contribution of REs to genome structures, organization and evolution is relatively poorly understood, advances in bioinformatics have enabled genome-wide quantification and downstream analyses of REs in plant genomes. This chapter provides an overview of the classification, abundance, and genomic organization of the major types of REs that make up the main repeat component in the B. oleracea genome. Eight elements namely, 5S and 45S nrDNA, centromeric and subtelomeric tandem repeats (CentBo1, CentBo2, BoSTRa/b, and BoSTRc), a centromeric retrotransposon (BoCRB), and a Ty1/copia LTR retrotransposon (BoCopia-1) were classified into this repeat component. Whole-genome shotgun (WGS) mapping and molecular cytogenetic analyses provided an in-depth view of the abundance and distribution of these repeats both in the in silico generated draft assembly and mitotic metaphase chromosomes. The information not only validates the abundance of repeat elements in draft genomes, but also provide an avenue for understanding overall genome structure.

N. E. Waminal and S. Perumal—Equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkan C, Sajjadian S, Eichler EE (2011) Limitations of next-generation genome sequence assembly. Nat Methods 8:61–65

    Article  CAS  PubMed  Google Scholar 

  • Arias T, Beilstein MA, Tang M, McKain MR, Pires JC (2014) Diversification times among Brassica (Brassicaceae) crops suggest hybrid formation after 20 million years of divergence. Am J Bot 101:86–91

    Article  PubMed  Google Scholar 

  • Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A (2014) The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 6:776–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biemont C (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186:1085–1093

    Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  • Cabo S, Carvalho A, Martin A, Lima-Brito J (2014) Structural rearrangements detected in newly-formed hexaploid tritordeum after three sequential FISH experiments with repetitive DNA sequences. J Genet 93:183–188

    Article  PubMed  Google Scholar 

  • Chadwick BP (2009) Macrosatellite epigenetics: the two faces of DXZ4 and D4Z4. Chromosoma 118:675–81

    Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, da Silva C, Just J, Falentin C, Koh CS, le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, le Paslier M-C, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury J-M, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  PubMed  Google Scholar 

  • Choi HI, Waminal NE, Park HM, Kim NH, Choi BS, Park M, Choi D, Lim YP, Kwon SJ, Park BS, Kim HH, Yang TJ (2014) Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J 77:906–916

    Article  CAS  PubMed  Google Scholar 

  • Claros MG, Bautista R, Guerrero-Fernandez D, Benzerki H, Seoane P, Fernandez-Pozo N (2012) Why assembling plant genome sequences is so challenging. Biology (Basel) 1:439–459

    Google Scholar 

  • Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  CAS  PubMed  Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Google Scholar 

  • Dover GA (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genetics 2:159–165

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2–9

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao D, Jiang N, Wing RA, Jiang J, Jackson SA (2015) Transposons play an important role in the evolution and diversification of centromeres among closely related species. Front Plant Science 6

    Google Scholar 

  • Goerner-Potvin P, Bourque G (2018) Computational tools to unmask transposable elements. Nat Rev Genet 19:688–704

    Article  CAS  PubMed  Google Scholar 

  • Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Ann Rev Med 63:35–61

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH Jr (2012) MOV10 RNA Helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet 8:e1002941

    Google Scholar 

  • Hall SE, Luo S, Hall AE, Preuss D (2005) Differential rates of local and global homogenization in centromere satellites from arabidopsis relatives. Genetics 170:1913–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190

    Article  CAS  PubMed  Google Scholar 

  • Hardman N (1986) Structure and function of repetitive DNA in eukaryotes. Biochem J 234:1–11

    Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, Van Der Vossen EA, Wu Y, Guo J, He J, Jia Z, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Fang L, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Li S, Zhang X, Wang J, Sun R, Zhang B, Jiang S, Du Y (2009) The genome of the cucumber, Cucumis sativus L. Nat Gene 41:1275–1281

    Google Scholar 

  • Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, Malla S, Marriott H, Nieto T, O’Grady J, Olsen HE, Pedersen BS, Rhie A, Richardson H, Quinlan AR, Snutch TP, Tee L, Paten B, Phillippy AM, Simpson JT, Loman NJ, Loose M (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345

    Google Scholar 

  • Jakse J, Meyer JD, Suzuki G, McCallum J, Cheung F, Town CD, Havey MJ (2008) Pilot sequencing of onion genomic DNA reveals fragments of transposable elements, low gene densities, and significant gene enrichment after methyl filtration. Mol Genet Genom 280:287–292

    Article  CAS  Google Scholar 

  • Jiang J (2013) Centromere evolution. Plant Centromere Biology. Wiley-Blackwell

    Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Kelly Dawe R (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Google Scholar 

  • Jiao W-B, Schneeberger K (2017) The impact of third generation genomic technologies on plant genome assembly. Curr Opin Plant Biol 36:64–70

    Article  CAS  PubMed  Google Scholar 

  • Khrustaleva LI, Kik C (2001) Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J 25:699–707

    Article  CAS  PubMed  Google Scholar 

  • Kim NH, Jayakodi M, Lee SC, Choi BS, Jang W, Lee J, Kim HH, Waminal NE, Lakshmanan M, van Nguyen B, Lee YS, Park HS, Koo HJ, Park JY, Perumal S, Joh HJ, Lee H, Kim J, Kim IS, Kim K, Koduru L, Kang KB, Sung SH, Yu Y, Park DS, Choi D, Seo E, Kim S, Kim YC, Hyun DY, Park YI, Kim C, Lee TH, Kim HU, Soh MS, Lee Y, In JG, Kim HS, Kim YM, Yang DC, Wing RA, Lee DY, Paterson AH, Yang TJ (2018) Genome and evolution of the shade-requiring medicinal herb Panax ginseng. Plant Biotechnol J 16:1904–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koo DH, Hong CP, Batley J, Chung YS, Edwards D, Bang JW, Hur Y, Lim YP (2011) Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97:173–185

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Danilova T, Bauer MJ, Meyer JM, Holland JJ, Jensen MD, Birchler JA (2007a) Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175:1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb JC, Meyer JM, Corcoran B, Kato A, Han F, Birchler JA (2007b) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Res 15:33–49

    Article  CAS  PubMed  Google Scholar 

  • Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells 19:436–444

    CAS  PubMed  Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Xia P, Wing A, Zhang Q, Luo M (2012) Dynamic intra-japonica subspecies variation and resource application. Mol Plant 5:218–230

    Google Scholar 

  • Lisch D (2012) How important are transposons for plant evolution? Nat Rev Gene 14:49

    Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T-J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park B-S, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T-H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Kejnovsky E, Neumann P, Novak P, Koblizkova A, Vyskot B (2011) Next generation sequencing-based analysis of repetitive DNA in the model dioecious [corrected] plant Silene latifolia. PLoS One 6:e27335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macas J, Neumann P, Navratilova A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427

    Google Scholar 

  • Maumus F, Quesneville H (2014) Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLoS One 9:e94101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meagher TR, Vassiliadis C (2005) Phenotypic impacts of repetitive DNA in flowering plants. New Phytol 168:71–80

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Goel S, Raina SN, Rajpal VR (2014) Significance of satellite DNA revealed by conservation of a widespread repeat DNA sequence among angiosperms. Appl Biochem Biotechnol 173:1790–1801

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear dna: types, distribution, evolution and function. Genom Proteomics Bioinform 12:164–171

    Article  Google Scholar 

  • Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, Derisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SW (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10

    Article  PubMed  PubMed Central  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6

    Google Scholar 

  • Murukarthick J, Sampath P, Lee SC, Choi B-S, Senthil N, Liu S, Yang T-J (2014) BrassicaTED—a public database for utilization of miniature transposable elements in Brassica species. BMC Res Notes 7:379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot 7:389–452

    Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak R (1994) Mining treasures from ‘junk DNA’. Science 263:608–610

    Google Scholar 

  • Pagel M, Johnstone RA (1992) Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc Royal Soc Lond. Ser B: Biol Sci 249:119–124

    Google Scholar 

  • Pardue ML, Debaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Ann Rev Genet 37:485–511

    Article  CAS  PubMed  Google Scholar 

  • Perumal S, Waminal NE, Lee J, Lee J, Choi B-S, Kim HH, Grandbastien M-A, Yang T-J (2017) Elucidating the major hidden genomic components of the A, C, and AC genomes and their influence on Brassica evolution. Sci Rep 7:17986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piednoel M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, Temsch EM, Renner SS (2012) Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 29:3601–3611

    Article  CAS  PubMed  Google Scholar 

  • Sampath P, Lee S-C, Lee J, Izzah NK, Choi B-S, Jin M, Park B-S, Yang T-J (2013) Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome. BMC Plant Biol 13:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampath P, Yang T-J (2014) Comparative analysis of Cassandra TRIMs in three Brassicaceae genomes. Plant Genetic Resourc 12:S146–S150

    Article  CAS  Google Scholar 

  • Sampath P, Lee J, Cheng F, Wang X, Yang T-J (2015) Miniature Transposable Elements (mTEs): impacts and uses in the brassica genome. The Brassica rapa Genome. Springer

    Google Scholar 

  • Sampath P, Murukarthick J, Izzah NK, Lee J, Choi H-I, Shirasawa K, Choi B-S, Liu S, Nou I-S, Yang T-J (2014) Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PloS One 9:e94499

    Google Scholar 

  • Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Schatz MC, Witkowski J, McCombie WR (2012) Current challenges in de novo plant genome sequencing and assembly. Genome Biol 13:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulman AH, Wicker T (2013) A field guide to transposable elements. Plant transposons and genome dynamics in evolution. Wiley-Blackwell

    Google Scholar 

  • Shapiro JA, von Sternberg R (2005) Why repetitive DNA is essential to genome function. Biol Rev Camb Philos Soc 80:227–250

    Article  PubMed  Google Scholar 

  • Sharma S, Raina SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109:15–26

    Article  CAS  PubMed  Google Scholar 

  • Sobel JM, Streisfeld MA (2015) Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution 69:447–461

    Article  PubMed  Google Scholar 

  • Suzuki G, Ogaki Y, Hokimoto N, Xiao L, Kikuchi-Taura A, Harada C, Okayama R, Tsuru A, Onishi M, Saito N, Do GS, Lee SH, Ito T, Kanno A, Yamamoto M, Mukai Y (2012) Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. Plant Cell Rep 31:621–628

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:e1000326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vitte C, Fustier M-A, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Brief Funct Genom 13:276–295

    Article  Google Scholar 

  • Walsh JB (1987) Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics 115:553–567

    Google Scholar 

  • Waminal NE, Perumal S, Lim K-B, Park B-S, Kim HH, Yang T-J (2015) Genomic survey of the hidden components of the B. rapa genome. The Brassica rapa Genome. Springer

    Google Scholar 

  • Waminal NE, Perumal S, Liu S, Chalhoub B, Kim HH, Yang T-J (2018) Quantity, distribution, and evolution of major repeats in Brassica napus. In: Liu S, Snowdon R, Chalhoub B (eds) The Brassica napus genome. Springer International Publishing, Cham

    Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Xiao M, An Z, Ma B, Mason AS, Qian W, Li J, Fu D (2013) New insights into nested long terminal repeat retrotransposons in Brassica species. Mol Plant 6:470–482

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8

    Google Scholar 

  • Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo D-H, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of Centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5:e1000743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong ZY, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waminal, N.E., Perumal, S., Lee, J., Kim, H.H., Yang, TJ. (2021). Composition and Organization of Major Repeat Components in the Brassica oleracea Genome. In: Liu, S., Snowdon, R., Kole, C. (eds) The Brassica oleracea Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-31005-9_5

Download citation

Publish with us

Policies and ethics