Skip to main content

Synthetic Biology of Ginsenosides

  • Chapter
  • First Online:
The Ginseng Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 361 Accesses

Abstract

Ginsenosides, a group of triterpenoid saponins, are the signature compounds from plants in the genus Panax. Ginsenosides display a variety of pharmaceutical activities and have potential applications in various fields such as medicine, food, and cosmetics. However, the contents of these compounds, especially rare ginsenosides, are extremely low in Panax plants. Current approaches for the manufacture of ginsenosides mainly rely on the extraction of total saponins from Panax plants, followed by biological or chemical deglycosylation; such methods are high cost with low efficiency and are difficult to scale up. In recent decades, major developments have been achieved in synthetic biology, and many successful cases of the production of natural products via synthetic biology approaches have been reported. These studies demonstrate that synthetic biology provides potential alternative methods for the manufacture of ginsenosides. In this chapter, we briefly review ginsenoside bioactivity, chemical structure, and traditional methods of their manufacture, with a focus on tracing the recent progress of synthetic biology for ginsenoside production, including the elucidation of biosynthetic pathways and construction of cell factories for both natural and non-natural ginsenosides.

Pingping Wang and Lu Yu contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bae E-A et al (2004) Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 27:61–67

    Article  Google Scholar 

  • Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12(5):381–390

    Article  Google Scholar 

  • Cho WC et al (2006) Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol 550(1–3):173–179

    Article  Google Scholar 

  • Chun JH et al (2015) Production of the dammarene sapogenin (protopanaxadiol) in transgenic tobacco plants and cultured cells by heterologous expression of PgDDS and CYP716A47. Plant Cell Rep 34(9):1551–1560

    Article  Google Scholar 

  • Dai ZB et al (2014) Producing aglycons of ginsenosides in bakers’ yeast. Sci Rep 4

    Google Scholar 

  • Dai Z et al (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20:146–156

    Article  Google Scholar 

  • Dai L et al (2018) One-Pot synthesis of ginsenoside Rh2 and bioactive unnatural ginsenoside by coupling promiscuous glycosyltransferase from bacillus subtilis 168 to sucrose synthase. J Agric Food Chem 66(11):2830–2837

    Article  Google Scholar 

  • Galanie S et al (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095–1100

    Article  Google Scholar 

  • Gwak YS et al (2017) Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth. Planta 245(6):1105–1119

    Article  Google Scholar 

  • Gwak YS, Han JY, Choi YE (2018) Production of ginsenoside aglycone (protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginseng genes: PgDDS, CYP716A47, and CYP716A53v2. J Ginseng Res

    Google Scholar 

  • Han JY et al (2019) Genetically modified rice produces ginsenoside aglycone (protopanaxadiol). Planta

    Google Scholar 

  • Han BH et al (1982) Degradation of ginseng saponins under mild acidic conditions. Planta Med 44:146–149

    Article  Google Scholar 

  • Han JY et al (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47(12):1653–1662

    Article  Google Scholar 

  • Han JY et al (2011) The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52(12):2062–2073

    Article  Google Scholar 

  • Han JY et al (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53(9):1535–1545

    Article  Google Scholar 

  • Han JY et al (2013) The involvement of beta-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 54(12):2034–2046

    Article  Google Scholar 

  • Han JY, Wang HY, Choi YE (2014) Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep 33(2):225–233

    Article  Google Scholar 

  • Hasegawa H (2004) Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 95:153–157

    Article  Google Scholar 

  • Hu Z-F et al (2019) Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-II glucosides. Green Chem 21(12):3286–3299

    Article  Google Scholar 

  • Jung SC et al (2014) Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol 55(12):2177–2188

    Article  Google Scholar 

  • Lee MH et al (2012) Dammarenediol-II production confers TMV tolerance in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase. Plant Cell Physiol 53(1):173–182

    Article  Google Scholar 

  • Leung KW, Wong AS-T (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5:1–7

    Article  Google Scholar 

  • Li C et al (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 14:245

    Article  Google Scholar 

  • Li M et al (2015) De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1–11

    Article  Google Scholar 

  • Li DS et al (2016) Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli. Biotechnol Lett 38(4):603–609

    Article  Google Scholar 

  • Li D et al (2019) Production of triterpene ginsenoside compound K in the non-conventional yeast yarrowia lipolytica. J Agric Food Chem 67(9):2581–2588

    Article  Google Scholar 

  • Liang YL et al (2012) Heterologous expression of dammarenediol synthase gene in an engineered Saccharomyces cerevisiae. Letters in Appl Microb 55(5):323–329

    Article  Google Scholar 

  • Liu XB et al (2015) Metabolic engineering of Pichia pastoris for the production of dammarenediol-II. J Biotechnol 216:47–55

    Article  Google Scholar 

  • Nicol RW, Traquair JA, Bernards MA (2002) Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Can J Bot 80(5):557–562

    Article  Google Scholar 

  • Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12(5):355–367

    Article  Google Scholar 

  • Paddon CJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532

    Article  Google Scholar 

  • Park CS et al (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87(1):9–19

    Article  Google Scholar 

  • Rodriguez A et al (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181–188

    Article  Google Scholar 

  • Ruan CC et al (2010) Isolation and characterization of a new ginsenoside from the fresh root of Panax Ginseng. Molecules 15(4):2319–2325

    Article  Google Scholar 

  • Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16(Suppl):S28–S37

    Article  Google Scholar 

  • Tansakul P et al (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis. Panax ginseng. FEBS Lett 580(22):5143–5149

    Article  Google Scholar 

  • Wang J et al (2009) Isolation and purification of ginsenosides from plant extract of Panax quinquefolium L. by high performance centrifugal partition chromatography coupled with ELSD. Chromatographia 71(3–4):267–271

    Google Scholar 

  • Wang L et al (2014) The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast. Functi Inte Gen 14(3):545–557

    Article  Google Scholar 

  • Wang P et al (2015) Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metab Eng 29:97–105

    Article  Google Scholar 

  • Wang T et al (2016) Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J Ethnopharmacol 188:234–58

    Google Scholar 

  • Wang P et al (2019) Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov 5:5

    Article  Google Scholar 

  • Wei W et al (2015) Characterization of Panax ginseng UDP-Glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant 8(9):1412–1424

    Article  Google Scholar 

  • Xue L et al (2019) Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. BMC Genom 20(1):383

    Article  Google Scholar 

  • Yan X et al (2014) Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res 24(6):770–773

    Article  Google Scholar 

  • Yang WZ et al (2014) Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 106:7–24

    Google Scholar 

  • Yang XD et al (2015) A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100:208–220

    Article  Google Scholar 

  • Zhao S et al (2014) Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 33(3):393–400

    Article  Google Scholar 

  • Zhao F et al (2016a) Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol Bioeng 113(8):1787–1795

    Article  Google Scholar 

  • Zhao CC et al (2016b) Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in pichia pastoris. J Agri Food Chem 64(17):3380–3385

    Article  Google Scholar 

  • Zhao FL et al (2016c) Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in saccharomyces cerevisiae. Biotech Bioengin 113(8):1787–1795

    Article  Google Scholar 

  • Zhao FL et al (2017) Enhancing Saccharomyces cerevisiae reactive oxygen species and ethanol stress tolerance for high-level production of protopanoxadiol. Biores Technol 227:308–316

    Article  Google Scholar 

  • Zhuang Y et al (2017a) Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metabol Eng 42:25–32

    Article  Google Scholar 

  • Zhuang Y et al (2017b) Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metab Eng 42:25–32

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 21672228), the National Basic Research Program of China (2015CB755703), the Key Deployment Projects of the Chinese Academy of Sciences (No. KFZD-SW-215), the Strategic Biological Resources Service Network Plan of the Chinese Academy of Sciences (ZSYS-016), and the International Great Science Program of the Chinese Academy of Sciences (No. 153D31KYSB20170121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, P., Yu, L., Li, C., Yang, C., Zhou, Z., Yan, X. (2021). Synthetic Biology of Ginsenosides. In: Xu, J., Yang, TJ., Hu, Hy. (eds) The Ginseng Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-30347-1_13

Download citation

Publish with us

Policies and ethics