Skip to main content

Advanced Imaging Techniques and In vivo Histology: Current Status and Future Perspectives (Lower G.I.)

  • Living reference work entry
  • First Online:
Gastrointestinal and Pancreatico-Biliary Diseases: Advanced Diagnostic and Therapeutic Endoscopy

Abstract

Advanced imaging techniques for evaluation of gastrointestinal (GI) diseases have evolved significantly over 80 years since the first arrival of flexible endoscopy in 1960s. This has helped clinician to assist in identification and classification of lesions in GI tract, better visualization of luminal surface, and real time decision making. The basic principle of endoscopy is to localize the concerning premalignant/or malignant lesions in GI tract, treatment of the area of interest (either resection or biopsy), awaiting pathology results, and eventually plan a treatment and/or surveillance strategy. Advanced imaging techniques currently available in the market and used in clinical practice are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADR:

Adenoma detection rate

AFI:

Autofluorescence imaging endoscopy

AI:

Artificial intelligence

ASGE:

American Society of Gastrointestinal Endoscopy

ASGE PIVI:

American Society of Gastrointestinal Endoscopy Preservation and Incorporation of Valuable Endoscopic Innovations

BLI:

Blue light imaging

BE:

Barrett’s esophagus

CE:

Chromoendoscopy

CI:

Confidence interval

CNN:

Convoluted neural network

CRC:

Colorectal cancer

EMR:

Endoscopic mucosal resection

ESD:

Endoscopic mucosal dissection

FICE:

Flexible spectral imaging color enhancement

HD-WLE:

High definition white light endoscopy

HGD:

High grade dysplasia

I-SCAN:

I-SCAN digital contrast

JNET:

Japan NBI Expert team

LGD:

Low grade dysplasia

LST:

Laterally spreading tumor

MB-MMX:

Methylene blue formulation

NBI:

Narrow band imaging

NICE:

NBI international colorectal endoscopic

RCT:

Randomized controlled trial

SD-WLE:

Standard definition white-light endoscopy

SPS:

Serrated polyposis syndrome

SSL:

Sessile serrated lesion

UC:

Ulcerative colitis

WLE:

White-light endoscopy

References

  1. Tada M, Katoh S, Kohli Y, Kawai K (1976) On the dye spraying method in colonofiberscopy. Endoscopy 8(02):70–74

    Article  Google Scholar 

  2. Togashi K, Konishi F, Ishizuka T, Sato T, Senba S, Kanazawa K (1999) Efficacy of magnifying endoscopy in the differential diagnosis of neoplastic and non-neoplastic polyps of the large bowel. Dis Colon Rectum 42(12):1602–1608

    Article  CAS  PubMed  Google Scholar 

  3. Subramanian V, Ragunath K (2014) Advanced endoscopic imaging: a review of commercially available technologies. Clin Gastroenterol Hepatol 12(3):368–376.e361

    Article  PubMed  Google Scholar 

  4. Kwon RS, Adler DG, Chand B et al (2009) High-resolution and high-magnification endoscopes. Gastrointest Endosc 69(3):399–407

    Article  PubMed  Google Scholar 

  5. Kandel P, Wallace MB (2017) The role of adjunct imaging in endoscopic detection of dysplasia in Barrett’s esophagus. Gastrointest Endosc Clin 27(3):423–446

    Article  Google Scholar 

  6. Subramanian V, Mannath J, Hawkey C, Ragunath K (2011) High definition colonoscopy vs. standard video endoscopy for the detection of colonic polyps: a meta-analysis. Endoscopy 43(06):499–505

    Article  CAS  PubMed  Google Scholar 

  7. Pioche M, Denis A, Allescher H-D et al (2018) Impact of 2 generational improvements in colonoscopes on adenoma miss rates: results of a prospective randomized multicenter tandem study. Gastrointest Endosc 88(1):107–116

    Article  PubMed  Google Scholar 

  8. Zimmermann-Fraedrich K, Groth S, Sehner S et al (2018) Effects of two instrument-generation changes on adenoma detection rate during screening colonoscopy: results from a prospective randomized comparative study. Endoscopy 50(09):878–885

    Article  PubMed  Google Scholar 

  9. Brand EC, Wallace MB (2017) Strategies to increase adenoma detection rates. Curr Treat Options Gastroenterol 15(1):184–212

    Article  PubMed  Google Scholar 

  10. Rex DK, Schoenfeld PS, Cohen J et al (2015) Quality indicators for colonoscopy. Gastrointest Endosc 81(1):31–53

    Article  PubMed  Google Scholar 

  11. Corley DA, Jensen CD, Marks AR et al (2014) Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med 370(14):1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown SR, Baraza W, Din S, Riley S (2016) Chromoscopy versus conventional endoscopy for the detection of polyps in the colon and rectum. Cochrane Database Syst Rev 4:CD006439

    PubMed  Google Scholar 

  13. Repici A, Wallace MB, East JE et al (2019) Efficacy of per-oral methylene blue formulation for screening colonoscopy. Gastroenterology 156(8):2198–2207.e2191

    Article  CAS  PubMed  Google Scholar 

  14. Laine L, Kaltenbach T, Barkun A et al (2015) SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease. Gastroenterology 148(3):639–651.e628

    Article  PubMed  Google Scholar 

  15. Sengupta N, Yee E, Feuerstein JD (2016) Colorectal cancer screening in inflammatory bowel disease. Dig Dis Sci 61(4):980–989

    Article  PubMed  Google Scholar 

  16. Mooiweer E, Van der Meulen-de Jong A, Ponsioen C et al (2015) Chromoendoscopy for surveillance in inflammatory bowel disease does not increase neoplasia detection compared with conventional colonoscopy with random biopsies: results from a large retrospective study. Am J Gastroenterol 110(7):1014–1021

    Article  CAS  PubMed  Google Scholar 

  17. Kamiński MF, Hassan C, Bisschops R et al (2014) Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 46(5):435–449

    Article  PubMed  Google Scholar 

  18. Annese V, Daperno M, Rutter MD et al (2013) European evidence based consensus for endoscopy in inflammatory bowel disease. J Crohn’s Colitis 7(12):982–1018

    Article  Google Scholar 

  19. Manfredi MA, Dayyeh BKA, Bhat YM et al (2015) Electronic chromoendoscopy. Gastrointest Endosc 81(2):249–261

    Article  PubMed  Google Scholar 

  20. Machida H, Sano Y, Hamamoto Y et al (2004) Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy 36(12):1094–1098

    Article  CAS  PubMed  Google Scholar 

  21. Gono K, Obi T, Yamaguchi M et al (2004) Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt 9(3):568–578

    Article  PubMed  Google Scholar 

  22. Basford P, Longcroft-Wheaton G, Bhandari P (2015) ASGE Technology Committee reviews on real-time endoscopic assessment of the histology of diminutive colorectal polyps, and high-definition and high-magnification endoscopes. Gastrointest Endosc 82(6):1139–1140

    Article  PubMed  Google Scholar 

  23. Machida H, Sano Y, Hamamoto Y (2004) Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy 36:1094–1098

    Article  CAS  PubMed  Google Scholar 

  24. Hirata M, Tanaka S, Oka S (2007) Evaluation of microvessels in colorectal tumours by narrow band imaging (NBI) magnification. Gastrointest Endosc 66:945–952

    Article  PubMed  Google Scholar 

  25. Hayashi N, Tanaka S, Hewett DG (2013) Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (NICE) classification. Gastrointest Endosc 78:625–632

    Article  PubMed  Google Scholar 

  26. Hewett DG, Kaltenbach T, Sano Y (2012) Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterology 143:599–607

    Article  PubMed  Google Scholar 

  27. Sano Y, Tanaka S, Kudo SE (2016) NBI magnifying endoscopic classification of colorectal tumors proposed by the Japan NBI Expert Team (JNET). Dig Endosc 28:526–533

    Article  PubMed  Google Scholar 

  28. East JE, Vieth M, Rex DK (2015) Serrated lesions in colorectal cancer screening: detection, resection, pathology and surveillance. Gut 64:991–1000

    Article  PubMed  Google Scholar 

  29. Ijspeert JE, Bastiaansen BA, van Leerdam ME (2016) Development and validation of the WASP classification system for optical diagnosis of adenomas, hyperplastic polyps and sessile serrated adenomas/polyps. Gut 65:963–970

    Article  PubMed  Google Scholar 

  30. Jin XF, Chai TH, Shi JW, Yang XC, Sun QY (2012) Meta-analysis for evaluating the accuracy of endoscopy with narrow band imaging in detecting colorectal adenomas. J Gastroenterol Hepatol 27(5):882–887

    Article  PubMed  Google Scholar 

  31. Nagorni A, Bjelakovic G, Petrovic B (2012) Narrow band imaging versus conventional white light colonoscopy for the detection of colorectal polyps. Cochrane Database Syst Rev 1:CD008361

    PubMed  Google Scholar 

  32. Dinesen L, Chua TJ, Kaffes AJ (2012) Meta-analysis of narrow-band imaging versus conventional colonoscopy for adenoma detection. Gastrointest Endosc 75(3):604–611

    Article  PubMed  Google Scholar 

  33. Atkinson NS, Ket S, Bassett P et al (2019) Narrow-band imaging for detection of neoplasia at colonoscopy: a meta-analysis of data from individual patients in randomized controlled trials. Gastroenterology 157(2):462–471

    Article  PubMed  Google Scholar 

  34. (2019) Narrow-band imaging for detection of neoplasia at colonoscopy: a meta-analysis of data from individual patients in randomized controlled trials. Gastroenterology 157:462–471

    Google Scholar 

  35. Omata F, Ohde S, Deshpande GA, Kobayashi D, Masuda K, Fukui T (2014) Image-enhanced, chromo, and cap-assisted colonoscopy for improving adenoma/neoplasia detection rate: a systematic review and meta-analysis. Scand J Gastroenterol 49(2):222–237

    Article  PubMed  Google Scholar 

  36. Omata F, Ohde S, Deshpande GA, Kobayashi D, Masuda K, Fukui T (2014). Image-enhanced, chromo, and cap-assisted colonoscopy for improving adenoma/neoplasia detection rate: a systematic review and meta-analysis. (2014) Scand J Gastroenterol 49:222–237

    Google Scholar 

  37. Berzin TM, Parasa S, Wallace MB, Gross SA, Repici A, Sharma P (2020) Position statement on priorities for artificial intelligence in GI endoscopy: a report by the ASGE Task Force. Gastrointest Endosc 92:951–959

    Google Scholar 

  38. Yoshida N, Yagi N, Inada Y et al (2014) Ability of a novel blue laser imaging system for the diagnosis of colorectal polyps. Dig Endosc 26(2):250–258

    Article  PubMed  Google Scholar 

  39. Yoshida N, Hisabe T, Inada Y et al (2014) The ability of a novel blue laser imaging system for the diagnosis of invasion depth of colorectal neoplasms. J Gastroenterol 49(1):73–80

    Article  PubMed  Google Scholar 

  40. Yoshida N, Hisabe T, Hirose R et al (2015) Improvement in the visibility of colorectal polyps by using blue laser imaging (with video). Gastrointest Endosc 82(3):542–549

    Article  PubMed  Google Scholar 

  41. Ikematsu H, Sakamoto T, Togashi K et al (2017) Detectability of colorectal neoplastic lesions using a novel endoscopic system with blue laser imaging: a multicenter randomized controlled trial. Gastrointest Endosc 86(2):386–394

    Article  PubMed  Google Scholar 

  42. Shimoda R, Sakata Y, Fujise T et al (2017) The adenoma miss rate of blue-laser imaging vs. white-light imaging during colonoscopy: a randomized tandem trial. Endoscopy 49(2):186–190

    PubMed  Google Scholar 

  43. Rondonotti E, Paggi S, Amato A et al (2019) Blue-light imaging compared with high-definition white light for real-time histology prediction of colorectal polyps less than 1 centimeter: a prospective randomized study. Gastrointest Endosc 89(3):554–564.e551

    Article  PubMed  Google Scholar 

  44. Bisschops R, Hassan C, Bhandari P et al (2018) BASIC (BLI Adenoma Serrated International Classification) classification for colorectal polyp characterization with blue light imaging. Endoscopy 50(03):211–220

    Article  PubMed  Google Scholar 

  45. Rondonotti E, Hassan C, Andrealli A et al (2020) Clinical validation of BASIC classification for the resect and discard strategy for diminutive colorectal polyps. Clin Gastroenterol Hepatol 92:951–959

    Google Scholar 

  46. Rondonotti E, Hassan C, Andrealli A et al (2020) CLINICAL VALIDATION OF BLI ADENOMAS SERRATED INTERNATIONAL CLASSIFICATION (BASIC) FOR RESECT AND DISCARD STRATEGY FOR DIMINUTIVE COLORECTAL POLYPS (BIRD STUDY). Endoscopy 52(S 01):OP134

    Google Scholar 

  47. Okada M, Sakamoto H, Takezawa T et al (2016) Laterally spreading tumor of the rectum delineated with linked color imaging technology. Clin Endosc 49(2):207–208

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fukuda H, Miura Y, Hayashi Y et al (2015) Linked color imaging technology facilitates early detection of flat gastric cancers. Clin J Gastroenterol 8(6):385–389

    Article  PubMed  Google Scholar 

  49. Sun X, Dong T, Bi Y et al (2016) Linked color imaging application for improving the endoscopic diagnosis accuracy: a pilot study. Sci Rep 6:33473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Min M, Deng P, Zhang W, Sun X, Liu Y, Nong B (2017) Comparison of linked color imaging and white-light colonoscopy for detection of colorectal polyps: a multicenter, randomized, crossover trial. Gastrointest Endosc 86(4):724–730

    Article  PubMed  Google Scholar 

  51. Fujimoto D, Muguruma N, Okamoto K et al (2018) Linked color imaging enhances endoscopic detection of sessile serrated adenoma/polyps. Endosc Int Open 6(3):E322–E334

    Article  PubMed  PubMed Central  Google Scholar 

  52. Song L-MWK, Banerjee S, Desilets D et al (2011) Autofluorescence imaging. Gastrointest Endosc 73(4):647–650

    Article  PubMed  Google Scholar 

  53. Zhao Z-Y et al (2015) Detection and miss rates of autofluorescence imaging of adenomatous and polypoid lesions during colonoscopy: a systematic review and meta-analysis. Endosc Int Open 3:E226–E235

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kiesslich R, Burg J, Vieth M (2004) Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127:706–713

    Article  PubMed  Google Scholar 

  55. Chauhan, Shailendra S Dayyeh, Barham K Abu Bhat, Yasser M Gottlieb, Klaus T Hwang, Joo Ha Komanduri, Sri Konda, Vani Lo, Simon K Manfredi, Michael A Maple, John T (2014) Confocal laser endomicroscopy Gastrointest Endosc 80(6):928–938

    Google Scholar 

  56. Kiesslich R, Canto MI (2009) Confocal laser endomicroscopy. Gastrointest Endosc Clin N Am 19:261–272

    Article  PubMed  Google Scholar 

  57. Neumann H, Kiesslich R, Wallace MB (2010) Confocal laser endomicroscopy: technical advances and clinical applications. Gastroenterology 139:388–392

    Article  PubMed  Google Scholar 

  58. Kuiper T, Kiesslich R, Ponsioen C (2012) The learning curve, accuracy, and interobserver agreement of endoscope-based confocal laser endomicroscopy for the differentiation of colorectal lesions. Gastrointest Endosc 75:1211–1217

    Article  PubMed  Google Scholar 

  59. Wallace M, Lauwers GY, Chen Y (2011) Miami classification for probe-based confocal laser endomicroscopy. Endoscopy 43:882–891

    Article  CAS  PubMed  Google Scholar 

  60. Wallace MB, Sharma P, Lightdale C (2010) Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s esophagus with probe-based confocal laser endomicroscopy. Gastrointest Endosc 72:19–24

    Article  PubMed  PubMed Central  Google Scholar 

  61. De Palma GD, Staibano S, Siciliano S (2010) In vivo characterisation of superficial colorectal neoplastic lesions with high-resolution probe-based confocal laser endomicroscopy in combination with video-mosaicing: a feasibility study to enhance routine endoscopy. Dig Liver Dis 42:791–797

    Article  PubMed  Google Scholar 

  62. Becker V, Wallace MB, Fockens P et al (2010) Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs: first results in a porcine model (with videos). Gastrointest Endosc 71(7):1260–1266

    Article  PubMed  Google Scholar 

  63. Giovannini M, Caillol F, Monges G et al (2016) Endoscopic ultrasound-guided needle-based confocal laser endomicroscopy in solid pancreatic masses. Endoscopy 48(10):892–898

    Article  PubMed  Google Scholar 

  64. Kongkam P, Pittayanon R, Sampatanukul P et al (2016) Endoscopic ultrasound-guided needle-based confocal laser endomicroscopy for diagnosis of solid pancreatic lesions (ENES): a pilot study. Endosc Int Open 4(1):E17–E23

    PubMed  Google Scholar 

  65. Konda VJ, Aslanian HR, Wallace MB, Siddiqui UD, Hart J, Waxman I (2011) First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos). Gastrointest Endosc 74(5):1049–1060

    Article  PubMed  Google Scholar 

  66. Karstensen JG, Cârţână T, Constantinescu C et al (2018) Endoscopic ultrasound guided needle-based confocal laser endomicroscopy in solid pancreatic masses – a prospective validation study. Endosc Int Open 6(1):E78–e85

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang KK, Carr-Locke DL, Singh SK et al (2015) Use of probe-based confocal laser endomicroscopy (pCLE) in gastrointestinal applications. A consensus report based on clinical evidence. United European Gastroenterol J 3(3):230–254

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bhutani MS, Koduru P, Joshi V et al (2015) EUS-guided needle-based confocal laser endomicroscopy: a novel technique with emerging applications. Gastroenterol Hepatol 11(4):235

    Google Scholar 

  69. Lee JH, Wang TD (2016) Molecular endoscopy for targeted imaging in the digestive tract. Lancet Gastroenterol Hepatol 1(2):147–155

    Article  PubMed  Google Scholar 

  70. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  PubMed  Google Scholar 

  71. Zauber AG, Winawer SJ, O’Brien MJ et al (2012) Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 366(8):687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lieberman D, Moravec M, Holub J, Michaels L, Eisen G (2008) Polyp size and advanced histology in patients undergoing colonoscopy screening: implications for CT colonography. Gastroenterology 135(4):1100–1105

    Article  PubMed  Google Scholar 

  73. Rex DK, Overhiser AJ, Chen SC, Cummings OW, Ulbright TM (2009) Estimation of impact of American College of Radiology recommendations on CT colonography reporting for resection of high-risk adenoma findings. Am J Gastroenterol 104(1):149–153

    Article  PubMed  Google Scholar 

  74. Vleugels JL, Hazewinkel Y, Fockens P, Dekker E (2017) Natural history of diminutive and small colorectal polyps: a systematic literature review. Gastrointest Endosc 85(6):1169–1176.e1161

    Article  PubMed  Google Scholar 

  75. Vleugels JL, Hassan C, Senore C et al (2019) Diminutive polyps with advanced histologic features do not increase risk for metachronous advanced colon neoplasia. Gastroenterology 156(3):623–634.e623

    Article  PubMed  Google Scholar 

  76. Kandel P, Wallace MB (2019) Should we resect and discard low risk diminutive colon polyps. Clin Endosc 52(3):239–246

    Article  PubMed  PubMed Central  Google Scholar 

  77. IJspeert JE, Bastiaansen BA, Van Leerdam ME et al (2016) Development and validation of the WASP classification system for optical diagnosis of adenomas, hyperplastic polyps and sessile serrated adenomas/polyps. Gut 65(6):963–970

    Article  PubMed  Google Scholar 

  78. Hewett DG, Kaltenbach T, Sano Y et al (2012) Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterology 143(3):599–607.e591

    Article  PubMed  Google Scholar 

  79. Iacucci M, Trovato C, Daperno M et al (2018) Development and validation of the SIMPLE endoscopic classification of diminutive and small colorectal polyps. Endoscopy 50(08):779–789

    Article  PubMed  Google Scholar 

  80. Sano Y, Tanaka S, Se K et al (2016) Narrow-band imaging (NBI) magnifying endoscopic classification of colorectal tumors proposed by the Japan NBI Expert Team. Dig Endosc 28(5):526–533

    Article  PubMed  Google Scholar 

  81. Lieberman DA, Weiss DG, Harford WV et al (2007) Five-year colon surveillance after screening colonoscopy. Gastroenterology 133(4):1077–1085

    Article  PubMed  Google Scholar 

  82. Levin B, Lieberman DA, McFarland B et al (2008) Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology 134(5):1570–1595

    Article  CAS  PubMed  Google Scholar 

  83. Abu Dayyeh BK, Thosani N, Konda V et al (2015) ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc 81(3):502.e501–502.e516

    Article  Google Scholar 

  84. McGill SK, Evangelou E, Ioannidis JP, Soetikno RM, Kaltenbach T (2013) Narrow band imaging to differentiate neoplastic and non-neoplastic colorectal polyps in real time: a meta-analysis of diagnostic operating characteristics. Gut 62(12):1704–1713

    Article  PubMed  Google Scholar 

  85. Ladabaum U, Fioritto A, Mitani A et al (2013) Real-time optical biopsy of colon polyps with narrow band imaging in community practice does not yet meet key thresholds for clinical decisions. Gastroenterology 144(1):81–91

    Article  PubMed  Google Scholar 

  86. Willems P, Djinbachian R, Ditisheim S et al (2020) Uptake and barriers for implementation of the resect and discard strategy: an international survey. Endosc Int Open 08(05):E684–E692

    Article  Google Scholar 

  87. Soudagar AS, Nguyen M, Bhatia A, Rastogi A, Gupta N (2016) Are gastroenterologists willing to implement the “predict, resect, and discard” management strategy for diminutive colorectal polyps?: results from a national survey. J Clin Gastroenterol 50(5):e45–e49

    Article  PubMed  Google Scholar 

  88. Sakata S, Lee AHS, Kheir AO et al (2017) Patient acceptance of the optical diagnosis and misdiagnosis of diminutive colorectal polyps. Gastrointest Endosc 86(2):372–375.e372

    Article  PubMed  Google Scholar 

  89. Rex DK, Patel NJ, Vemulapalli KC (2015) A survey of patient acceptance of resect and discard for diminutive polyps. Gastrointest Endosc 82(2):376–380.e371

    Article  PubMed  Google Scholar 

  90. Topol E (2019) Deep medicine: how artificial intelligence can make healthcare human again. Hachette UK, ISBN: 1541644646

    Google Scholar 

  91. Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25(1):44–56

    Article  CAS  PubMed  Google Scholar 

  92. East JE, Rees CJ (2018) Making optical biopsy a clinical reality in colonoscopy. Lancet Gastroenterol Hepatol 3(1):10–12

    Article  PubMed  Google Scholar 

  93. Rees CJ, Rajasekhar PT, Wilson A et al (2017) Narrow band imaging optical diagnosis of small colorectal polyps in routine clinical practice: the Detect Inspect Characterise Resect and DISCARD 2 (DISCARD 2) study. Gut 66(5):887–895

    Article  PubMed  Google Scholar 

  94. Mahmud N, Cohen J, Tsourides K, Berzin TM (2015) Computer vision and augmented reality in gastrointestinal endoscopy. Gastroenterol Rep 3(3):179–184

    Article  Google Scholar 

  95. Lee CK, Park DI, Lee S-H et al (2011) Participation by experienced endoscopy nurses increases the detection rate of colon polyps during a screening colonoscopy: a multicenter, prospective, randomized study. Gastrointest Endosc 74(5):1094–1102

    Article  PubMed  Google Scholar 

  96. Chen P-J, Lin M-C, Lai M-J, Lin J-C, HH-S L, Tseng VS (2018) Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology 154(3):568–575

    Article  PubMed  Google Scholar 

  97. Aslanian HR, Shieh FK, Chan FW et al (2013) Nurse observation during colonoscopy increases polyp detection: a randomized prospective study. Am J Gastroenterol 108(2):166–172

    Article  PubMed  Google Scholar 

  98. Mori Y, Kudo S-e, Berzin TM, Misawa M, Takeda K (2017) Computer-aided diagnosis for colonoscopy. Endoscopy 49(8):813

    Article  PubMed  PubMed Central  Google Scholar 

  99. Urban G, Tripathi P, Alkayali T et al (2018) Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 155(4):1069–1078.e1068

    Article  PubMed  Google Scholar 

  100. Wang Y, Tavanapong W, Wong J, Oh JH, De Groen PC (2015) Polyp-alert: near real-time feedback during colonoscopy. Comput Methods Prog Biomed 120(3):164–179

    Article  Google Scholar 

  101. Mori Y, Se K, Mohmed HE et al (2019) Artificial intelligence and upper gastrointestinal endoscopy: current status and future perspective. Dig Endosc 31(4):378–388

    Article  PubMed  Google Scholar 

  102. Kudo Se MY, Misawa M et al (2019) Artificial intelligence and colonoscopy: current status and future perspectives. Dig Endosc 31(4):363–371

    Article  PubMed  Google Scholar 

  103. Wang P, Berzin TM, Brown JRG et al (2019) Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut 68(10):1813–1819

    Article  PubMed  Google Scholar 

  104. Figueiredo PN, Figueiredo IN, Pinto L, Kumar S, Tsai Y-HR, Mamonov AV (2019) Polyp detection with computer-aided diagnosis in white light colonoscopy: comparison of three different methods. Endosc Int Open 7(2):E209

    Article  PubMed  PubMed Central  Google Scholar 

  105. Byrne MF, Chapados N, Soudan F et al (2019) Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 68(1):94–100

    Article  PubMed  Google Scholar 

  106. Misawa M, S-e K, Mori Y et al (2017) Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. Int J Comput Assist Radiol Surg 12(5):757–766

    Article  PubMed  Google Scholar 

  107. Ito N, Kawahira H, Nakashima H, Uesato M, Miyauchi H, Matsubara H (2019) Endoscopic diagnostic support system for cT1b colorectal cancer using deep learning. Oncology 96(1):44–50

    Article  PubMed  Google Scholar 

  108. Lui TK, Wong KK, Mak LL, Ko MK, Tsao SK, Leung WK (2019) Endoscopic prediction of deeply submucosal invasive carcinoma with use of artificial intelligence. Endosc Int Open 7(4):E514

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ozawa T, Ishihara S, Fujishiro M et al (2019) Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest Endosc 89(2):416–421.e411

    Article  PubMed  Google Scholar 

  110. Itoh T, Kawahira H, Nakashima H, Yata N (2018) Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images. Endosc Int Open 6(2):E139–e144

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bah A, Saraga E, Armstrong D et al (1995) Endoscopic features of Helicobacter pylori-related gastritis. Endoscopy 27(8):593–596

    Article  CAS  PubMed  Google Scholar 

  112. Sehgal V, Rosenfeld A, Graham DG et al (2018) Machine learning creates a simple endoscopic classification system that improves dysplasia detection in Barrett’s oesophagus amongst non-expert endoscopists. Gastroenterol Res Pract 2018:9

    Google Scholar 

  113. Wu L, Zhou W, Wan X et al (2019) A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy 51(6):522–531

    Article  PubMed  Google Scholar 

  114. Byrne MF, Shahidi N, Rex DK (2017) Will computer-aided detection and diagnosis revolutionize colonoscopy? Gastroenterology 153(6):1460–1464.e1461

    Article  PubMed  Google Scholar 

  115. Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng VS (2018) Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology 154(3):568–575

    Article  PubMed  Google Scholar 

  116. Mori Y, S-e K, Misawa M et al (2018) Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med 169(6):357–366

    Article  PubMed  Google Scholar 

  117. Povyakalo AA, Alberdi E, Strigini L, Ayton P (2013) How to discriminate between computer-aided and computer-hindered decisions: a case study in mammography. Med Decis Mak 33(1):98–107

    Article  Google Scholar 

  118. Tsai TL, Fridsma DB, Gatti G (2003) Computer decision support as a source of interpretation error: the case of electrocardiograms. J Am Med Inform Assoc 10(5):478–483

    Article  PubMed  PubMed Central  Google Scholar 

  119. Vinsard DG, Mori Y, Misawa M et al (2019) Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointest Endosc 90(1):55–63

    Article  PubMed  Google Scholar 

  120. Paggi S, Rondonotti E, Amato A (2015) Narrow-band imaging in the prediction of surveillance intervals after polypectomy in community practice. Endoscopy 47:808–814

    Article  PubMed  Google Scholar 

  121. Soetikno R, Koay D, Kaltenbach T (2015) Implementing endoscopic optical diagnosis into practice: a green light at the horizon. Endoscopy 47:771–772

    Article  PubMed  Google Scholar 

Download references

Conflicts of Interest

Michael Wallace reports to following conflicts of interest

Consulting: Virgo Inc., Cosmo/Aries Pharmaceuticals, Anx Robotica (2019), Covidien, GI Supply

Research grants: Fujifilm, Boston Scientific, Olympus, Medtronic, NinePoint Medical, Cosmo/Aries Pharmaceuticals

Stock/Stock Options: Virgo Inc.

Consulting on behalf of Mayo Clinic: GI Supply (2018), Endokey, Endostart, Boston Scientific. Microtek

General payments/Minor Food and Beverage: Synergy Pharmaceuticals, Boston Scientific, Cook Medical

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Wallace .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kandel, P., Wallace, M.B. (2021). Advanced Imaging Techniques and In vivo Histology: Current Status and Future Perspectives (Lower G.I.). In: Testoni, P.A., Inoue, H., Wallace, M.B. (eds) Gastrointestinal and Pancreatico-Biliary Diseases: Advanced Diagnostic and Therapeutic Endoscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-29964-4_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29964-4_110-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29964-4

  • Online ISBN: 978-3-030-29964-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics