Skip to main content

Lipoxygenases and Their Function in Plant Innate Mechanism

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense

Abstract

Lipoxygenases are universally distributed non-heme iron-containing dioxygenases, widely  found in plants and animals. Lipoxygenases catalyzes the addition of an oxygen molecule to polyunsaturated fatty acids such as linoleic acid and linolenic acid. The syntheses of a group of acyclic or cyclic compounds collectively called oxylipins are initiated by LOX, which are products of fatty acid oxidation, with diverse functions in the cell. These oxylipins constitute a group of cyclic and acyclic compounds that coordinately amplify defense responses. Hydroperoxides transport calcium ions from outside to the inside of cell leading to activation of phospholipase A and release of polyunsaturated fatty acids from phospholipids of chloroplast membranes. These hydroperoxides are converted to oxylipins present in the chloroplast envelope by the allene oxide synthase or the hydroperoxide lyase. These phyto-oxylipins activate the gene expression resulting in a defense response against stress. Lipoxygenase pathway results in the production of traumatin, jasmonic acid, oxylipins, and volatile aldehydes that play an important role in wound healing, synthesis of antimicrobial substances in host–pathogen interactions, and membrane damage during the hypersensitive response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen JP (2009) Hydrolyzable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. J Insect Physiol 55:297–304

    Article  CAS  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16(5):561–569

    Article  CAS  Google Scholar 

  • Birkenmeier GF, Ryan CA (1998) Wound signaling in tomato plants. Evidence that ABA is not a primary signal for defense gene activation. Plant Physiol 117(2):687–693

    Article  CAS  Google Scholar 

  • Blee E, Joyard J (1996) Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110:445–454

    Article  CAS  Google Scholar 

  • Campos-Vargas R, Saltveit ME (2002) Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol Plant 114(1):73–84

    Article  CAS  Google Scholar 

  • Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic-methyl-ester. Phytopathology 83(10):1054–1062

    Article  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  Google Scholar 

  • Croft KPC, Juttner F, Slusarenko AJ (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol 101:13–24

    Article  CAS  Google Scholar 

  • Dickens JC (2006) Plant volatiles moderate response to aggregation to pheromone in Colorado potato beetle. J Appl Entomol 130:26–31

    Article  Google Scholar 

  • Eckardt NA (2008) Oxylipin signaling in plant stress responses. Plant Cell 20:495–497

    Article  CAS  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002

    Article  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  CAS  Google Scholar 

  • Fukuda A, Nakamura Y, Ohigashi H, Osawa T, Uchida K (1997) Cellular response to the redox active lipid peroxidation products: induction of glutathione S-transferase P by 4-hydroxy-2-nonenal. Biochem Biophys Res Commun 236(2):505–509

    Article  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152(2):948–967

    Article  CAS  Google Scholar 

  • Kenton P, Mur LAJ, Atzorn R, Wasternack C, Draper J (1999) Jasmonic acid accumulation in tobacco hypersensitive response lesions. Mol Plant-Microbe Interact 12:74–78

    Article  CAS  Google Scholar 

  • Koshio K, Takahashi H, Ota Y (1995) Induction of browning of male flowers of Cryptomeria japonica by treatment with fatty acids: mechanism and the role of trans-2-hexenal. Plant Cell Physiol 36(8):1511–1517

    CAS  Google Scholar 

  • Kost C, Heil M (2005) Increased availability of extraforal nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic Appl Ecol 6:237–248

    Article  Google Scholar 

  • Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163(3):348–357

    Article  CAS  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot 55(395):181–188

    Article  CAS  Google Scholar 

  • Macri F, Braidot E, Petrussa E, Vianello A (1994) Lipoxygenase activity associated with isolated soybean plasma membranes. Biochim Biophys Acta 1215:109–114

    Article  CAS  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  Google Scholar 

  • Montillet JL, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel JP, Battesti C, Inze D, Van Breusegem F, Triantaphylides C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526

    Article  CAS  Google Scholar 

  • Neto GC, Kono Y, Hyakutake H, Watanabe M, Suzuki Y, Sakurai A (1991) Isolation and identification of (-)-jasmonic acid from wild rice Oryza officinalis, as an antifungal substance. Agric Biol Chem 55:3097–3098

    Google Scholar 

  • Ohta H, Shida K, Peng YL, Furusawa I, Shishiyama J, Aibara S, Morita Y (1990) The occurrence of lipid hydroperoxide-decomposing activities in rice and the relationship of such activities to the formation of antifungal substances. Plant Cell Physiol 31:1117–1122

    CAS  Google Scholar 

  • Ozeretskovskaya OL, Vasyukova NI, Chalenko GI, Gerasimova NG, Revina TA, Valueva TA (2009) Wound healing and induced resistance in potato tubers. Appl Biochem Microbiol 45(2):199–203

    Article  CAS  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31(1):1–12

    Article  Google Scholar 

  • Pauwels L, Inze D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91

    Article  CAS  Google Scholar 

  • Pena-Cortes H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92(10):4106–4113

    Article  CAS  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130(1):15–21

    Article  CAS  Google Scholar 

  • Rance I, Fournier J, Esquerre-Tugaye MT (1998) The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci USA 95:6554–6559

    Article  CAS  Google Scholar 

  • Ricker KE, Bostock RM (1994) Eicosanoids in the Phytophthora infestans-potato interaction: lipoxygenase metabolism of arachidonic acid and biological activities of selected lipoxygenase products. Physiol Mol Plant Pathol 44:65–80

    Article  CAS  Google Scholar 

  • Rosahl S (1996) Lipoxygenases in plants—their role in development and stress response. Z Naturforsch 51c:123–138

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2009) Effects of exogenous abscisic acid on some physiological responses in popular aromatic indicia rice compared with those from two traditional nonaromatic indicia rice cultivars. Acta Physiol Plant 31(5):915–926

    Article  CAS  Google Scholar 

  • Rusterucci C, Montillet JL, Agnel JP, Battesti C, Alonso B, Knoll A, Bessoule JJ, Etienne P, Suty L, Blein JP et al (1999) Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein of tobacco leaves. J Biol Chem 274:36446–36455

    Article  CAS  Google Scholar 

  • Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V (2013) Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep 32(7):1085–1098

    Article  CAS  Google Scholar 

  • Savchenko TV, Zastrijnaja OM, Klimov VV (2014) Oxylipins and plant abiotic stress resistance. Biochemistry (Mosc) 79(4):362–375

    Article  CAS  Google Scholar 

  • Shivaji R, Camas A, Ankala A, Engelberth J, Tumlinson JH, Williams WP et al (2010) Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize. J Chem Ecol 36:179–191

    Article  CAS  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Ann Rev Plant Physiol Plant Mol Biol 42:145–188

    Article  CAS  Google Scholar 

  • Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C (2003) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato—amplification in wound signalling. Plant J 33(3):577–589

    Article  CAS  Google Scholar 

  • Ulloa RM, Raices M, MacIntosh GC, Maldonado S, Tellez-Inon MT (2002) Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum. Physiol Plant 115:417–427

    Article  CAS  Google Scholar 

  • Vellosillo T, Martinez M, Lopez MA, Vicente J, Cascon T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831–846

    Article  CAS  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111(6):1021–1058

    Article  CAS  Google Scholar 

  • Wasternack C,  Forner S,  Strnad M, Hause B (2013) Jasmonates in flower and seed development. Biochimie 95(1):79–85

    Article  CAS  Google Scholar 

  • Weber H, Chetelat A, Caldelari D, Farmer EE (1999) Divinyl ether fatty acid synthesis in late blight-diseased potato leaves. Plant Cell 11:485–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woldemariam MG, Ahern K, Jander G, Tzin V (2018) A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signal Behav 13(1):e1422462

    Article  Google Scholar 

  • Zhang KW, An Y, Hu Z (2005) Relationship between lipoxygenase and ABA and JA in wounded signal transduction of healthy populous seedlings. Forest Res 18(3):300–304

    CAS  Google Scholar 

  • Zhang SZ, Hau BZ, Zhang F (2008) Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod-Plant Interact 2:209–213

    Article  Google Scholar 

  • Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z (2009) Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Prot 28:435–442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, M., Udayashankar, A.C. (2019). Lipoxygenases and Their Function in Plant Innate Mechanism. In: Jogaiah, S., Abdelrahman, M. (eds) Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-27165-7_8

Download citation

Publish with us

Policies and ethics