Skip to main content
Log in

Plants on Constant Alert: Elevated Levels of Jasmonic Acid and Jasmonate-Induced Transcripts in Caterpillar-Resistant Maize

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

This study was conducted to determine if constitutive levels of jasmonic acid (JA) and other octadecanoid compounds were elevated prior to herbivory in a maize genotype with documented resistance to fall armyworm (Spodoptera frugiperda) and other lepidopteran pests. The resistant inbred Mp708 had approximately 3-fold higher levels of jasmonic acid (JA) prior to herbivore feeding than the susceptible inbred Tx601. Constitutive levels of cis-12-oxo-phytodienoic acid (OPDA) also were higher in Mp708 than Tx601. In addition, the constitutive expression of JA-inducible genes, including those in the JA biosynthetic pathway, was higher in Mp708 than Tx601. In response to herbivory, Mp708 generated comparatively higher levels of hydrogen peroxide, and had a greater abundance of NADPH oxidase transcripts before and after caterpillar feeding. Before herbivore feeding, low levels of transcripts encoding the maize insect resistance cysteine protease (Mir1-CP) and the Mir1-CP protein were detected consistently. Thus, Mp708 appears to have a portion of its defense pathway primed, which results in constitutive defenses and the ability to mount a stronger defense when caterpillars attack. Although the molecular mechanisms that regulate the constitutive accumulation of JA in Mp708 are unknown, it might account for its enhanced resistance to lepidopteran pests. This genotype could be valuable in studying the signaling pathways that maize uses to response to insect herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ankala, A., Wilkinson, J., Williams, W.P., and Luthe D.S. 2009. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. Mol. Plant Microbe Interact. (in press).

  • Balbi, V. and Devoto, A. 2008. Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 177:301–318.

    CAS  PubMed  Google Scholar 

  • Beckers, G. J.M. and Conrath, U. 2007. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10:425–431.

    Article  PubMed  Google Scholar 

  • Biesgen, C. and Weiler, E.W. 1999. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis thaliana. Planta 208:155–165.

    Article  CAS  PubMed  Google Scholar 

  • Bonaventure, G., Gfeller, A., Proebsting, W.M., Hortensteiner, S., Chetelat, A., Martinoia, E., and Farmer, E.E. 2007a. A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J. 49:889–898.

    Article  CAS  Google Scholar 

  • Bonaventure, G., Gfeller, A., Rodriguez, V.M., Armand, F., and Farmer, E.E. 2007b. The fou2 gain-of-function allele and the wild-type allele of Two Pore Channel 1 contribute to different extents or by different mechanisms to defense gene expression in Arabidopsis. Plant Cell Physiol. 48:1775–1789.

    Article  CAS  Google Scholar 

  • Böttcher, C. and Pollman, S. 2009. Plant oxylipins: Plant responses to 12-oxo-phytodecanoic acid are governed by its specific structural and functional properties. FEBS J. 276: 4693–4704.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, T.D., Willcox, M.C., Williams, W.P., and Buckley, P. M. 2005. Quantitative trait loci conferring resistance to fall armyworm and southwestern corn borer leaf feeding damage. Crop Sci. 45:2430–2434.

    Article  CAS  Google Scholar 

  • Brooks, T.D., Bushman, B.S., Williams, W.P., Mcmullen, M.D., and Buckley, P.M. 2007. Genetic basis of resistance to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) leaf-feeding damage in maize. J. Econ. Entomol. 100:1470–1475.

    Article  CAS  PubMed  Google Scholar 

  • Browse, J. and Howe, G.A. 2008. New weapons and a rapid response against insect attack. Plant Physiol. 146:832–838.

    Article  CAS  PubMed  Google Scholar 

  • Cano-Delgado, A.I., Metzlaff, K., and Bevan, M.W. 2000. The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127:3395–3405.

    CAS  PubMed  Google Scholar 

  • Cano-Delgado, A. I., Penfield, S., Smith, C., Catley, M., and Bevan, M. 2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34:351–362.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y.M., Luthe, D.S., Davi, F.M., and Williams, W.P. 2000. Influence of whorl region from resistant and susceptible corn genotypes on fall armyworm (Lepidoptera: Noctuidae) growth and development. J. Econ. Entomol. 93:477–483.

    Article  CAS  PubMed  Google Scholar 

  • Cordero, M.J., Raventos, D., and Sansegundo, B. 1994. Expression of a maize proteinase-inhibitor gene is induced in response to wounding and fungal infection—systemic wound-response of a monocot gene. Plant J. 6:141–150.

    Article  CAS  PubMed  Google Scholar 

  • Davis, F., Williams, W.P., Mihm, J., Barry, B.E., Overman, L.J., Wiseman, B.R., and Riley, T.J. 1988. Resistance to multiple Lepidopterous species in tropical derived corn germplasm. Miss Agri. For. Exp. Stn. Tech. Bull. 157:1–6.

    Google Scholar 

  • Doke, N., Miura, Y., Sanchez, L.M., Park, H.J., Noritake, T., Yoshioka, H., and Kawakita, K. 1996. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence—a review. Gene 179:45–51.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, C. and Turner, J.G. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–33.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, C., Karafyllidis, I., Wasternack, C., and Turner, J.G. 2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566.

    Article  CAS  PubMed  Google Scholar 

  • Engelberth, J., Schmelz, E.A., Alborn, H.T., Cardoza, Y.J., Huang, J., and Tumlinson, J.H. 2003. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal. Biochem. 312:242–250.

    Article  CAS  PubMed  Google Scholar 

  • Engelberth, J., Alborn, H.T., Schmelz, E.A., and Tumlinson, J.H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. USA 101:1781–1785.

    Article  CAS  PubMed  Google Scholar 

  • Engelberth, J., Seidl-Adams, I., Schultz, J.C., and Tumlinson, J.H. 2007. Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxophytodienoic acid reductases in Zea mays. Mol. Plant Microbe Interact. 20:707–716.

    Article  CAS  PubMed  Google Scholar 

  • Erb, M., Flors, V., Karlen, D., De Lange, E., Planchamp, C., D'Alessandro, M., Turlings, T.C., and Ton, J. 2009. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J. 59:292–302.

    Article  CAS  PubMed  Google Scholar 

  • Falco, M.C., Marbach, P.A.S., Pompermayer, P., Lopes, F.C.C., and Silva-Filho, M.C. 2001. Mechanisms of sugarcane response to herbivory. Genet. Mol. Biol. 24:113–122.

    Article  CAS  Google Scholar 

  • Farag, M.A., Fokar, M., Zhang, H.A. Allen, R.D., and Pare, P.W. 2005. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, E.E. and Ryan, C.A. 1992. Octadecanoid precursors of jasmonic activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4:129–134.

    Article  CAS  PubMed  Google Scholar 

  • Frahry, G. and Schopfer, P. 1998. Inhibition of O2-reducing activity of horseradish peroxidase by diphenyleneiodonium. Phytochemistry 48:223–227.

    Article  CAS  PubMed  Google Scholar 

  • Frost, C.J., Mescher, M.C., Carlson, J.E., and De Mores, C.M. 2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 146:818–824.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Starr, J., Gobel, C., Engelberth, J., Feussner, I., Tumlinson, J., and Kolomiets, M. 2008. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol. Plant Microbe Interact. 21:98–109.

    Article  CAS  PubMed  Google Scholar 

  • Harfouche, A.L., Shivaji, R., Stocker, R., Williams,W.P., and Luthe, D.S. 2006. Ethylene signaling mediates a maize defense response to insect herbivory. Mol. Plant Microbe Interact.19:189–199.

    Article  CAS  PubMed  Google Scholar 

  • Hedin, P., Davis, F.M., Williams, W.P., and Salin, M.L. 1984. Possible factors of leaf-feeding resistance in corn to southwestern corn borer. J. Agric. Food Chem. 32:262–267.

    Article  CAS  Google Scholar 

  • Hildebrand, D.F., Afitlhile, M., and Fukushige, H. 2000. Regulation of oxylipin synthesis. Biochem. Soc. Trans. 28:847–849.

    Article  CAS  PubMed  Google Scholar 

  • Hilpert B., Bohlmann H., Op Den Camp R., Przybyla D., Miersch O., Buchala A., and Apel K. 2001. Isolation and characterization of signal transduction mutants of Arabidopsis thaliana that constitutively activate the octadecanoid pathway and form necrotic microlesions. Plant J. 26:435–446.

    Article  CAS  PubMed  Google Scholar 

  • Howe G.A. and Jander G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, A.B., Raventos, D., and Mundy J. 2002. Fusion genetic analysis of jasmonate-signaling mutants in Arabidopsis. Plant J. 29:595–606.

    Article  CAS  PubMed  Google Scholar 

  • Kazan, K. and Manners, J.M. 2008. Jasmonate signaling: toward an integrated view. Plant Physiol. 146:1459–1468.

    Article  CAS  PubMed  Google Scholar 

  • Kessler, A. and Baldwin, I.T. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E.S., Choi, E., Kim, Y., Cho, K., Lee, A., Shim, J., Rakwal, R., Agrawal, G.K., and Han O. 2003. Dual positional specificity and expression of non-traditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings. Plant Mol. Bio.lnteract. 52:1203–1213.

    Article  Google Scholar 

  • Ko, J.H., Kim, J.H., Jayanty, S.S., Howe, G.A., and Han, K.H. 2006. Loss of function of COBRA, a determinant of oriented cell expansion, invokes cellular defense responses in Arabidopsis thaliana. J. Exp. Bot. 57:2923–36.

    Article  CAS  PubMed  Google Scholar 

  • Lopéz, L., Camas, A., Shivaji, R. Ankala, A., Williams, P., and Luthe, D.S. 2007. Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Planta 226: 517–527.

    Article  PubMed  CAS  Google Scholar 

  • Mohan, S., Ma, P.W.K., Pechan, T., Bassford, E.R., Williams, W.P., and Luthe, D.S. 2006. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J. Insect Physiol. 52:21–28.

    Article  CAS  Google Scholar 

  • Mohan, S., Ma, P.W, Williams, W.P., and Luthe D.S. 2008. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin. PLoS One 3:e1786.

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cardenas, M. and Ryan, C.A. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96:6553–7.

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cardenas, M.L., Narvaez-Vasquez, J., and Ryan, C.A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191.

    Article  CAS  PubMed  Google Scholar 

  • Pechan, T., Ye, L.J, Chang, Y.M., Mitra, A., Lin, L., Davis, F.M., Williams, W.P., and Luthe, D.S. 2000. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell 12:1031–1040.

    Article  CAS  PubMed  Google Scholar 

  • Pechan, T., Cohen, A., Williams,W.P., and Luthe, D.S. 2002. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. USA 99:13319–13323.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:2002–2007.

    Article  Google Scholar 

  • Rakwal, R., Yang, G., and Komatsu, S. 2004. Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice. Mol. Biol. Rep. 31:113–119.

    Article  CAS  PubMed  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8:1809–1819.

    Article  CAS  PubMed  Google Scholar 

  • Schaller F. 2001. Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. J. Exp. Bot. 52:11–23.

    Article  CAS  PubMed  Google Scholar 

  • Schmelz, E.A., Engelberth, J., Alborn, H.T., O'Donnell, P., Sammons, M., Toshima, H., and Tumlinson, J.H. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc. Natl. Acad. Sci. USA 100:10552–7.

    Article  CAS  PubMed  Google Scholar 

  • Ton, J., D'Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., and Turlings, T.C.J. 2006. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49:16–26.

    Article  PubMed  CAS  Google Scholar 

  • Van Der Westhuizen, A.J., Qian, X.M., and Botha, A.M. 1998. Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Rep. 18:132–137.

    Article  CAS  Google Scholar 

  • Walling L.L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    CAS  PubMed  Google Scholar 

  • Wang, C., Zien, C.A., Afitlhile, M., Welti, R., Hildebrand, D.F., and Wang, X. 2000. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246.

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100:681–697.

    Article  CAS  PubMed  Google Scholar 

  • Williams, W.P., Buckley, P.M., Hedin, P.A., and Davis, F.M. 1990a. Laboratory bioassay for resistance in corn to fall armyworm and southwestern corn borer. J. Econ. Entomol. 83:1578–1571.

    Google Scholar 

  • Williams, W.P., Davis, F.M., and Windham, G.L. 1990b. Registration of Mp708 germplasm line of maize. Crop Sci. 30:757.

    Article  Google Scholar 

  • Williams, W.P., Davis, F.M., Buckley, P.M., Hedin, P.A., Baker, G.T., and Luthe, D.S. 1998. Factors associated with resistance to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) in corn at different vegetative stages. J. Econ. Entomol. 91:1471–1480.

    Google Scholar 

  • Zhang, J.L., Simmons, C., Yalpani, N., Crane. V., Wilkinson, H., and Kolomiets, M. 2005. Genomic analysis of the 12-oxo-phytodienoic acid reductase gene family of Zea mays. Plant Mol. Biol. 59:323–343.

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman, K., Luthe, D.S., and Felton, G.W. 2008. Arthropod-inducible proteins: Broad-spectrum defenses against multiple herbivores. Plant Physiol. 146:852–858.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation Award IOS-0641219 to DSL and a Specific Cooperative Agreement 58-6406-6-039 between Mississippi State University and USDA-ARS Corn Host Plant Resistance Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn Sywassink Luthe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivaji, R., Camas, A., Ankala, A. et al. Plants on Constant Alert: Elevated Levels of Jasmonic Acid and Jasmonate-Induced Transcripts in Caterpillar-Resistant Maize. J Chem Ecol 36, 179–191 (2010). https://doi.org/10.1007/s10886-010-9752-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9752-z

Keywords

Navigation