Skip to main content

Fire Regimes in Dryland Landscapes

  • Chapter
  • First Online:
Dryland Ecohydrology

Abstract

Dryland regions are climatically defined as having low annual precipitation and dry season periods that can span over several months and take place once or twice a year. Dryland ecosystems (e.g., grasslands, savannas, or dry forests) that experience recurrent fires often exhibit fire-adapted (or “pyrophytic”) vegetation (Trabaud 1981; Scholes 1997; van Wilgen and Scholes 1997; Mistry 1998; Roques et al. 2001; Nicholas et al. 2011; Blackhall et al. 2017; Linder et al. 2017). Fire affects ecosystem dynamics in terms of species selection, regeneration, structure, nutrient cycling, and mortality. While this chapter is devoted to fire regimes, we will also summarize ecological impacts and feedbacks of fire on the environment and in particular on plant communities. Other impacts, such as the effects of fires on soil moisture dynamics, infiltration, and runoff production, are discussed in Chap. 2, while the effects on soil nutrient cycling and soil gas emissions are briefly analyzed in Chaps. 11 and 13. Additional discussion on the role of fire dynamics on different biomes, e.g., grasslands, shrublands, dry forests, and savannas, can be found in Chaps. 16 and 17, while the effects of fire on land–atmosphere interactions are discussed more in detail in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agee JK (1997) The severe weather wildfire - too hot to handle? Northwest Sci 71:153–156

    Google Scholar 

  • Alcasena FJ, Salis M, Ager AA, Arca B, Molina D, Spano D (2015) Assessing landscape scale wildfire exposure for highly valued resources in a mediterranean area. Environ Manag 55:1200–1216

    Article  Google Scholar 

  • Alcasena FJ, Ager AA, Salis M, Day MA, Vega-Garcia C (2018) Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Sci Total Environ 621:872–885

    Article  CAS  PubMed  Google Scholar 

  • Aleman J, Blarquez O, Bentaleb I, Bonté P, Brossier B, Carcaillet C, Gond V, Gourlet-Fleury S, Kpolita A, Lefèvre I, Oslisly R, Power MJ, Yongo O, Bremond L, Favier C (2013) Tracking land-cover changes with sedimentary charcoal in the Afrotropics. The Holocene 23:1853–1862

    Article  Google Scholar 

  • Alexander ME (1982) Calculating and interpreting forest fire intensities. Can J Bot 60:349–357

    Article  Google Scholar 

  • Alleaume S, Hély C, Le Roux J, Korontzi S, Swap RJ, Shugart HH, Justice CO (2005) Using MODIS to evaluate heterogeneity of biomass burning in southern African savannahs: a case study in Etosha. Int J Remote Sens 26:4219–4237

    Article  Google Scholar 

  • Alvarez-Diaz M, Gonzales-Gomez M, Otero-Giraldez MS (2015) Detecting the socioeconomic driving forces of the fire catastrophe in NW Spain. Eur J For Res 134:1087–1094

    Article  Google Scholar 

  • Anderies JM, Janssen MA, Walker B (2002) Grazing management, resilience, and the dynamics of a fire-driven rangeland system. Ecosystems 5:23–44

    Article  Google Scholar 

  • Andrews PL (2009) BehavePlus fire modeling system, version 5.0: Variables. USDA, Forestry Service, Rocky Mountain Research Station, Fort Collins

    Book  Google Scholar 

  • Archibald S, Scholes RJ, Roy DP, Roberts G, Boschetti L (2010) Southern African fire regimes as revealed by remote sensing. Int J Wildland Fire 19:861–878

    Article  Google Scholar 

  • Archibald S, Staver AC, Levin SA (2011) Evolution of human-driven fire regimes in Africa. Proc Natl Acad Sci U S A 109:847–852

    Article  PubMed  PubMed Central  Google Scholar 

  • Arino O, Casadio S, Serpe D (2012) Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sens Environ 116:226–238

    Article  Google Scholar 

  • Arno SF, Sneck KM (1977) A method for determining fire history in coniferous forests on the mountain west. USDA Forest Service, Ogden, Utah

    Google Scholar 

  • Balch JK, Nepstad DC, Curran LM (2009) Pattern and process: fire-initiated grass invasion at Amazon transitional forest edges. In: Cochrane MA (ed) Fire ecology of tropical ecosystems. Springer, Heidelberg, pp 481–502

    Chapter  Google Scholar 

  • Barbosa PM, Stroppiana D, Grégoire JM, Pereira JMC (1999) An assessment of vegetation fire in Africa (1981–1991): burned areas, burned biomass, and atmospheric emissions. Glob Biogeochem Cycles 13:933–950

    Article  CAS  Google Scholar 

  • Batista EKL, Russell-Smith J, França H, Figueira JEC (2018) An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: outcomes of fire suppression policies. J Environ Manag 205:40–49

    Article  Google Scholar 

  • Belhadj-Khedher C, Koutsias N, Karamitsou A, El-Melki T, Ouelhazi B, Hamdi A, Nouri H, Mouillot F (2018) A revised historical fire regime analysis in Tunisia (1985–2010) from a critical analysis of the national fire database and remote sensing. Forests 9:59. https://doi.org/10.3390/f9020059

    Article  Google Scholar 

  • Bessie WC, Johnson EA (1995) The relative importance of fuels and weather on fire behavior in subalpine forest. Ecology 76:747–762

    Article  Google Scholar 

  • Bhattachan A, Tatlhego M, Dintwe K, Caylor KK, O’Donnell FC, Okin GS, Perrot DO, Ringrose S, D’Odorico P (2012) Evaluating ecohydrological theories of woody root distribution in the Kalahari. PLoS One 7:e33996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackhall M, Raffaele E, Paritsis J, Tiribelli F, Morales JM, Kitzberger T, Gowda JH, Veblen TT (2017) Effects of biological legacies and herbivory on fuels and flammability traits: a long-term experimental study of alternative stable states. J Ecol 105:1309–1322

    Article  Google Scholar 

  • Boone Kauffman J, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. J Ecol 82:519–531

    Article  Google Scholar 

  • Booysen P d V, Tainton NM (eds) (1984) Ecological effects of fire in South African ecosystems. Springer, Berlin

    Google Scholar 

  • Bowman DMJS, Panton WJ (1993) Factors that control monsoon-rainforest seedling establishment and growth north Australian Eucalyptus savanna. J Ecol 80:297–304

    Article  Google Scholar 

  • Brewer S, Cheddadi R, de Beaulieu JL, Reille M, contributors D (2002) The spread of deciduous Quercus throughout Europe since the lasi glacial period. For Ecol Manag 156:27–48

    Article  Google Scholar 

  • Briggs JM, Knapp AK (2001) Determinants of C3 forb growth and production in a C4 dominated grassland. Plant Ecol 152:93–100

    Article  Google Scholar 

  • Brown AA, Davis KP (1973) Forest fire: control and use. McGraw-Hill, New York

    Google Scholar 

  • Brown JK, Oberheu RD, Johnston CM (1982) Handbook for inventoring surface fuels and biomass in the interior West. General Technical Report INT-129, US Forest Service

    Google Scholar 

  • Burgan RE, Rothermel RC. (1984) BEHAVE: fire behavior prediction and fuel modeling system—FUEL subsystem. General technical report INT-167, U.S. Department of agriculture, Forest service, Ogden, UT. Intermountain forest and range experiment station

    Google Scholar 

  • Carcaillet C, Barakat HN, Panaiotis C, Loisel R (1997) Fire and late-Holocene expansion of Quercus ilex and Pinus pinaster on Corsica. J Veg Sci 8:85–94

    Article  Google Scholar 

  • Carrion JS, Munuera M, Navarro C, Burjachs F, Dupré M, Walker MJ (1999) The palaeooceological potential of pollen records in caves: the case of Mediterranean Spain. Quat Sci Rev 18:1061–1073

    Article  Google Scholar 

  • Cavelier J, Aide TM, Santos C, Eusse AM, Dupuy JM (1998) The savannization of moist forests in the Sierra Nevada de Santa Marta, Colombia. J Biogeogr 25:901–912

    Article  Google Scholar 

  • Chuvieco E, Martin MP, Palacios A (2002) Assessment of different spectral indices in the red-near-infrared-spectral domain for burned land discrimination. Int J Remote Sens 23:5103–5110

    Article  Google Scholar 

  • Cochrane MA (2009) Fire, land use, land cover dynamics, and climate change in the Brazilian Amazon. In: Cochrane MA (ed) Tropical fire ecology: climate change, land use and ecosystem dynamics. Springer Praxis, Heidelberg, Germany, pp 389–426

    Chapter  Google Scholar 

  • Cochrane MA, Schulze MD (1998) Forest fires in the Brazilian Amazon. Conserv Biol 12:948–950

    Article  Google Scholar 

  • Cochrane M, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:2–16

    Google Scholar 

  • Cochrane MA, Alencar A, Schulze MD, Sousa CMJ, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835

    Article  CAS  PubMed  Google Scholar 

  • Coutihno LM (1990) Fire in the ecology of the Brazilian cerrado. In: Goldammer JG (ed) Fire in the tropical biota: ecosystem processes and global challenges. Springer, Berlin, pp 82–105

    Chapter  Google Scholar 

  • Curt T, Borgniet L, Bouillon C (2013) Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management. J Environ Manag 117:150–161

    Article  Google Scholar 

  • D’Odorico P, Laio F, Ridolfi L (2006) A probabilistic analysis of fire-induced tree-grass coexistence in savannas. Am Nat 167:79–87

    Article  Google Scholar 

  • D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5:520–530

    Article  Google Scholar 

  • De las Heras J, Martinez-Sanchez JJ, Gonzales-Ochoa AI, Ferrandis P, Herranz JM (2002) Establishment of Pinus halepensis Mill. saplings following fire: effects of competition with shrub species. Acta Oecol 23:91–97

    Article  Google Scholar 

  • de Oliveira MT, Damasceno-Junior GA, Pott A, Paranhos Filho AC, Suarez YR, Parolin P (2014) Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. For Ecol Manag 331:256–263

    Article  Google Scholar 

  • Desjardins T, Carneiro Filho A, Mariotti A, Chauvel A, Girardin C (1996) Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon. Oecologia 108:749–756

    Article  CAS  PubMed  Google Scholar 

  • du Toit JT, Rogers KH, Biggs HC (2003) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington DC

    Google Scholar 

  • Duane A, Piqué M, Castellnou M, Brotons L (2015) Predictive modelling of fire occurrences from different fire spread patterns in Mediterranean landscapes. Int J Wildland Fire 24:407–418

    Article  Google Scholar 

  • Dublin HT, Sinclair ARE, McGlade J (1990) Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. J Anim Ecol 59:1147–1164

    Article  Google Scholar 

  • Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53:11–15

    Article  Google Scholar 

  • Dwyer E, Pinnock S, Gregoire JM, Pereira JMC (2000) Global spatial and temporal distribution of vegetation fire as determined from satellite observations. Int J Remote Sens 21:1289–1302

    Article  Google Scholar 

  • Ellery WN, Ellery K, McCarthy TS, Cairncross B, Oelofse R (1989) A peat fire in the Okavango Delta, Botswana, and its importance as an ecosystem process. Afr J Ecol 27:7–21

    Article  Google Scholar 

  • Figueiral I, Terral JF (2002) Late Quaternary refugia of mediterranean taxa in the Portuguese Estremadura: charcoal based paleovegetation and climatic reconstruction. Quat Sci Rev 21:549–558

    Article  Google Scholar 

  • Fréjaville T, Curt T (2015) Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin). Clim Chang 129:239–251

    Article  Google Scholar 

  • Frost PGH (1984) The responses and survival of organisms in fire-prone environments. In: Booysen PDV, Tainton NM (eds) Ecological effects of fire in South African ecosystems. Springer, Berlin, Germany, pp 274–309

    Google Scholar 

  • Frost PGH, Menaut JC, Walker B, Medina E, Solbrig OT, Swift M (1985) Responses of savannas to stress and disturbance. In: The International Union of biological Sciences, Harare, Ethiopia

    Google Scholar 

  • Fuentes L, Duguy B, Nadal-Sala D (2018) Short-term effects of spring prescribed burning on the understory vegetation of a Pinus halepensis forest in Northeastern Spain. Sci Total Environ 610–611:720–731

    Article  PubMed  CAS  Google Scholar 

  • Giglio L (2013) MODIS collection 5 active fire product user’s guide version 2.5. University of Maryland, Department of Geographical Sciences, Maryland, USA

    Google Scholar 

  • Giglio L, Kendall JD, Justice CO (1999) Evaluation of global® re detection algorithms using simulated AVHRR infrared data. Int J Remote Sens 20:1947–1985

    Article  Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282

    Article  Google Scholar 

  • Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ 178:31–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes L, Miranda HS, da Cunha Bustamante MM (2018) How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For Ecol Manag 417:281–290

    Article  Google Scholar 

  • Gonzalez JR, Pukkala T (2007) Characterization of forest fires in Catalonia (northeast Spain). Eur J For Res 126:421–429

    Article  Google Scholar 

  • Granger JE (1984) Fire in forest. In: Booysen PDV, Tainton NM (eds) Ecological effects of fire in South African ecosystems. Springer, Berlin, Germany, pp 179–197

    Google Scholar 

  • Gutsell SL, Johnson EA (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Can J For Res 26:166–174

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35:311–322

    Article  Google Scholar 

  • Hardesty J, Myers R, Fulks W (2005) Fire, ecosystems, and people: a preliminary assessment of fire as a global conservation issue. The George Wright Forum 22:78–87

    Google Scholar 

  • Heinl M, Neuenschwander A, Sliva J, Vanderpost C (2006) Interactions between fire and flooding in a southern African floodplain system (Okavango Delta, Botswana). Landsc Ecol 21:699–709

    Article  Google Scholar 

  • Heinl M, Frost PGH, Vanderpost C, Sliva J (2007) Fire activity on drylands and floodplains in the southern Okavango Delta, Botswana. J Arid Environ 68:77–87

    Article  Google Scholar 

  • Hély C, Flannigan MD, Bergeron Y, McRae D (2001) Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can J For Res 31:430–441

    Article  Google Scholar 

  • Hély C, Alleaume S, Swap RJ, Shugart HH, Justice CO (2003a) SAFARI-2000 characterization of fuels, fire behavior, combustion completeness, and emissions from experimental burns in infertile grass savannas in western Zambia. J Arid Environ 54:381–394

    Article  Google Scholar 

  • Hély C, Dowty PR, Alleaume S, Caylor K, Korontzi S, Swap RJ, Shugart HH, Justice CO (2003b) Regional fuel load for two climatically contrasting years in southern Africa. J Geophys Res 108:8475

    Google Scholar 

  • Herrmann SM, Mohr KI (2011) A continental-scale classification of rainfall seasonality regimes in Africa based on gridded precipitation and land surface temperature products. J Appl Meteorol Climatol 50:2504–2513

    Article  Google Scholar 

  • Higgins SI, Bond WJ, Trollope WSW (2000) Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J Ecol 88:213–229

    Article  Google Scholar 

  • Hoffmann WA (1996) The effects of fire and cover on seedling establishment in neotropical savanna. J Ecol 84:383–393

    Article  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasam M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768

    Article  PubMed  Google Scholar 

  • Holden ST (1993) Peasant household modelling: farming systems evolution and sustainability in northern Zambia. Agric Econ 9:241–267

    Article  Google Scholar 

  • Hudak AT, Wessman CA (2001) Textural analysis of high resolution imagery to quantify bush encroachment in Madikwe game reserve, South Africa, 1955–1996. Int J Remote Sens 22:2731–2740

    Article  Google Scholar 

  • Hulme M, Viner D (1998) A climate change scenario for the tropics. Clim Chang 39:145–176

    Article  Google Scholar 

  • Ichoku C, Giglio L, Wooster MJ, Remer LA (2008) Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens Environ 112:2950–2962

    Article  Google Scholar 

  • Johnson EA (1992) Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy DP, Descloitres J, Alleaume S, Petitcolin F, Kaufman YJ (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  • Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, Morcrette J-J, Razinger M, Schultz MG, Suttie M, Van der Werf GR (2012) Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9:527–554

    Article  CAS  Google Scholar 

  • Kauffman BJ, Sanford RL, Cummings DL, Salcedo IH, Sampaio EVSB (1993) Biomass and nutrient dynamics associated with slash fore in neotropical dry forests. Ecology 74:140–151

    Article  Google Scholar 

  • Keeley JE (2012) Fire in mediterranean climate ecosystems—a comparative overview. Isr J Ecol Evol 58:123–135

    Google Scholar 

  • Kellman M (1975) Evidence for Late Glacial Age fire in a tropical montane savanna. J Biogeogr 2:57–63

    Article  Google Scholar 

  • Kellman M, Meave J (1997) Fire in the tropical galerry forests of Belize. J Biogeogr 24:23–34

    Article  Google Scholar 

  • Kellman M, Tackaberry R (1993) Disturbance and tree species coexistence in tropical riparian forest fragments. Glob Ecol Biogeogr Lett 3:1–9

    Article  Google Scholar 

  • Kennedy PJ, Belward AS, Grégoire J-M (1994) An improved approach to fire monitoring in West Africa using AVHRR data. Int J Remote Sens 15:2235–2255

    Article  Google Scholar 

  • Key CH, Benson NC (2002) Measuring and remote sensing of burn severity. In: US Geological Survey Wildland Fire Workshop, Los Alamos, pp 02–11

    Google Scholar 

  • Lahaye S, Curt T, Fréjaville T, Sharples J, Paradis L, Hély C (2018a) What are the drivers of dangerous fires in Mediterranean France? Int J Wildland Fire 27(3). https://doi.org/10.1071/WF17087

    Article  Google Scholar 

  • Lahaye S, Sharples J, Matthews S, Heemstra S, Price O, Badlan R (2018b) How do weather and terrain contribute to firefighter entrapments in Australia? Int J Wildland Fire 27:85–98

    Article  Google Scholar 

  • Lecina-Diaz J, Alvarez A, Retana J (2014) Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests. PLoS One 9:e85127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ledru MP (2002) Late quaternary history and evolution of the Cerrado as revealed by palynological records. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil. Columbia University Press, New York, pp 33–50

    Chapter  Google Scholar 

  • Leys B, Carcaillet C, Dezileau L, Ali AA, Bradshaw RHW (2013) A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica. Quat Res 79:337–349

    Article  Google Scholar 

  • Libonati R, DaCamara CC, Setzer AW, Morelli F, Melchiori AE (2015) An algorithm for burned area detection in the Brazilian Cerrado using 4 μm MODIS imagery. Remote Sens 7:15782–15803

    Article  Google Scholar 

  • Linder HP, Lehmann CER, Archibald S, Osborne CP, Richardson DM (2017) Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol Rev Camb Philos Soc 93(2):1125–1144. https://doi.org/10.1111/brv.12388

    Article  PubMed  Google Scholar 

  • Lloret F, Mari G (2001) A comparison of the medieval and the current fire regimes in managed pine forests of Catalonia (NE Spain). For Ecol Manag 141:155–163

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Piñol J (2011) An integrative model of human-influenced fire regimes and landscape dynamics. Environ Model Softw 26:1028–1040

    Article  Google Scholar 

  • Loepfe L, Rodrigo A, Lloret F (2014) Two thresholds determine climatic control of forest fire size in Europe and northern Africa. Reg Environ Chang 14:1395–1404

    Article  Google Scholar 

  • Martell DL (2015) A review of recent forest and wildland fire management decision support systems research. Curr For Rep 1:128–137

    Google Scholar 

  • McCarthy TS, Ellery WN (1994) The effect of vegetation on soil and ground water chemistry and hydrology of islands in the seasonal swamps of the Okavango Fan, Botswana. J Hydrol 154:169–193

    Article  CAS  Google Scholar 

  • Meave J, Kellman M (1994) Maintenance of rain forest diversity in riparian forests of tropical savannas: implications for species conservation during Pleistocene drought. J Biogeogr 21:121–135

    Article  Google Scholar 

  • Miranda HS, Sato MN, Neto WN, Aires FS (2009) Fires in the cerrado, the Brazilian savanna. In: Tropical fire ecology. Springer, Berlin, Heidelberg, pp 427–450

    Chapter  Google Scholar 

  • Mistry J (1998) Corticolous lichens as potential bioindicators of fire history: a study in the cerrado of the Districto federal, central Brazil. J Biogeogr 25:409–441

    Article  Google Scholar 

  • Molina JR, Moreno R, Castillo M, Rodriguez y Silva F (2018) Economic susceptibility of fire-prone landscapes in natural protected areas of the southern Andean Range. Sci Total Environ 619-620:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Molina-Martinez JR, Machuca MH, Diaz RZ, y Silva FR, Gonzales-Caban A (2011) Economic losses to Iberian swine production from forest fires. For Pol Econ 13:614–621

    Article  Google Scholar 

  • Moreira AG (2000) Effects of fire protection on savanna structure in Central Brazil. J Biogeogr 27:1021–1029

    Article  Google Scholar 

  • Mouillot F, Rambal S, Joffre R (2002) Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob Chang Biol 8:423–437

    Article  Google Scholar 

  • Mouillot F, Ratte J-P, Joffre R, Mouillot D, Rambal S (2005) Long-term forest dynamic after land abandonment in a fire prone Mediterranean landscape (central Corsica, France). Landsc Ecol 20:101–112

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nepstad D, Klink CA, Uhl C, Vieira IC, Lefebvre P, Pedlowski M, Matricardi E, Negreiros G, Brown IF, Amaral E, Homma A, Walker R (1997) Land-use in Amazonia and the Cerrado of Brazil. Ciencia e Cultura 49:73–86

    Google Scholar 

  • Nepstad D, Carvalho G, Barros AC, Alencar A, Capobianco JP, Bishop J, Moutinho P, Lefebvre P, Silva ULJ, Prins E (2001) Road paving, fire regime feedbacks, and the future of Amoazon forests. For Ecol Manag 154:395–407

    Article  Google Scholar 

  • Nicholas AMM, Franklin DC, Bowman DMJS (2011) Floristic uniformity across abrupt boundaries between Triodia hummock grassland and Acacia shrubland on an Australian desert sandplain. J Arid Environ 75:1090–1096

    Article  Google Scholar 

  • Odion D, Davis FW (2000) Fire, soil heating, and the formation of vegetation patterns in chaparral. Ecol Monogr 70:149–169

    Article  Google Scholar 

  • Pallozzi E, Lusini I, Cherubini L, Hajiaghayeva RA, Ciccioli P, Calfapietra C (2018) Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning. Environ Pollut 234:457–467

    Article  CAS  PubMed  Google Scholar 

  • Pereira JMC (1999) A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans Geosci Remote Sens 37:217–226

    Article  Google Scholar 

  • Pereira JMC, Mota B, Privette JL, Caylor KK, Silva JMN, Sa ACL, Ni-Meister W (2004) A simulation analysis of the detectability of understory burns in miombo woodlands. Remote Sens Environ 93:296–310

    Article  Google Scholar 

  • Pereira AA, Pereira JMC, Libonati R, Oom D, Setzer AW, Morelli F, Machado-Silva F, Tavares de Carvalho LM (2017) Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens 9:1161

    Article  Google Scholar 

  • Pineda N, Rigo T (2017) The rainfall factor in lightning-ignited wildfires in CataloniaNicolau. Agric For Meteorol 239:249–263

    Article  Google Scholar 

  • Pivello VR (2011) The use of fire in the cerrado and amazonian rainforests of Brazil: past and present. Fire Ecol 7:24–39

    Article  Google Scholar 

  • Pivello VR, Coutihno LM (1996) A qualitative successional model to assist in the management of Brazilian cerrados. For Ecol Manag 87:127–138

    Article  Google Scholar 

  • Quilès D, Rohr V, Joly K, Lhuillier S, Ogereau P, Martin A, Bazile F, Vernet JL (2002) Les feux préhistoriques holocènes en montagne sub-méditerranéenne: premiers résultats sur le Causse Méjean (Lozère, France). C R Palevol 1:59–65

    Article  Google Scholar 

  • Ramos-Neto MB, Pivello VR (2000) Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environ Manag 26:675–684

    Article  CAS  Google Scholar 

  • Ratajczak Z, Yu K, D’Odorico P (2017) The enemy of my enemy hypothesis: why coexisting with grasses may be an adaptive strategy for savanna trees. Ecosystems 20:1278–1295

    Article  Google Scholar 

  • Ratnam J, Bond WJ, Fensham RJ, Hoffmann WA, Archibald S, Lehmann CER, Anderson MT, Higgins SI, Sankaran M (2011) When is a ‘forest’ a savanna, and why does it matter? Glob Ecol Biogeogr 20:653–660

    Article  Google Scholar 

  • Rego F, Pereiras J, Trabaud L (1993) Modelling community dynamics of a Quercus coccifera L. garrigue in relation to fire using Markov chains. Ecol Model 66:251–260

    Article  Google Scholar 

  • Roques KG, O’Connor TG, Watkinson AR (2001) Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J Appl Ecol 38:268–280

    Article  Google Scholar 

  • Rosell JA, Gleason S, Mendez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol 201:786–497

    Article  Google Scholar 

  • Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research Paper, USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, Utah, USA, p 48

    Google Scholar 

  • Roy DP, Giglio L, Kendall JD, Justice CO (1999) Multi-temporal active-fire based burn scar detection algorithm. Int J Remote Sens 20:1031–1038

    Article  Google Scholar 

  • Roy DP, Lewis PE, Justice CO (2002) Burned area mapping using multi-temporal moderate spatial resolution data—a bi-directional reflectance model-based expectation approach. Remote Sens Environ 83:263–286

    Article  Google Scholar 

  • Roy DP, Jin Y, Lewis PE, Justice CO (2005) Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens Environ 97:137–162

    Article  Google Scholar 

  • Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens Environ 112:3690–3707

    Article  Google Scholar 

  • Runyan CW, D’Odorico P (2016) Global deforestation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Saha MV, Scanlon TM, D’Odorico P (2016) Suppression of rainfall by fires in African drylands. Geophys Res Lett 43:8527–8533

    Article  Google Scholar 

  • Saha MV, D’Odorico P, Scanlon TM (2017) Albedo changes after fire as an explanation of fire-induced rainfall suppression. Geophys Res Lett 44:3916–3923

    Article  Google Scholar 

  • San Jose JJ, Farinas MR (1983) Changes in tree density and species composition in a protected Trachypogon savanna, Venezuela. Ecology 64:447–453

    Article  Google Scholar 

  • Sanaiotti TM, Magnusson WE (1995) Effects of annual fires and the production od fleshy fruits eaten by birds in a Brazilian Amazonian savanna. J Trop Ecol 11:53–65

    Article  Google Scholar 

  • Santos AJB, Silva GTDA, Miranda HS, Miranda AC, Lloyd J (2003) Effects of fire on surface carbon, energy and water vapor fluxes over campo sujo savanna in central Brazil. Funct Ecol 17:711–719

    Article  Google Scholar 

  • Sawadogo L, Nygard R, Pallo F (2002) Effects of livestock and prescribed fire on coppice growth after selective cutting of Sudanian savannah in Burkina Faso. Ann For Sci 59:185–195

    Article  Google Scholar 

  • Schaffhauser A, Curt T, Tatoni T (2011) Fire-vegetation interplay in a mosaic structure of Quercus suber woodlands and Mediterranean maquis under recurrent fires. For Ecol Manag 262:730–738

    Article  Google Scholar 

  • Schaffhauser A, Curt T, Véla E, Tatoni T (2012) Fire recurrence effects on the abundance of plants grouped by traits in Quercus suber L. woodlands and maquis. For Ecol Manag 282:157–166

    Article  Google Scholar 

  • Scholes RJ (1997) Savanna. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of southern Africa. Cambridge University Press, Cambridge, pp 258–277

    Google Scholar 

  • Scholes RJ, Walker BH (eds) (1993) An African Savanna: synthesis of the Nylsvley Study. Cambridge University Press, New York

    Google Scholar 

  • Schroeder W, Prins E, Giglio L, Csiszar I, Schmidt C, Morisette J, Morton DC (2008) Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens Environ 112:2711–2726

    Article  Google Scholar 

  • Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz EN, Morelli F (2016) Active fire detection using Landsat-8/OLI data. Remote Sens Environ 185:210–220

    Article  Google Scholar 

  • Scott L (2002) Microscopic charcoal in sediments: quaternary fire history of the grassland and savanna regions in South Africa. J Quat Sci 17:77–86

    Article  Google Scholar 

  • Shackleton CM, Scholes RJ (2000) Impact of fire frequency on woody community structure and soil nutrients in the Kruger National Park. Koedoe 43:75–81

    Article  Google Scholar 

  • Shroeder MJ, Buck CC (1970) Fire weather: a guide for application of meteorological information to forest fire control operations. In: Agriculture Handbook 360. Boise, Idaho, USDA, Forest Service

    Google Scholar 

  • Siegfried WR (1981) The incidence of veld-fire in the Etosha national Park, 1970–1979. Modoqua 12:225–230

    Google Scholar 

  • Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci U S A 106:20359–20364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skowno AL, Bond WJ (2003) Bird community composition in an actively managed savanna reserve, importance of vegetation structure and vegetation composition. Biodivers Conserv 12:2279–2294

    Article  Google Scholar 

  • Sow M, Hély C, Mbow C, Sambou B (2012) Fuel and fire behavior analysis for early-season prescribed fire planning in soudanian and sahelian savannas. J Arid Environ 89:84–93

    Article  Google Scholar 

  • Sow M, Mbow C, Hély C, Fensholt R, Sambou B (2013) Estimation of herbaceous fuel moisture content using vegetation indices and land surface temperature from MODIS data. Remote Sens 5:2617–2638

    Article  Google Scholar 

  • Staver AC, Archibald S, Levin S (2011) The global extent and determinants of Savanna and forest as alternative biome states. Science 334:230–232

    Article  CAS  PubMed  Google Scholar 

  • Stott P (2000) Combustion in tropical biomass fires: a critical review. Prog Phys Geogr 24:355–377

    Article  Google Scholar 

  • Stroppiana D, Pinnock S, Grégoire J-M (2000) The global fire product: daily fire occurence from April 1992 to December 1993 derived from NOAA AVHRR data. Int J Remote Sens 21:1279–1288

    Article  Google Scholar 

  • Sudhakar Reddy C, Diwakar PG, Krishna Murthy YVN (2017) Sustainable biodiversity management in India: remote sensing perspective. Proc Natl Acad Sci India A Phys Sci 87:617–627

    Article  Google Scholar 

  • Syphard AD, Keeley JE (2016) Historical reconstructions of California wildfires vary by data source. Int J Wildland Fire 25:1221–1227

    Article  Google Scholar 

  • Thevenon F, Williamson D, Vincens A, Merdaci O, Buchet G, Taieb M (2003) A late-Holocene charcoal record from Lake Masoko, SW Tanzania: climatic and anthropologic implications. The Holocene 13:785–792

    Article  Google Scholar 

  • Trabaud L (1981) Man and fire: impacts on Mediterranean vegetation. In: Di Castri F, Goodall DW (eds) Mediterranean-type shrublands. Elsevier, Amsterdam, pp 479–521

    Google Scholar 

  • Trabaud LV (1989) Les effets du regime des feux: Exemples pris dans le bassin méditerranéen. CIHEAM - Options Méditerranéennes 3:89–94

    Google Scholar 

  • Trabaud LV, Galtié J-F (1996) Effects of fire frequency on plant communities and landscape pattren in the massif des Aspres (southern France). Landsc Ecol 11:215–224

    Article  Google Scholar 

  • Trabaud LV, Christensen NL, Gill AM (1993) Historical biogeography of fire in temperate and mediterranean ecosystems. In: Crutzen PJ, Goldammer JG (eds) Fire in the environment: the ecological, atmospheric, and climatic importance of vegetation fires. Wiley, Chichester, pp 277–295

    Google Scholar 

  • Trollope WSW (1984a) Fire behavior. In: Booysen P d V, Tainton NM (eds) Ecological effects of fire in South African Ecosystems. Springer, Berlin, Germany, pp 199–217

    Chapter  Google Scholar 

  • Trollope WSW (1984b) Fire in savanna. In: Booysen P d V, Tainton NM (eds) Ecological effects of fire in South African Ecosystems. Springer, Berlin, Germany, pp 149–175

    Chapter  Google Scholar 

  • Trollope WSW (1993) Fire regime of the Kruger national Park for the period 1980–1992. Koedoe 36:45–52

    Article  Google Scholar 

  • Trollope WSW, Everson CS (1999) Veld burning. In: Tainton NM (ed) Veld management in South Africa. University of Natal Press, Pietermaritzburg, pp 217–243

    Google Scholar 

  • Trollope WSW, Potgieter ALF (1985) Fire behaviour in the Kruger National Park. J Grassl Soc Sth Afr 2:17–22

    Article  Google Scholar 

  • Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the Eastern Amazon. Ecology 71:437–449

    Article  Google Scholar 

  • Umbanhowar CE, McGrath MJ (1998) Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. The Holocene 8:341–346

    Article  Google Scholar 

  • van Wilgen BW, Scholes RJ (1997) The vegetation and fire regimes of southern hemisphere Africa. In: Van Wilgen BW, Andreae MO, Goldammer JG, Lindesay JA (eds) Fire in the southern African savannas: ecological and atmospheric perspectives. Witwatersrand University press, Johannesburg, pp 27–46

    Google Scholar 

  • van Wilgen BW, Everson CS, Trollope WSW (1990) Fire management in Southern Africa: some examples of current objectives, practices, and problems. In: Goldammer JG (ed) Fire in the tropical biota: ecosystem processes and global challenges. Springer, Berlin, Germany, pp 179–215

    Chapter  Google Scholar 

  • Van Wilgen BW, Trollope WSW, Biggs HC, Potgieter ALF, Brockett BH (2003) Fire as a driver of ecosystem variability. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington DC, pp 149–170

    Google Scholar 

  • Verhegghen A, Eva H, Ceccherini G, Achard F, Gond V, Gourlet-Fleury S, Cerutti P (2016) The potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests. Remote Sens 8:986

    Article  Google Scholar 

  • Vernet J-L (1997) L’Homme et la forêt méditerranéenne: de la Préhistoire à nos jours. éditions errance, Paris

    Google Scholar 

  • Vincens A, Ssemmanda I, Roux M, Jolly D (1997) Study of the modern pollen rain in western Uganda with a numerical approach. Rev Palaeobot Palynol 96:145–168

    Article  Google Scholar 

  • Vincens A, Williamson D, Thevenon F, Taieb M, Buchet G, Decobert M, Thouveny N (2003) Pollen-based vegetation changes in southern Tanzania during the last 4200 years: climate change and:or human impact. Palaeogeogr Palaeoclimatol Palaeoecol 198:321–334

    Article  Google Scholar 

  • Weaver JF, Purdom JF, Schneider TL (1995) Observing forest fires with the GOES-8, 3.9 μm imaging channel. Weather Forecast 10:803-808.

    Article  Google Scholar 

  • Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge

    Google Scholar 

  • Wick L, Lemcke G, Sturm M (2003) Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene 13:665–675

    Article  Google Scholar 

  • Willcox G (1999) Charcoal analysis and Holocene vegetaton history in southern Syria. Quat Sci Rev 18:711–716

    Article  Google Scholar 

  • Wooster MJ (2002) Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys Res Lett 29:2027

    Article  Google Scholar 

  • Wooster MJ, Roberts G, Perry GLW, Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J Geophys Res 110:D24311

    Article  Google Scholar 

  • Wu HB, Svoboda MD, Hayes MJ, Wilhite DA, Wen F (2007) Appropriate application of the Standardized Precipitation Index in arid locations and dry seasons. Int J Climatol 27:65–79

    Article  Google Scholar 

  • Xiao-rui T, Mcrae DJ, Li-fu S, Ming-yu W, Hong L (2005) Satellite remote-sensing technologies used in forest fire management. J For Res 16:73–78

    Article  Google Scholar 

  • Yu K, Saha MV, D’Odorico P (2017) The effects of interannual rainfall variability on tree–grass composition along Kalahari rainfall gradient. Ecosystems 20:975–988

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Hély .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hély, C., Alleaume, S., Runyan, C.W. (2019). Fire Regimes in Dryland Landscapes. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_14

Download citation

Publish with us

Policies and ethics