Skip to main content
Log in

Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon

  • Ecosystems Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The possibility of ecosystem boundary changes in northern Brazilian Amazonia during the Holocene period was investigated using soil organic carbon isotope ratios. Determination of past and present fluctuations of the forest-savanna boundary involved the measurement of natural 13C isotope abundance, expressed as δ13C, in soil organic matter (SOM). SOM 13C analyses and radiocarbon dating of charcoal fragments were carried out on samples derived from soil profiles taken along transects perpendicular to the ecotonal boundary. SOM δ13C values in the upper soil horizons appeared to be in equilibrium with the overlying vegetation types and did not point to a movement of the boundary during the last decades. However, δ13C values obtained from deeper savanna and forest soil layers indicated that the vegetation type has changed in the past. In current savanna soil profiles, we observed the presence of mid-Holocene charcoals derived from forest species: fire frequency at that time was probably greater, and more extensive savanna may have resulted. Isotope data and the presence of these charcoals thus suggest that the forest-savanna boundary has shifted significantly in the recent Holocene period, forest being more extensive during the early Holocene than today. During the middle Holocene, the forest could have strongly regressed, and fires appeared, with a maximum development of the savanna vegetation. At the beginning of the late Holocene, the forest may have invaded a part of this savanna, and fires occurred again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absy ML, Van der Hammen T (1976) Some paleoecological data from Rondonia, southern part of the Amazon Basin. Acta Amazon 6:293–299

    Google Scholar 

  • Absy ML, Cleef A, Fournier M, Martin L, Servant M, Sifeddine A, Da Silva MF, Soubiès F, Suguio K, Turcq B, Van der Hammen T (1991) Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de l'Amazonie au cours des 60000 dernières années. Premières comparaisons avec d'autres forêts tropicales. CR Acad Sci Paris II 312:673–678

    Google Scholar 

  • Ambrose SH, Sikes NE (1991) Soil carbon isotope evidence for Holecene habitat change in the Kenya Rift Valley. Science 253:1402–1405

    Google Scholar 

  • Askew GP, Moffatt DJ, Montgomery RF, Searl PL (1970) Soil landscapes in north-eastern Mato Grosso. Geogr J 136:211–227

    Google Scholar 

  • Balesdent J, Guillet B (1982) Les datations par le 14C des matières organiques des sols. Contribution à l'étude de l'humification et du renouvellement des substances humiques. Sci Sol 20:93–111

    Google Scholar 

  • Balesdent J, Mariotti A, Guillet B (1987) Natural 13C abundance as a tracer for soil organic matter dynamics studies. Soil Biol Biochem 19:25–30

    Google Scholar 

  • Balesdent J, Mariotti A (1996) Measurements of soil organic matter using 13C natural abundances. In: Boutton TW, Yamasaki SI (eds) Mass spectrometry of soils. Dekker, New York, pp 83–111

    Google Scholar 

  • Bender M (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    Google Scholar 

  • Bonde TA, Christensen BT, Cerri CC (1992) Dynamics of soil organic matter as reflected by natural 13C abundance in particle size fractions of forested and cultivated oxisols. Soil Biol Biochem 24:275–277

    Google Scholar 

  • Bush MB, Colinvaux PA, Wiemann MC, Piperno DR, Liu KB (1990) Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quat Res 34:330–345

    Google Scholar 

  • Carneiro Filho A (1993) Cerrados amazônicos: fósseis vivos? Algumas reflexões. Rev IG, São Paulo 14:63–68

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1. The Terrestrial Environment. Elsevier, Amsterdam, pp 329–346

    Google Scholar 

  • DeLaune RD (1986) The use of δ13C signature of C3 and C4 plants in determining past depositional environments in rapidly accrenting marshes of the Mississippi river deltaic plain, Louisiana, USA. Chem Geol 59:315–320

    Google Scholar 

  • Desjardins T, Volkoff B, Andreux F, Cerri CC (1991) Distribution du carbone total et de l'isotope 13C dans des sols ferrallitiques du Brésil. Sci Sol 29:175–187

    Google Scholar 

  • Desjardins T, Andreux F, Volkoff B, Cerri CC (1994) Organic carbon and 13C contents in soils and soil size-fraction, and their changes due to deforestation and pasture installation in eastern Amazonia. Geoderma 61:103–118

    Google Scholar 

  • Dzurec RS, Boutton TW, Caldwell MM, Smith BN (1985) Carbon isotope ratios of soil organic matter and their use in assessing community composition change in Curlew Valley, Utah. Oecologia 66:17–24

    Google Scholar 

  • Eden MJ (1974) Paleoclimatic influences and the development of savanna in southern Venezuela. Biogeogr 1:95–109

    Google Scholar 

  • Feller C, Fritsch E, Poss R, Valentin C (1991) Effet de la texture sur le stockage et la dynamique des matières organiques dans quelques sols ferrugineux et ferrallitiques (Afrique de l'Ouest, en particulier). Cah ORSTOM Ser Pedol 26:25–36

    Google Scholar 

  • Girardin C, Mariotti A (1991) Analyse isotopique du 13C en abondance naturelle dans le carbone organique: un système automatique avec robot préparateur. Cah ORSTOM Ser Pedol 26:371–381

    Google Scholar 

  • Goh KM, Rafter TA, Stout JD, Walker TW (1976) The accumulation of soil organic matter and its carbon isotope content in a chronosequence of soils developed on aeolian sand in New Zealand. J Soil Sci 27:89–100

    Google Scholar 

  • Guillet B, Faivre P, Mariotti A, Khobzi J (1988) The evidence of open landscapes in valleys adjacent to the “Sabana de Bogota” during Holocene. Paleogeogr Paleoclimatol Paleoecol 65:51–58

    Google Scholar 

  • Ledru MP (1992) Modifications de la végétation du Brésil Central entre la dernière époque glaciaire et l'interglaciaire actuel. CR Acad Sci Paris II 314:117–123

    Google Scholar 

  • Liu KB, Colinvaux PA (1988) A 5200-year history of Amazon rain forest. J Biogeogr 15:231–248

    Google Scholar 

  • Mariotti A (1991) Le carbone-13 en abondance naturelle, traceur de la dynamique de la matière organique des sols et de l'évolution des paléoenvironments continentaux. Cah ORSTOM Ser Pedol 26:299–313

    Google Scholar 

  • Mariotti A, Balesdent J (1990) 13C natural abundance as a tracer of soil organic matter turnover and paleoenvironment dynamics. Chem Geol 84:317–319

    Google Scholar 

  • Mariotti A, Peterschmitt E (1994) Forest savanna ecotone dynamics in India as revealed by carbon isotope ratios of soil organic matter. Oecologia 97:475–480

    Google Scholar 

  • Martin A, Mariotti A, Balesdent J, Lavelle P, Vuattoux R (1990) Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol Biochem 22:517–523

    Google Scholar 

  • McPherson GR, Boutton TW, Midwood AJ (1993) Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA. Oecologia 93:95–101

    Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Google Scholar 

  • Nimer E (1989) Climatologia do Brasil. IBGE, Rio de Janeiro

    Google Scholar 

  • O'Brien BJ, Stout JD (1978) Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol Biochem 10:309–317

    Google Scholar 

  • Radambrasil (1975) Projeto Radambrasil Levantamento de Recursos Naturais. Folha NB20, Boa Vista, Ministerio das Minas e Energia, Brasil

    Google Scholar 

  • Ross SM, Luizão FJ, Luizão RCC (1992) Soil conditions and soil biology in different habitats across a forest-savanna boundary on Maracá Island, Roraima, Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest savanna boundaries. Chapmann and Hatt, London, pp 145–170

    Google Scholar 

  • Saldarriaga JG, West DC (1986) Holocene fires in the northern Amazon Basin. Quat Res 26:358–366

    Google Scholar 

  • Sanchez PA, Gichuru MP, Katz LB (1982) Organic matter in major soils of the tropical and temperate regions. In: Non symbiotic nitrogen fixation and organic matter in the tropics. 12th ICSS, New Delhi, pp 99–114

  • Schwartz D (1991) Intérêt de la mesure du δ13C des sols en milieu naturel équatorial pour la connaissance des aspects pédologiques et écologiques des relations savane-forêt. Cah ORSTOM Ser Pedol 26:327–341

    Google Scholar 

  • Schwartz D, Mariotti A, Lanfranchi R, Guillet B (1986) 13C/12C ratios of soil organic matter as indicators of ecosystem changes in tropical regions. Geoderma 39:97–103

    Google Scholar 

  • Schwartz D, Mariotti A, Trouvé C, Van den Borg K, Guillet B (1992) Etude des profils isotopiques 13C et 14C d'un sol ferrallitique sableux du littoral congolais. Implications sur la dynamique de la matière organique et l'histoire de la végétation. CR Acad Sci Paris II 315:1411–1417

    Google Scholar 

  • Servant M, Fontes JC, Rieu M, Saliège JF (1981) Phases climatiques arides holocènes dans le sud-ouest de l'Amazonie (Bolivie). CR Acad Sci II 292:1295–1297

    Google Scholar 

  • Servant M, Maley J, Turcq B, Absy ML, Bennac P, Fournier M, Ledru MP (1993) Tropical forest changes during the late Quaternary in African and South American Iowlands. Global Planet Change 7:25–40

    Google Scholar 

  • Silva ELS (1993) Inventário preliminar das espécies arbóreas das florestas dos arredores de Boa Vista (Roraima), uma abordagem fitossociológica. Master thesis, INPA/Fundação Universidade do Amazonas, Manaus

  • Soubiès F (1980) Existence d'une phase sèche en Amazonie brésilienne datée par la présence de charbons dans les sols (6000–3000 ans B.P.). Cah ORSTOM Ser Geol 11:133–148

    Google Scholar 

  • Van der Hammen T (1991) Palaeoecological background: neotropics. Clim Change 19:37–47

    Google Scholar 

  • Volkoff B, Cerri CC (1988) L'humus des sols du Brésil. Nature et relations avec l'environnement. Cah ORSTOM Ser Pedol 24:83–95

    Google Scholar 

  • Volkoff B, Matsui E, Cerri CC (1982) Discriminação isotópica do carbono nos humus de latossolos e podzol na região amazônica do Brasil. In: Proceedings of the regional colloquium on soil organic matter. CENA-PROMOCET. Piracicaba, pp 147–153

    Google Scholar 

  • Wang Y, Cerlin TE, Effland WR (1993) Stable isotope ratios of soil carbonate and soil organic matter as indicators of forest invasion of prairie near Ames, Iowa. Oecologia 95:365–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desjardins, T., Filho, A.C., Mariotti, A. et al. Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon. Oecologia 108, 749–756 (1996). https://doi.org/10.1007/BF00329051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329051

Key words

Navigation