Skip to main content
Log in

Doubled haploidy and induced mutation

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Doubled haploid (DH) systems have many attractive features for inducing and fixing mutations. Doubled haploidy provides the fastest route to homozygosity with the greatest fidelity. The ability to fix mutations via doubled haploidy is a key factor, especially as induced mutations␣are predominantly recessive and cannot normally be detected until the M2 generation at the earliest. The DH systems themselves provide an opportunity to target haploid as well as doubled haploid cells for mutation treatment and capture the mutation in a homozygous, pure line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135(2):187–204

    Article  Google Scholar 

  • Ahmad I, Day JP, MacDonald MV, Ingram DS (1991) Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria brassicicola. Ann Bot 67:521–525

    Google Scholar 

  • Aldemita RR, Zapata FL (1991) Anther culture of rice: effects of radiation and media components on callus induction and plant regeneration. Cereal Res Commun 19:9–32

    Google Scholar 

  • Anderson PA, Okubara PA, Arroyo-Garcia R, Meyers BC, Michelmore RW (1996) Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus in Lactuca sativa. Mol Gen Genet 251:316–325

    PubMed  CAS  Google Scholar 

  • Bae CH, Lee YI, Lim YP, Seo YW, Lee DJ, Yang DC, Lee HY (2002) Detection of herbicide tolerant cell lines from γ-ray irradiated cell cultures in rice (Oryza sativa L. cv. Ilpumbyeo). J Plant Biotech 4:123–127

    Google Scholar 

  • Barro F, Fernandez-Escobar J, De La Vega M, Martin A (2001) Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores. Plant Breed 120:262–264

    Article  CAS  Google Scholar 

  • Barro F, Fernandez-Escobar J, De La Vega M, Martin A (2002) Modification of glucosinolate and eruic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores. Euphytica 129:1–6

    Article  Google Scholar 

  • Bentley A, MacLennan B, Calvo J, Dearolf CR (2000) Targeted recovery of mutations in Drosophila. Genetics 156:1169–1173

    PubMed  CAS  Google Scholar 

  • Beversdorf WD, Kott LS (1987) An in vitro mutagenesis/selection system for Brassica napus. Iowa State J Res 61:435–443

    Google Scholar 

  • Bhatia CR, Nichterlein K, Maluszynski M (2001) Mutations affecting nodulation in grain legumes and their potential in sustainable cropping systems. Euphytica 120:415–432

    Article  Google Scholar 

  • Caldwell DC, McCallum N, Shaw P, Muelbauer G, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  PubMed  CAS  Google Scholar 

  • Castillo AM, Cistue L, Valles MP, Sanz L, Romagosa I, Molina-Cano JL (2001) Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep 20:105–111

    Article  CAS  Google Scholar 

  • Cegielska-Taras T, Szala L, Krzymanski J (1999) An in vitro mutagenesis – selection system for Brassica napus L. New Horizons for an Old Crop. Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, pp. 1–4

  • Chen Y (1986) The inheritance of rice pollen plant and its application in crop improvement. In: Hu H, Yang H (eds) Haploids of higher plants in vitro. China Acad Publ. Springer Verlag, Beijing, pp. 118–136

  • Chen CC, Kasha KJ, Marsolais A (1984) Segmentation patterns and mechanisms of genome multiplication in cultured microspores of barley. Can J Genet Cytol 26:475–483

    Google Scholar 

  • Chen QF, Wang CL, Lu YM, Shen M, Afza A, Duren MV, Brunner H (2001) Anther culture in connection with induced mutations for rice improvement. Euphytica 120:401–408

    Article  Google Scholar 

  • Coghill EL, Hugill A, Parkinson N, Davidson C, Glenister P, Clemens S, Hunter J, Cox RD, Brown SD (2002) A gene-driven approach to the identification of ENU mutants in the mouse. Nat Genet 30:255–256

    Article  PubMed  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  PubMed  CAS  Google Scholar 

  • Devaux P (2003) The Hordeum bulbosum (L.) method. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: A manual. Kluwer Academic Publishers, Dordrecht, pp. 15–20

  • Ferrie AMR, Keller WA (2002) Application of double haploidy and mutagenesis in Brassica. Thirteenth Crucifere Genetics Workshop, March 23–26, University of California, Davis

  • Forster BP (2001) Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120:317–328

    Article  CAS  Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  • Gaj M, Maluszynski M (1989) Crossability of spring barley mutants with Hordeum bulbosum. In: Maluszynski M (ed) Current options for cereal improvement. Doubled haploids, mutants and heterosis. Kluwer Academic Publishers, Dordrecht, pp 203–210

    Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:1–5

    Article  CAS  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    PubMed  CAS  Google Scholar 

  • Hayes P, Corey A, DeNomahoma J (2003) Doubled haploid production in barley using the Hordeum bulbosum (L.) technique. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp. 5–14

  • Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Ann Rev Plant Biol 54:375–401

    Article  CAS  Google Scholar 

  • Hu Z (1983) Stimulating pollen haploid culture mutation in Oryza sativa subsp. Keng (japonica). In: Cell and tissue culture techniques for cereal crop improvement. Science Press, IRRI, Beijing, Manila, pp. 291–301

  • Huang B (1992) Genetic manipulation of microspores and microspore-derived embryos. In vitro Cell Dev Biol 28:53–58

    Article  Google Scholar 

  • Jedrzejaszek K, Kruczkowska H, Pawlowska H, Skucinska B (1997) Stimulating effect of mutagens on in vitro plant regeneration. MBNL 43:10–11

    Google Scholar 

  • Jende-Strid B (1993) Genetic control of flavonoid biosynthesis in barley. Hereditas 119:187–204

    Article  CAS  Google Scholar 

  • Jimenez Davalos JE (1999) Development of doubled haploid mutant lines of barley (Hordeum vulgare L.) through in vitro anther culture and evaluation of DH lines in field conditions. MSc Thesis, La Molina National Agrarian University, Lima, Peru, pp. 76 (in Spanish)

  • Khan AJ, Hassan S, Tariq M, Kahn T (2001) Haploidy breeding and mutagenesis for drought tolerance in wheat. Euphytica 120:409–414

    Article  Google Scholar 

  • Kasha KJ, Hu TC, Oro R, Simion E, Shi YS (2001) Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. J Exp Bot 52:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Lee IS, Jang CS, Hyun DY, Lee SJ, Seo YW, Lee YI (2003) Selection of 5-methyltryptophan and S-(2-aminoethyl)-l-cysteine resistant microspore-derived rice cell lines irradiated with gamma rays. J Plant Biotech 5:33–41

    Google Scholar 

  • Kinoshita T, Mori K, Takamure I (1989) Mutagenesis by means of anther culture combined with gamma irradiation. RGN 6:139–140

    Google Scholar 

  • Koncz C, Redei GP (1994) Genetic studies with Arabidopsis: a historical view. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. CSHL Press, New York, pp. 223–252

    Google Scholar 

  • Kopecky D, Vagera J (2005) The use of mutagens to increase the efficiency of the androgenic progeny production in Solanum nigrum. Biol Plant 49:181–186

    Article  Google Scholar 

  • Kott L (1995) Production of mutants using the rapeseed doubled haploid system. In: Induced mutations and molecular techniques for crop improvement. IAEA, Vienna, pp. 505–515

  • Kott L (1998) Application of doubled haploid technology in breeding of oilseed Brassica napus. AgBiotech News Inform 10:69N–74N

    Google Scholar 

  • Kott L, Wong R, Swanson E, Chen J (1996) Mutation and selection for improved oil and meal quality in Brassica napus utilizing microspore culture. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 2. Kluwer Academic Publishers, Dordrecht, pp. 151–167

  • Krumbiegel G (1979) Response of haploid and diploid protoplasts from Datura innoxia Mill. and Petunia hybrida L. to treatment with X-rays and a chemical mutagen. Environ Exp Bot 19:99–103

    Article  Google Scholar 

  • Kyin San Myint, Khine Oo Aung, Khin Soe (2005) Development of a short duration upland rice mutant line through anther culture of gamma irradiated plants. MBNL&R 1:13–14

    Google Scholar 

  • Laib Y, Szarejko I, Polok K, Malusynski M (1996) Barley anther culture for doubled haploid mutant production. MBNL 42:13–15

    Google Scholar 

  • Lee JH, Lee SY (2002) Selection of stable mutants from cultured rice anthers treated with ethyl methane sulfonic acid. Plant Cell Tiss Org Cult 71:165–171

    Article  CAS  Google Scholar 

  • Lee SY, Cheong JI, Kim TS (2003) Production of doubled haploids through anther culture of M1 rice plants derived from mutagenized fertilized egg cells. Plant Cell Rep 22:218–223

    Article  PubMed  CAS  Google Scholar 

  • Ling DX, Luckett DJ, Darvey NL (1991) Low-dose gamma irradiation promotes wheat anther culture response. Aust J Bot 39:467–474

    Article  Google Scholar 

  • Liu S, Wang H, Zhang J, Fitt BDL, Xu Z, Evans N, Liu Y, Yang W, Gao X (2005) In vitro mutation and selection of doubled haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24:133–144

    Article  PubMed  CAS  Google Scholar 

  • MacDonald MV, Aslam V, Aslam FN (1986) The effect of gamma irradition on buds of Brassica napus ssp. oleifera prior to anther culture. Cruciferae Newsl 11

  • MacDonald MV, Newsholme DM, Ingram DS (1988) The biological effects of gamma irradiation on secondary embryoids of Brassica napus ssp. oleifera (Metzg.) Sinsk., winter oilseed rape. New Phytol 110:255–259

    Article  Google Scholar 

  • MacDonald MV, Ahmad I, Menten JOM, Ingram DS (1991) Haploid culture and in vitro mutagenesis (UV light, X-rays, and gamma rays) of rapid cycling Brassica napus for improved resistance to disease. In: Plant mutation breeding for crop improvement, vol 2. IAEA, Vienna, pp. 129–138

  • Maluszynski M, Ahloowalia BS, Sigurbjörnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85(1–3):303–315

    Article  Google Scholar 

  • Maluszynski M, Szarejko I, Sigurbjörnsson B (1996) Haploidy and mutation techniques. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp. 67–93

    Google Scholar 

  • Maluszynski M, Nichterlein K, van Zanten L, Ahloowalia BS (2000) Officially released mutant varieties – the FAO/IAEA database. Mut Breed Rev 12:1–84

    Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarekjo I (2003) Doubled haploid production in crop plants; a manual. Kluwer Academic Publisher, Dordrecht, pp. 428

  • Maluszynski M, Szarejko I (2005) Induced mutations in the green and gene revolutions. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from the green revolution to the gene revolution. Avenue media, Bologna, pp. 403–425

    Google Scholar 

  • Marion-Poll A, Missionier C, Goujaud J, Caboche M (1988) Isolation and characterization of valine-resistant mutants of dihaploid Nicotiana plumbaginifolia. Theor Appl Genet 75:272–277

    Article  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000a) Targeted screening for induced mutations. Nature Biotechnol 18:455–457

    Article  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000b) Targeted induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  Google Scholar 

  • Medrano H, Millo EP, Guerri J (1986) Ethyl-methane-sulphonate effects on anther cultures of Nicotiana tabacum. Euphytica 35:161–168

    Article  CAS  Google Scholar 

  • Meinke DW (1994) Seed development in Arabidopsis thaliana. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. CSHL Press, New York, pp. 253–295

    Google Scholar 

  • Meinke DW (1995) Molecular genetics of plant embryogenesis. Annu Rev Plant Physiol Plant Mol Biol 46:369–394

    Article  CAS  Google Scholar 

  • Navarro Alvarez W (2002) Production of salt tolerant rice mutants using gamma rays and anther culture. In: Maluszynski M, Kasha KJ (eds) Mutations, in vitro and molecular techniques for environmentally sustainable crop improvement. Kluwer Academic Publisher, Dordrecht, pp. 93–96

    Google Scholar 

  • Nielsen E, Selva E, Sghirinzetti C, Devreux M (1985) The mutagenic effect of gamma rays on leaf protoplasts of haploid and dihaploid Nicotiana plumbaginifolia, estimated by valine resistance mutation frequencies. Theor Appl Genet 70:259–264

    Article  Google Scholar 

  • Østergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696

    Article  PubMed  CAS  Google Scholar 

  • Palmer CE, Keller WA, Arnison PG (1996) Utilization of Brassica haploids. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic Publisher, Dordrecht, pp 173–192

    Google Scholar 

  • Perry JA, Wang TL, Welham TL, Gardne S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Article  PubMed  CAS  Google Scholar 

  • Polsoni L, Kott LS, Beversdorf WD (1988) Large-scale microspore culture technique for mutation-selection studies in Brassica napus. Can J Bot 66:1681–1685

    Google Scholar 

  • Przewozny T, Schieder O, Wenzel G (1980) Induced mutants from dihaploid potatoes after pollen mother cell treatment. Theor Appl Genet 58:145–148

    Article  Google Scholar 

  • Rahman MH, Krishnaraj S, Thorpe TA (1995) Selection for salt tolerance in vitro using microspore-derived embryos of Brassica napus cv Topas, and the characterization of putative tolerant plants. In vitro Cell Dev Biol Plant 31:116–121

    Article  Google Scholar 

  • Rutger JN (1992) Impact of mutation breeding in rice – a review. Mut Breed Rev 8:1–24

    Google Scholar 

  • Sangwan RS, Sangwan BS (1986) Effects des rayons sur l’embryogenese somatique et l’androgenese chez divers tissus vegetaux cultives in vitro. In: Nuclear techniques and in vitro culture for plant improvement. IAEA, Vienna, pp. 181–185

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  PubMed  CAS  Google Scholar 

  • Schieder O (1976) Isolation of mutants with altered pigments after irradiating haploid protoplasts from Datura innoxia Mill. With X-rays. Mol Gen Genet 43:251–254

    Article  Google Scholar 

  • Shi SW, Zhou YM, Wu JS, Liu HL (1997) EMS mutagenesis of microspore-derived embryogenic cultures of Brassica napus. MBNL 43:8–9

    Google Scholar 

  • Sidorov V, Menczel L, Maliga P (1981) Isoleucine-requiring Nicotiana plant deficient in treonine deaminase. Nature 294:87–88

    Article  CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A revers genetic, nontransgenic approach to wheat crop improvement by TILLING. Nature Biotech 23:75–81

    Article  CAS  Google Scholar 

  • Sumaryati S, Negrutiu I, Jacobs M (1992) Characterization and regeneration of salt- and water-stress mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani). Theor Appl Genet 83:613–619

    Article  CAS  Google Scholar 

  • Swanson EB, Coumans MP, Brown GL, Patel JD, Beversdorf WD (1988) The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep 7:83–87

    Article  CAS  Google Scholar 

  • Swanson EB, Herrgesell MJ, Arnoldo M, Sippell DW, Wong RSC (1989) Microspore mutagenesis and selection: canola plants with field tolerance to the imidazolinones. Theor Appl Genet 78:525–530

    Article  CAS  Google Scholar 

  • Szarejko I (2003) Doubled haploid mutant production. In: Maluszynski M, Kasha KJ, Forster BP, Szarekjo I (eds) Doubled haploid production in crop plants; a manual. Kluwer Academic Publisher, Dordrecht, pp 351–361

    Google Scholar 

  • Szarejko I, Maluszynski M, Polok K, Kilian A (1991) Doubled haploids in the mutation breeding of selected crops. In: Plant mutation breeding for crop improvement, vol 2. IAEA, Vienna, pp. 355–378

  • Szarejko I, Guzy J, Jimenez Davalos J, Roland Chavez A, Maluszynski M (1995) Production of mutants using barley DH systems. In: Induced mutations and molecualar techniques for crop improvement. IAEA, Vienna, pp. 517–530

  • Tuvesson S, Dayteg C, Hagberg P, Manninen O, Tanhuanpää P, Tenhola-Roininen T, Kiviharju E, Weyen J, Förster J, Schondelmaier J, Lafferty J, Marn M, Fleck A (2006) Molecular markers and doubled haploids in European plant breeding programmes (this issue)

  • Turner J, Facciotti D (1990) High oleic acid Brassica napus from mutagenized microspores. In: McFerson JR, Kresovich S, Dwyer SG (eds) Proc. 6th Crucifer Genetics Workshop, Geneva, NY, pp. 24

  • Umba di-Umba U, Maluszynski M, Szarejko I, Zbieszczyk J (1991) High frequency of barley DH-mutants from M1 after mutagenic treatment with MNH and sodium azide. MBNL 38:8–9

    Google Scholar 

  • Vagera J, Novotny J, Ohnoutkova L (2004) Induced androgenesis in vitro in mutated populations of barley, Hordeum vulgare. Plant Cell Tiss Org Cult 77:55–61

    Article  CAS  Google Scholar 

  • Vunsh R, Aviv D, Galum E (1982) Valine resistant plants derived from mutated haploid and diploid protoplasts of Nicotiana sylvestris and Nicotiana tabacum. Theor Appl Genet 64:51–58

    Article  Google Scholar 

  • Wedzony M, Zur I, Golemiec E, Szechińska-Hebda M, Dubas E (2006) Progress in doubled haploid technology (this issue)

  • Werner K, Friedt W, Ordon F (2006) Localisation and combination of resistance genes against soil-borne viruses of barley using doubled haploidy and molecular markers (this issue)

  • Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707

    Article  PubMed  CAS  Google Scholar 

  • Wong CK, Ko SW, Woo SC (1983) Regeneration of rice plantlets on NaCl-stressed medium by anther culture. Bot Bull Acad Sin 24:59–64

    Google Scholar 

  • Wong RSC, Swanson E (1991) Genetic modification of canola oil: high oleic acid canola. In: Haberstroh C, Morris CE (eds) Fat and cholesterol reduced food. Gulf, Houston, Texas, pp. 154–164

    Google Scholar 

  • Worland AJ, Law CN (1991) Improving disease resistance in wheat by inactivating genes promoting disease susceptibility. MBNL 38:2–5

    Google Scholar 

  • Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97

    Article  PubMed  CAS  Google Scholar 

  • Zakhrabekova S, Kannangara CG, von Wettstein D, Hansson M (2002) A microarray approach for identifying mutated genes. Plant Physiol Biochem 40:189–197

    Article  CAS  Google Scholar 

  • Zhang YX, Bouvier L, Lespinasse Y (1992) Microspore embryogenesis induced by low gamma dose irradiation in apple. Plant Breed 108:173–176

    Article  Google Scholar 

  • Zhang F, Takahata Y (1999) Microspore mutagenesis and in vitro selection for resistance to soft rot disease in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Breed Sci 49:161–166

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. M. Maluszynski for valuable comments and the critical review of this manuscript. The Scottish Crop Research Institute receives grant-in-aid from the Scottish Executive Environment and Rural Affairs Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Szarejko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szarejko, I., Forster, B.P. Doubled haploidy and induced mutation. Euphytica 158, 359–370 (2007). https://doi.org/10.1007/s10681-006-9241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9241-1

Keywords

Navigation