Skip to main content

Anesthesiology and Intraoperative Electrophysiological Monitoring

  • Chapter
  • First Online:
Principles of Neurophysiological Assessment, Mapping, and Monitoring
  • 1039 Accesses

Abstract

The role of the anesthesiologist during procedures where intraoperative electrophysiological monitoring (IOM) is being performed involves anesthetic titration, attaining physiological homeostasis, and medical management of the patient. Further, the anesthesiologist participates in mitigating neural injury when the monitoring indicates that the nervous system may be at risk for injury. More specifically, the choice of anesthetic agents directly impacts the ability to reliably record IOM responses, and the physiological management (e.g., blood pressure) impacts on the reserve of the nervous system to tolerate procedural trespass. When altered responses indicate the health of the nervous system may be compromised, the insights of the anesthesiologist and the ability to improve the physiological reserve are keys to reducing neurological risk. This chapter discusses these aspects to improve integration of the anesthesiologist into the IOM monitoring team effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koht A, Neuloh G, Tate MC. Anesthesia for awake craniotomy. In: Koht A, Sloan TB, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health care professionals. Switzerland: Springer; 2017. p. 301–16.

    Chapter  Google Scholar 

  2. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876–80. https://doi.org/10.1126/science.1149213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol. 2005;17(1):13–9.

    PubMed  Google Scholar 

  4. Nickalls RW, Mapleson WW. Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth. 2003;91(2):170–4. https://doi.org/10.1093/bja/aeg132.

    Article  CAS  PubMed  Google Scholar 

  5. Miller RD, Eriksson L, Fleisher L, Wiener-Kronish J, Young W, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill-Livingstone Elsevier; 2010. https://doi.org/10.3768/rtipress.2010.pb.0001.1005.

    Book  Google Scholar 

  6. Sloan TB. Anesthesia management and intraoperative Electrophysiologic monitoring. In: Koht A, Sloan TB, Toleikis JR, editors. Editors Monitoring the nervous system for anesthesiologists and other health care professionals. Switzerland: Springer; 2017. p. 317–44.

    Chapter  Google Scholar 

  7. John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology. 2005;102(2):447–71. https://doi.org/10.1097/00000542-200502000-00030.

    Article  PubMed  Google Scholar 

  8. Manninen PH, Lam AM, Nicholas JF. The effects of isoflurane and isoflurane-nitrous oxide anesthesia on brainstem auditory evoked potentials in humans. Anesth Analg. 1985;64(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sloan T. General anesthesia for monitoring. In: Koht A, Sloan T, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health professionals. New York: Springer; 2012. p. 319–35.

    Chapter  Google Scholar 

  10. Mavroudakis N, Vandesteene A, Brunko E, Defevrimont M, Zegers de Beyl D. Spinal and brain-stem SEPs and H reflex during enflurane anesthesia. Electroencephalogr Clin Neurophysiol. 1994;92(1):82–5.

    Article  CAS  PubMed  Google Scholar 

  11. Ohara A, Mashimo T, Zhang P, Inagaki Y, Shibuta S, Yoshiya I, et al. A comparative study of the antinociceptive action of xenon and nitrous oxide in rats. Anesth Analg. 1997;85(4):931–6. https://doi.org/10.1213/00000539-199710000-00039.

    Article  CAS  PubMed  Google Scholar 

  12. Sloan TB. Evoked potentials In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 221–76.

    Google Scholar 

  13. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, Kalkman CJ, et al. The influence of nitrous oxide to supplement fentanyl/low-dose propofol anesthesia on transcranial myogenic motor-evoked potentials during thoracic aortic surgery. J Cardiothorac Vasc Anesth. 1999;13(1):30–4. https://doi.org/10.1016/S1053-0770(99)90169-6.

    Article  PubMed  Google Scholar 

  14. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, de Boer A, Aarts LP, et al. Effect of nitrous oxide on myogenic motor potentials evoked by a six pulse train of transcranial electrical stimuli: a possible monitor for aortic surgery. Br J Anaesth. 1999;82(3):323–8. https://doi.org/10.1093/bja/82.3.323.

    Article  PubMed  Google Scholar 

  15. Sakamoto T, Kawaguchi M, Inoue S, Furuya H. Suppressive effect of nitrous oxide on motor evoked potentials can be reversed by train stimulation in rabbits under ketamine/fentanyl anaesthesia, but not with additional propofol. Br J Anaesth. 2001;86(3):395–402. https://doi.org/10.1093/bja/86.3.395.

    Article  CAS  PubMed  Google Scholar 

  16. Sloan T, Sloan H, Rogers J. Nitrous oxide and isoflurane are synergistic with respect to amplitude and latency effects on sensory evoked potentials. J Clin Monit Comput. 2010;24(2):113–23. https://doi.org/10.1007/s10877-009-9219-3.

    Article  PubMed  Google Scholar 

  17. Logginidou HG, Li BH, Li DP, Lohmann JS, Schuler HG, DiVittore NA, et al. Propofol suppresses the cortical somatosensory evoked potential in rats. Anesth Analg. 2003;97(6):1784–8. https://doi.org/10.1213/01.ANE.0000090318.16879.A8.

    Article  CAS  PubMed  Google Scholar 

  18. Kawaguchi M, Furuya H. Intraoperative spinal cord monitoring of motor function with myogenic motor evoked potentials: a consideration in anesthesia. J Anesth. 2004;18(1):18–28. https://doi.org/10.1007/s00540-003-0201-9.

    Article  PubMed  Google Scholar 

  19. Altermatt FR, Bugedo DA, Delfino AE, Solari S, Guerra I, Muñoz HR, et al. Evaluation of the effect of intravenous lidocaine on propofol requirements during total intravenous anaesthesia as measured by bispectral index. Br J Anaesth. 2012;108(6):979–83. https://doi.org/10.1093/bja/aes097.

    Article  CAS  PubMed  Google Scholar 

  20. Cassuto J, Wallin G, Högström S, Faxén A, Rimbäck G. Inhibition of postoperative pain by continuous low-dose intravenous infusion of lidocaine. Anesth Analg. 1985;64(10):971–4.

    Article  CAS  PubMed  Google Scholar 

  21. Sneyd JR, Rigby-Jones AE. New drugs and technologies, intravenous anaesthesia is on the move (again). Br J Anaesth. 2010;105(3):246–54. https://doi.org/10.1093/bja/aeq190.

    Article  CAS  PubMed  Google Scholar 

  22. Jones AE. The etomidate debate. Ann Emerg Med. 2010;56(5):490–1. https://doi.org/10.1016/j.annemergmed.2010.07.008.

    Article  PubMed  Google Scholar 

  23. Cherfan AJ, Arabi YM, Al-Dorzi HM, Kenny LP. Advantages and disadvantages of etomidate use for intubation of patients with sepsis. Pharmacotherapy. 2012;32(5):475–82. https://doi.org/10.1002/j.1875-9114.2012.01027.x.

    Article  CAS  PubMed  Google Scholar 

  24. Kochs E, Treede RD, Schulte am Esch J. Increase in somatosensory evoked potentials during anesthesia induction with etomidate. Anaesthesist. 1986;35(6):359–64.

    Article  CAS  PubMed  Google Scholar 

  25. Sloan TB, Ronai AK, Toleikis JR, Koht A. Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg. 1988;67(6):582–5.

    Article  CAS  PubMed  Google Scholar 

  26. McPherson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65(6):584–9. https://doi.org/10.1097/00000542-198612000-00004.

    Article  CAS  PubMed  Google Scholar 

  27. Russ W, Thiel A, Schwandt HJ, Hempelmann G. Somatosensory evoked potentials under thiopental and etomidate. Anaesthesist. 1986;35(11):679–85.

    CAS  PubMed  Google Scholar 

  28. Koht A, Schütz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67(5):435-41. https://doi.org/10.1213/00000539-198805000-00003.

    Article  PubMed  Google Scholar 

  29. Langeron O, Lille F, Zerhouni O, Orliaguet G, Saillant G, Riou B, et al. Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery. Br J Anaesth. 1997;78(6):701–6. https://doi.org/10.1093/bja/78.6.701.

    Article  CAS  PubMed  Google Scholar 

  30. Rampil IJ. Electroencephalogram. In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 193–220.

    Google Scholar 

  31. Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990;64(5):590–3. https://doi.org/10.1093/bja/64.5.590.

    Article  CAS  PubMed  Google Scholar 

  32. Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology. 1992;76(4):502–9. https://doi.org/10.1097/00000542-199204000-00003.

    Article  CAS  PubMed  Google Scholar 

  33. Scheufler K-M, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96(3):571–9. https://doi.org/10.3171/jns.2002.96.3.0571.

    Article  CAS  PubMed  Google Scholar 

  34. Zentner J. Motor evoked potential monitoring in operations of the brainstem and posterior fossa. In: Schramm J, Moller AR, editors. Intraoperative neurophysiological monitoring in neurosurgery. Berlin: Springer; 1991. p. 95–105.

    Chapter  Google Scholar 

  35. Ghaly RF, Stone JL, Levy WJ, Kartha R, Aldrete A, Brunner EB, et al. The effect of an anesthetic induction dose of midazolam on motor potentials evoked by transcranial magnetic stimulation in the monkey. J Neurosurg Anesth. 1991;3:20–5. https://doi.org/10.1097/00008506-199103000-00004.

    Article  CAS  Google Scholar 

  36. Schonle PW, Isenberg C, Crozier TA, Dressler D, Machetanz J, Conrad B. Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett. 1989;101(3):321–4. https://doi.org/10.1016/0304-3940(89)90553-3.

    Article  CAS  PubMed  Google Scholar 

  37. Crawford ME, Jensen FM, Toftdahl DB, Madsen JB. Direct spinal effect of intrathecal and extradural midazolam on visceral noxius stimulation in rabbits. Br J Anaesth. 1993;70:642–6. https://doi.org/10.1093/bja/70.6.642.

    Article  CAS  PubMed  Google Scholar 

  38. Faull RL, Villiger JW. Benzodiazepine receptors in the human spinal cord: a detailed anatomical and pharmacological study. Neuroscience. 1986;17(3):791–802. https://doi.org/10.1016/0306-4522(86)90045-X.

    Article  CAS  PubMed  Google Scholar 

  39. Tobias JD, Goble TJ, Bates G, Anderson JT, Hoernschemeyer DG. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.

    Article  PubMed  Google Scholar 

  40. Yamamoto Y, Kawaguchi M, Kakimoto M, Inoue S, Furuya H. The effects of dexmedetomidine on myogenic motor evoked potentials in rabbits. Anesth Analg. 2007;104(6):1488–92. https://doi.org/10.1213/01.ane.0000261518.62873.91.

    Article  CAS  PubMed  Google Scholar 

  41. Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 112(6):1364–73. https://doi.org/10.1097/ALN.0b013e3181d74f55.

    Article  CAS  PubMed  Google Scholar 

  42. Sloan TB, Vasquez J, Burger E. Methohexital in total intravenous anesthesia during intraoperative neurophysiological monitoring. J Clin Monit Comput. 2013;27(6):697–702. https://doi.org/10.1007/s10877-013-9490-1.

    Article  PubMed  Google Scholar 

  43. Lauretti GR. Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008;58(3):280–6. https://doi.org/10.1590/S0034-70942008000300011.

    Article  CAS  PubMed  Google Scholar 

  44. Asouhido I, Katsaridis V, Vaidis G, Ioannou P, Givissis P, Christodoulou A, Georgiadis G. Somatosensory evoked potentials suppression due to remifentanil during spinal operations; a prospective clinical study. Scoliosis. 2010;5:8–13.

    Article  Google Scholar 

  45. Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. [erratum appears in Anesthesiology 1990;72(6):1104]. Anesthesiology. 1990;72(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  46. Schwender D, Klasing S, Madler C, Pöppel E, Peter K. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans. Br J Anaesth. 1993;71(5):629–32. https://doi.org/10.1093/bja/71.5.629.

    Article  CAS  PubMed  Google Scholar 

  47. Kano T, Shimoji K. The effects of ketamine and neuroleptanalgesia on the evoked electrospinogram and electromyogram in man. Anesthesiology. 1974;40(3):241–6. https://doi.org/10.1097/00000542-197403000-00007.

    Article  CAS  PubMed  Google Scholar 

  48. Glassman SD, Shields CB, Linden RD, Zhang YP, Nixon AR, Johnson JR. Anesthetic effects on motor evoked potentials in dogs. Spine. 1993;18(8):1083–9. https://doi.org/10.1097/00007632-199306150-00020.

    Article  CAS  PubMed  Google Scholar 

  49. Taniguchi M, Nadstawek J, Langenbach U, Bremer F, Schramm J. Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery. 1993;33(3):407–15;. discussion 415. https://doi.org/10.1007/978-3-642-78801-7_46.

    Article  CAS  PubMed  Google Scholar 

  50. Kaba A, Laurent SR, Detroz BJ, Sessler DI, Durieux ME, Lamy ML, Joris JL. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106(1):11–8;. discussion 5-6. https://doi.org/10.1097/00000542-200701000-00007.

    Article  CAS  PubMed  Google Scholar 

  51. Lauwick S, Kim DJ, Michelagnoli G, Mistraletti G, Feldman L, Fried G, Carli F. Intraoperative infusion of lidocaine reduces postoperative fentanyl requirements in patients undergoing laparoscopic cholecystectomy. Can J Anaesth. 2008;55(11):754–60.

    Article  PubMed  Google Scholar 

  52. Kuo CP, Jao SW, Chen KM, Wong CS, Yeh CC, Sheen MJ, et al. Comparison of the effects of thoracic epidural analgesia and i.v. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing colonic surgery. Br J Anaesth. 2006;97(5):640–6. https://doi.org/10.1093/bja/ael217.

    Article  CAS  PubMed  Google Scholar 

  53. Sugimoto M, Uchida I, Mashimo T. Local anaesthetics have different mechanisms and sites of action at the recombinant N-methyl-D-aspartate (NMDA) receptors. Br J Pharmacol. 2003;138(5):876–82. https://doi.org/10.1038/sj.bjp.0705107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gottschalk A, McKay AM, Malik ZM, Forbes M, Durieux ME, Groves DS. Systemic lidocaine decreases the Bispectral index in the presence of midazolam, but not its absence. J Clin Anesth. 2012;24(2):121–5. https://doi.org/10.1016/j.jclinane.2011.06.018.

    Article  CAS  PubMed  Google Scholar 

  55. Senturk M, Pembeci K, Menda F, Ozkan T, Gucyetmez B, Tugrul M, et al. Effects of intramuscular administration of lidocaine or bupivacaine on induction and maintenance doses of propofol evaluated by bispectral index. Br J Anaesth. 2002;89(6):849–52. https://doi.org/10.1093/bja/aef287.

    Article  CAS  PubMed  Google Scholar 

  56. Telci L, Esen F, Akcora D, Erden T, Canbolat AT, Akpir K. Evaluation of effects of magnesium sulphate in reducing intraoperative anaesthetic requirements. Bri J Anaesth. 2002;89(4):594–8.

    Article  CAS  Google Scholar 

  57. Borges LF. Motor evoked potentials. Int Anesthesiol Clin. 1990;28:170–3. https://doi.org/10.1097/00004311-199002830-00007.

    Article  CAS  PubMed  Google Scholar 

  58. Kothbauer K. Motor evoked potential monitoring for intramedullary spinal cord surgery. In: Deletis V, Shills J, editors. Neurophysiology in neurosurgery: a modern approach. Amsterdam: Academic Press; 2002. p. 73–92.

    Chapter  Google Scholar 

  59. Fagerlund MJ, Eriksson LI. Current concepts in neuromuscular transmission. Br J Anaesth. 2009;103(1):108–14. https://doi.org/10.1093/bja/aep150.

    Article  CAS  PubMed  Google Scholar 

  60. Ghai B, Makkar JK, Wig J. Neuromuscular monitoring: a review. J Anesth Clin Pharmacol. 2006;22(4):347–56.

    Google Scholar 

  61. Davis L, Britten JJ, Morgan M. Cholinesterase. Its significance in anaesthetic practice. Anaesthesia. 1997;52:244–60.

    Article  CAS  PubMed  Google Scholar 

  62. Jonsson M, Gurley D, Dabrowski M, Larsson O, Johnson EC, Eriksson LI. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: a possible explanation for the train-of-four fade. Anesthesiology. 2006;105(3):521–33. https://doi.org/10.1097/00000542-200609000-00016.

    Article  CAS  PubMed  Google Scholar 

  63. Bowman WC. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980;59(12):935–43.

    Article  CAS  PubMed  Google Scholar 

  64. Fodale V, Santamaria LB. Laudanosine, an atracurium and cisatracurium metabolite. Eur J Anaesthesiol. 2002;19(7):466–73. https://doi.org/10.1097/00003643-200207000-00002.

    Article  CAS  PubMed  Google Scholar 

  65. Bevan DR, Donati F, Kopman AF. Reversal of neuromuscular blockade. Anesthesiology. 1992;77(4):785–805.

    Article  CAS  PubMed  Google Scholar 

  66. Lee C, Katz RL. Fade of neurally evoked compound electromyogram during neuromuscular block by d-tubocurarine. Anesth Analg. 1977;56(2):271–5.

    CAS  PubMed  Google Scholar 

  67. Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27:35–46. https://doi.org/10.1007/s10877-012-9399-0.

    Article  PubMed  Google Scholar 

  68. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43. https://doi.org/10.1097/00004691-200210000-00006.

    Article  PubMed  Google Scholar 

  69. May DM, Jones SJ, Crockard HA. Somatosensory evoked potential monitoring in cervical surgery: identification of pre- and intraoperative risk factors associated with neurological deterioration. J Neurosurg. 1996;85(4):566–73. https://doi.org/10.3171/jns.1996.85.4.0566.

    Article  CAS  PubMed  Google Scholar 

  70. Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86(6):1431–3. https://doi.org/10.1097/00000542-199706000-00034.

    Article  CAS  PubMed  Google Scholar 

  71. Seyal M, Mull B. Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):409–15. https://doi.org/10.1097/00004691-200210000-00004.

    Article  PubMed  Google Scholar 

  72. Wiedemayer H, Fauser B, Sandalcioglu IE, Schäfer H, Stolke D. The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg. 2002;96(2):255–62. https://doi.org/10.3171/jns.2002.96.2.0255.

    Article  PubMed  Google Scholar 

  73. Brodkey JS, Richards DE, Blasingame JP, Nulsen FE. Reversible spinal cord trauma in cats: additive effects of direct pressure and ischemia. J Neurosurg. 1972;37:591–3. https://doi.org/10.3171/jns.1972.37.5.0591.

    Article  CAS  PubMed  Google Scholar 

  74. Dolan EJ, Transfeldt EE, Tator CH, Simmons EH, Hughes KF. The effect of spinal distraction on regional blood flow in cats. J Neurosurg. 1980;53:756–64.

    Article  CAS  PubMed  Google Scholar 

  75. Griffiths IR, Trench JG, Crawford RA. Spinal cord blood flow and conduction during experimental cord compression in normotensive and hypotensive dogs. J Neurosurg. 1979;50(3):353–60. https://doi.org/10.3171/jns.1979.50.3.0353.

    Article  CAS  PubMed  Google Scholar 

  76. Sloan T, Jameson LC. Monitoring anesthetic effect. In: Koht A, Sloan T, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health professionals. New York: Springer; 2012. p. 337–60.

    Chapter  Google Scholar 

  77. Sloan TB, Toleikis JR, Toleikis SC, Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J Clin Monit Comput. 2015;29(1):77–85. https://doi.org/10.1007/s10877-014-9571-9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tod Sloan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sloan, T., Kaye, A.D. (2020). Anesthesiology and Intraoperative Electrophysiological Monitoring. In: Davis, S., Kaye, A. (eds) Principles of Neurophysiological Assessment, Mapping, and Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-22400-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22400-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22399-1

  • Online ISBN: 978-3-030-22400-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics