Skip to main content

Fixational Eye Movements

  • Chapter
  • First Online:
Eye Movement Research

Abstract

There is too much going on around us to see everything at once, or to simultaneously process all the information in our field of view. Instead, we normally direct our gaze to parts of the scene that are particularly meaningful or important. Yet, even when we think that we are keeping our eyes still on an object of interest, our eyes remain in continuous motion. This chapter reviews the different kinds of “fixational” eye movements (the eye movements that occur when our gaze is “fixed” on an object or a point in space). We also discuss the effects that fixational eye movements have on vision and perception, their potential adaptive advantages, and their generation mechanisms. After reading this chapter, you will be able to articulate the importance of fixational eye movements in facilitating and influencing visual perception (for instance, in helping us to see the world and assisting us as we perform specific tasks). You will be able to explain the role of microsaccades (the largest of these small fixational eye movements) in counteracting neural adaptation and visual fading (the perceptual vanishing of an unchanging stimulus). You will also be able to outline the neural generation of microsaccades. In addition, this chapter will help you understand the relationship between fixational eye movements and shifts of attention. Finally, you will be able to describe, in general terms, the potential relevance of fixational eye movements to the diagnosis of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abadi, R. V., & Gowen, E. (2004). Characteristics of saccadic intrusions. Vision Research, 44(23), 2675–2690.

    Article  PubMed  Google Scholar 

  • Adler, F. H., & Fliegelman, M. (1934). Influence of fixation on the visual acuity. Archives of Ophthalmology, 12, 475–483.

    Article  Google Scholar 

  • Ahissar, E., & Arieli, A. (2012). Seeing via miniature eye movements: A dynamic hypothesis for vision. Frontiers in computational neuroscience, 6.

    Google Scholar 

  • Alexander, R. G., Macknik, S. L., & Martinez-Conde, S. (2018). Microsaccade characteristics in neurological and ophthalmic disease. Frontiers in Neurology, 9(144), 1–9. https://doi.org/10.3389/fneur.2018.00144.

    Article  Google Scholar 

  • Aytekin, M., Victor, J. D., & Rucci, M. (2014). The visual input to the retina during natural head-free fixation. The Journal of Neuroscience, 34(38), 12701–12715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bair, W., & O’Keefe, L. P. (1998). The influence of fixational eye movements on the response of neurons in area MT of the macaque. Visual Neuroscience, 15, 779–786.

    Google Scholar 

  • Barlow, H. B. (1952). Eye movements during fixation. Journal of Physiology, 116, 290–306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beer, A. L. et al. (2008). A motion illusion reveals mechanisms of perceptual stabilization. PLoS ONE, 3, e2741.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedetto, S., Pedrotti, M., & Bridgeman, B. (2011). Microsaccades and exploratory saccades in a naturalistic environment. Journal of Eye Movement Research, 4(2), 1–10.

    Google Scholar 

  • Bengi, H., & Thomas, J. (1968). Three electronic methods for recording ocular tremor. Medical and Biological Engineering, 6(2), 171–179.

    Article  PubMed  Google Scholar 

  • Betta, E., & Turatto, M. (2006). Are you ready? I can tell by looking at your microsaccades. NeuroReport, 17(10), 1001–1004.

    Article  PubMed  Google Scholar 

  • Betta, E. et al. (2007). Microsaccadic response during inhibition of return in a target-target paradigm. Vision Research, 47, 428–436.

    Article  PubMed  Google Scholar 

  • Billino, J., Hamburger, K., & Gegenfurtner, K. R. (2009). Age effects on the perception of motion illusions. Perception, 38(4), 508–521.

    Article  PubMed  Google Scholar 

  • Bosman, C. A. et al. (2009). A microsaccadic rhythm modulates gammaband synchronization and behavior. Journal of Neuroscience, 29, 9471–9480.

    Article  PubMed  Google Scholar 

  • Boyce, P. R. (1967). Monocular fixation in human eye movement. Proceedings of the Royal Society of London. B, 167, 293–315.

    Google Scholar 

  • Boyle, G., Coakley, D., & Malone, J. F. (2001). Interferometry for ocular microtremor measurement. Applied Optics, 40(1), 167–175.

    Article  PubMed  Google Scholar 

  • Bridgeman, B., & Palca, J. (1980). The role of microsaccades in high acuity observational tasks. Vision Research, 20(9), 813–817.

    Article  PubMed  Google Scholar 

  • Brien, D. C., Corneil, J. H., Fecteau, J. H., Bell, A. H., & Munoz, D. P. (2009). The behavioural and neurophysiological modulation of microsaccades in monkeys. Journal of Eye Movement Research, 3, 1–12.

    Google Scholar 

  • Carpenter, R. H. S. (1988). Movements of the eyes (2nd ed.). London: Pion Ltd.

    Google Scholar 

  • Cherici, C., Kuang, X., Poletti, M., & Rucci, M. (2012). Precision of sustained fixation in trained and untrained observers. Journal of Vision, 12(6).

    Google Scholar 

  • Collewijn, H., & Kowler, E. (2008). The significance of microsaccades for vision and oculomotor control. Journal of Vision, 8(14). https://doi.org/10.1167/8.14.20.

    Article  PubMed  Google Scholar 

  • Cornsweet, T. N. (1956). Determination of the stimuli for involuntary drifts and saccadic eye movements. The Journal of the Optical Society of America, 46(11), 987–993.

    Article  PubMed  Google Scholar 

  • Costela, F. M., McCamy, M. B., Macknik, S. L., Otero-Millan, J., & Martinez-Conde, S. (2013a). Microsaccades restore the visibility of minute foveal targets. PeerJ, 1, e119. https://doi.org/10.7717/peerj.119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costela, F. M., Otero-Millan, J., McCamy, M. B., Macknik, S. L., Troncoso, X. G., Jazi, A. N., & Martinez-Conde, S. (2014). Fixational eye movement correction of blink-induced gaze position errors. PLoS ONE, 9(10), e110889. https://doi.org/10.1371/journal.pone.0110889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costela, F. M., Otero-Millan, J., McCamy, M. B., Macknik, S. L., Troncoso, X., & Martinez-Conde, S. (2013). Microsaccades correct fixation errors due to blinks. Journal of Vision, 13(9), 1335–1335.

    Google Scholar 

  • Cui, J. et al. (2009). Visibility states modulate microsaccade rate and direction. Vision Research, 49, 228–236.

    Article  PubMed  Google Scholar 

  • Di Stasi, L. L., Cabestrero, R., McCamy, M. B., Ríos, F., Catena, A., Quirós, P., & Martinez-Conde, S. (2014a). Intersaccadic drift velocity is sensitive to short-term hypobaric hypoxia. The European Journal of Neuroscience, 39(8), 1384–1390. https://doi.org/10.1111/ejn.12482.

    Article  PubMed  Google Scholar 

  • Di Stasi, L. L., Catena, A., Cañas, J. J., Macknik, S. L., & Martinez-Conde, S. (2013a). Saccadic velocity as an arousal index in naturalistic tasks. Neuroscience and Biobehavioral Reviews, 37(5), 968–975. https://doi.org/10.1016/j.neubiorev.2013.03.011.

    Article  PubMed  Google Scholar 

  • Di Stasi, L. L., McCamy, M. B., Catena, A., Macknik, S. L., Cañas, J. J., & Martinez-Conde, S. (2013b). Microsaccade and drift dynamics reflect mental fatigue. The European Journal of Neuroscience, 38(3), 2389–2398. https://doi.org/10.1111/ejn.12248.

    Article  PubMed  Google Scholar 

  • Di Stasi, L. L., McCamy, M. B., Macknik, S. L., Mankin, J. A., Hooft, N., Catena, A., & Martinez-Conde, S. (2014b). Saccadic eye movement metrics reflect surgical residents’ fatigue. Annals of Surgery, 259(4), 824–829.

    Article  PubMed  Google Scholar 

  • Di Stasi, L. L., McCamy, M. B., Pannasch, S., Renner, R., Catena, A., Cañas, J. J., & Martinez-Conde, S. (2015). Effects of driving time on microsaccadic dynamics. Experimental Brain Research, 233(2), 599–605.

    Article  PubMed  Google Scholar 

  • Dimigen, O., Valsecchi, M., Sommer, W., & Kliegl, R. (2009). Human microsaccade-related visual brain responses. Journal of Neuroscience, 29(39), 12321–12331.

    Article  PubMed  Google Scholar 

  • Ditchburn, R. W., & Foley-Fisher, J. A. (1967). Assembled data in eye movements. Optica Acta (Lond), 14(2), 113–118.

    Article  Google Scholar 

  • Ditchburn, R. W., & Ginsborg, B. L. (1952). Vision with a stabilized retinal image. Nature, 170, 36–37.

    Article  PubMed  Google Scholar 

  • Ditchburn, R. W., & Ginsborg, B. L. (1953). Involuntary eye movements during fixation. Journal of Physiology, 119(1), 1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donner, K., & Hemila, S. (2007). Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research, 47(9), 1166–1177.

    Article  PubMed  Google Scholar 

  • Eizenman, M., Hallett, P. E., & Frecker, R. C. (1985). Power spectra for ocular drift and tremor. Vision Research, 25(11), 1635–1640.

    Article  PubMed  Google Scholar 

  • Engbert, R. (2012). Computational modeling of collicular integration of perceptual responses and attention in microsaccades. Journal of Neuroscience, 32(23), 8035–8039. https://doi.org/10.1523/JNEUROSCI.0808-12.2012.

    Article  PubMed  Google Scholar 

  • Engbert, R., & Kliegl, R. (2003a). Microsaccades uncover the orientation of covert attention. Vision Research, 43(9), 1035–1045.

    Article  PubMed  Google Scholar 

  • Engbert, R., & Kliegl, R. (2003b). The mind’s eyes: Cognitive and applied aspects of eye movements. In: J. Hyona, R. Radach & H. Deubel (Eds.) (pp. 103–117), Oxford: Elsevier.

    Google Scholar 

  • Engbert, R., & Kliegl, R. (2004). Microsaccades keep the eyes’ balance during fixation. Psychological Science, 15(6), 431–436.

    Article  PubMed  Google Scholar 

  • Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences of the United States of America, 103, 7192–7197.

    Google Scholar 

  • Engbert, R., Mergenthaler, K., Sinn, P., & Pikovsky, A. (2011). An integrated model of fixational eye movements and microsaccades. Proceedings of the National Academy of Sciences of the United States of America, 108(39), E765–770.

    Google Scholar 

  • Falkenberg, H. K., Rubin, G. S., & Bex, P. J. (2007). Acuity, crowding, reading and fixation stability. Vision Research, 47(1), 126–135.

    Article  PubMed  Google Scholar 

  • Findlay, J., & Gilchrist, I. (2003). Active vision: The psychology of seeing and looking. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Fiorentini, A., & Ercoles, A. M. (1966). Involuntary eye movements during attempted monocular fixation. Atti della Fondazione Giorgio Ronchi, 21, 199–217.

    Google Scholar 

  • Galfano, G. et al. (2004). Inhibition of return in microsaccades. Experimental Brain Research, 159, 400–404.

    Article  PubMed  Google Scholar 

  • Gandhi, N. J., & Keller, E. L. (1999). Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. Journal of Neurophysiology, 82(6), 3254–3267.

    Article  PubMed  Google Scholar 

  • Goffart, L. et al. (2006). Influence of background illumination on fixation and visually guided saccades in the rhesus monkey. Vision Research, 46, 149–162.

    Article  PubMed  Google Scholar 

  • Gowen, E., Abadi, R. V., Poliakoff, E., Hansen, P. C., & Miall, R. C. (2007). Modulation of saccadic intrusions by exogenous and endogenous attention. Brain Research, 1141, 154–167. https://doi.org/10.1016/j.brainres.2007.01.047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greschner, M., Bongard, M., Rujan, P., & Ammermuller, J. (2002). Retinal ganglion cell synchronization by fixational eye movements improves feature stimation. Nature Neuroscience, 5(4), 341–347.

    Article  PubMed  Google Scholar 

  • Guitton, D., & Munoz, D. P. (1991). Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. I. Identification, localization, and effects of behavior on sensory responses. Journal of Neurophysiology, 66(5), 1605–1623.

    Google Scholar 

  • Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42(22), 2533–2545.

    Article  PubMed  Google Scholar 

  • Hafed, Z. M., Goffart, L., & Krauzlis, R. (2009). A neural mechanism for microsaccade generation in the primate superior colliculus. Science, 323(5916), 940–943.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrington, T. M. et al. (2009). The effect of microsaccades on the correlation between neural activity and behavior in middle temporal, ventral intraparietal, and lateral intraparietal areas. Journal of Neuroscience, 29, 5793–5805.

    Article  PubMed  Google Scholar 

  • Horwitz, G. D., & Albright, T. D. (2003). Short-latency fixational saccades induced by luminance increments. Journal of Neurophysiology, 90, 1333–1339.

    Google Scholar 

  • Horowitz, T. S., Fine, E. M., Fencsik, D. E., Yurgenson, S., & Wolfe, J. M. (2007). Fixational eye movements are not an index of covert attention. Psychological Science, 18(4), 356–363.

    Article  PubMed  Google Scholar 

  • Hubel, D. H. (1988). Eye, brain, and vision (Vol. 22). New York: Scientific American Library.

    Google Scholar 

  • Jurin. (1738). Essay on distinct and indistintc vision. Optics.

    Google Scholar 

  • Kagan, I. et al. (2008). Saccades and drifts differentially modulate neuronal activity in V1: Effects of retinal image motion, position, and extraretinal influences. Journal of Vision, 8(14), 19, 11–25.

    Article  PubMed  Google Scholar 

  • Kingstone, A., Fendrich, R., Wessinger, C. M., & ReuterLorenz, P. A. (1995). Are microsaccades responsible for the gap effect? Perception & Psychophysics, 57, 796–801.

    Google Scholar 

  • Kitaoka, A. (2003). Akiyoshi’s illusion pages. Retrieved from http://www.ritsumei.ac.jp/~akitaoka/index-e.html.

  • Kliegl, R. et al. (2009). Microsaccadic modulation of response times in spatial attention tasks. Psychological Research, 73, 136–146.

    Article  PubMed  Google Scholar 

  • Ko, H.-K., Poletti, M., & Rucci, M. (2010). Microsaccades precisely relocate gaze in a high visual acuity task. Nature Neuroscience, 13(12), 1549–1553. https://doi.org/10.1038/nn.2663.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ko, H.-K., Snodderly, D. M., & Poletti, M. (2016). Eye movements between saccades: Measuring ocular drift and tremor. Vision Research, 122, 93–104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowler, E., & Steinman, R. M. (1980). Small saccades serve no useful purpose: Reply to a letter by R. W. Ditchburn. Vision Research, 20(3), 273–276.

    Article  PubMed  Google Scholar 

  • Krauskopf, J. (1967). Heterochromatic stabilized images: A classroom demonstration. American Journal of Psychology, 80(4), 634–637.

    Article  PubMed  Google Scholar 

  • Krauskopf, J. et al. (1960). Analysis of eye movements during monocular and binocular fixation. Journal of the Optical Society of America, 50, 572–578.

    Article  PubMed  Google Scholar 

  • Kuang, X., Poletti, M., Victor, J. D., & Rucci, M. (2012). Temporal encoding of spatial information during active visual fixation. Current Biology, 22(6), 510–514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laubrock, J., Engbert, R., & Kliegl, R. (2005). Microsaccade dynamics during covert attention. Vision Research, 45(6), 721–730. https://doi.org/10.1016/j.visres.2004.09.029.

    Article  PubMed  Google Scholar 

  • Laubrock, J., Engbert, R., & Kliegl, R. (2008). Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision, 8(14):13, 1–17.

    Google Scholar 

  • Laubrock, J., Engbert, R., Rolfs, M., & Kliegl, R. (2007). Microsaccades are an index of covert attention: Commentary on Horowitz, Fine, Fencsik, Yurgenson, and Wolfe (2007). Psychological Science, 18(4), 364–366; discussion 367–368.

    Google Scholar 

  • Laubrock, J., Kliegl, R., Rolfs, M., & Engbert, R. (2010). When do microsaccades follow spatial attention? Attention, Perception, & Psychophysics, 72(3), 683–694. https://doi.org/10.3758/APP.72.3.683.

    Article  Google Scholar 

  • Leigh, R. J., & Zee, D. S. (2015). The neurology of eye movements (5th ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Leopold, D. A., & Logothetis, N. K. (1998). Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Experimental Brain Research, 123, 341–345.

    Google Scholar 

  • Liang, J. R., Moshel, S., Zivotofsky, A. Z., Caspi, A., Engbert, R., Kliegl, R. et al. (2005). Scaling of horizontal and vertical fixational eye movements. Physical Review E, 71, 031909.

    Google Scholar 

  • Lord, M. P. (1951). Measurement of binocular eye movements of subjects in the sitting position. British Journal of Ophthalmology, 35, 21–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord, M. P., & Wright, W. D. (1948). Eye movements during monocular fixation. Nature, 162, 25–26.

    Google Scholar 

  • Macknik, S. L., & Martinez-Conde, S. (2016). The age of illusion. Scientific American Mind, 27(1), 18–19.

    Article  Google Scholar 

  • Malinov, I. V., Epelboim, J., Herst, A. N., & Steinman, R. M. (2000). Characteristics of saccades and vergence in two types of sequential looking tasks. Vision Research, 40, 2083–2090.

    Google Scholar 

  • Martinez-Conde, S. (2006). Fixational eye movements in normal and pathological vision. Progress in Brain Research, 154, 151–176. https://doi.org/10.1016/s0079-6123(06)54008-7.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., & Alexander, R. G. (2019). A gaze bias in the mind’s eye. Nature Human Behaviour, 3(5), 424–425. https://doi.org/10.1038/s41562-019-0546-1.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., & Macknik, S. L. (2007). Windows on the mind. Scientific American, 297(2), 56–63.

    Google Scholar 

  • Martinez-Conde, S., & Macknik, S. L. (2015). From exploration to fixation: An integrative view of Yarbus’s vision. Perception, 44(8–9), 884–899. https://doi.org/10.1177/0301006615594963.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2000). Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys [published erratum appears in Nature Neuroscience 2000 Apr; 3(4):409]. Nature Neuroscience, 3(3), 251–258. https://doi.org/10.1038/72961.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13920–13925. https://doi.org/10.1073/pnas.212500599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5(3), 229–240. https://doi.org/10.1038/nrn1348.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49(2), 297–305. https://doi.org/10.1016/j.neuron.2005.11.033. S0896-6273(05)01056-1 [pii].

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Hubel, D. H. (2009). Microsaccades: A neurophysiological analysis. Trends in Neurosciences, 32(9), 463–475. https://doi.org/10.1016/j.tins.2009.05.006.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Otero-Millan, J., & Macknik, S. L. (2013). The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience, 14(2), 83–96. https://doi.org/10.1038/nrn3405.

    Article  PubMed  Google Scholar 

  • McCamy, M. B., Collins, N., Otero-Millan, J., Al-Kalbani, M., Macknik, S. L., Coakley, D., & Wolf. T. R. (2013a). Simultaneous recordings of ocular microtremor and microsaccades with a piezoelectric sensor and a video-oculography system. PeerJ, 1, e14. https://doi.org/10.7717/peerj.14.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCamy, M. B., Macknik, S. L., & Martinez-Conde, S. (2013b). Natural eye movements and vision. In J. S. Werner & L. M. Chalupa (Eds.), The new visual neurosciences. Cambridge, MA: The MIT Press.

    Google Scholar 

  • McCamy, M. B., Najafian Jazi, A., Otero-Millan, J., Macknik, S. L., & Martinez-Conde, S. (2013c). The effects of fixation target size and luminance on microsaccades and square-wave jerks. PeerJ, 1, e9. https://doi.org/10.7717/peerj.9.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCamy, M. B., Macknik, S. L., & Martinez-Conde, S. (2014a). Different fixational eye movements mediate the prevention and the reversal of visual fading. The Journal of Physiology, 592(19), 4381–4394. https://doi.org/10.1113/jphysiol.2014.279059.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCamy, M. B., Otero-Millan, J., Di Stasi, L. L., Macknik, S. L., & Martinez-Conde, S. (2014b). Highly informative natural scene regions increase microsaccade production during visual scanning. The Journal of Neuroscience, 34(8), 2956–2966. https://doi.org/10.1523/jneurosci.4448-13.2014.

    Article  PubMed  Google Scholar 

  • McCamy, M. B., Otero-Millan, J., Leigh, R. J., King, S. A., Schneider, R. M., Macknik, S. L., & Martinez-Conde, S. (2015). Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique. PLoS ONE, 10(6), e0128428. https://doi.org/10.1371/journal.pone.0128428.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCamy, M. B., Otero-Millan, J., Macknik, S. L., Yang, Y., Troncoso, X. G., Baer, S. M., & Martinez-Conde, S. (2012). Microsaccadic efficacy and contribution to foveal and peripheral vision. Journal of Neuroscience, 32(27), 9194–9204. https://doi.org/10.1523/JNEUROSCI.0515-12.2012.

    Article  PubMed  Google Scholar 

  • Meirovithz, E., Ayzenshtat, I., Werner-Reiss, U., Shamir, I., & Slovin, H. (2012). Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation. Cerebral Cortex, 22(2), 294–307.

    Article  PubMed  Google Scholar 

  • Mergenthaler, K., & Engbert, R. (2007). Modeling the control of fixational eye movements with neurophysiological delays. Physical Review Letters, 98, 138104.

    Google Scholar 

  • Mergenthaler, K., & Engbert, R. (2010). Microsaccades are different from saccades in scene perception. Experimental Brain Research, 203(4), 753–757.

    Article  PubMed  Google Scholar 

  • Meyberg, S., Werkle-Bergner, M., Sommer, W., & Dimigen, O. (2015). Microsaccade-related brain potentials signal the focus of visuospatial attention. Neuroimage, 104, 79–88.

    Article  PubMed  Google Scholar 

  • Moller, F., Laursen, M. L., Tygesen, J., & Sjolie, A. K. (2002). Binocular quantification and characterization of microsaccades. Graefes Archive for Clinical and Experimental Ophthalmology, 240(9), 765–770. https://doi.org/10.1007/s00417-002-0519-2.

    Article  Google Scholar 

  • Moschovakis, A., Scudder, C., & Highstein, S. (1996). The microscopic anatomy and physiology of the mammalian saccadic system. Progress in Neurobiology, 50(2), 133–254.

    Article  PubMed  Google Scholar 

  • Moshel, S. et al. (2008). Persistence and phase synchronization properties of fixational eye movements. European Physical Journal Special Topics, 161, 207–223.

    Article  Google Scholar 

  • Munoz, D. P. (2002). Commentary: Saccadic eye movements: Overview of neural circuitry. Progress in Brain Research, 140, 89–96.

    Article  PubMed  Google Scholar 

  • Munoz, D. P., & Wurtz, R. H. (1995). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. Journal of Neurophysiology, 73(6), 2313–2333.

    Google Scholar 

  • Murakami, I. (2006). Fixational eye movements and motion perception. Progress in Brain Research, 154, 193–209.

    Article  PubMed  Google Scholar 

  • Murakami, I., & Cavanagh, P. (1998). A jitter after-effect reveals motion-based stabilization of vision. Nature, 395, 798–801.

    Article  PubMed  Google Scholar 

  • Murakami, I., & Cavanagh, P. (2001). Visual jitter: Evidence for visual-motion-based compensation of retinal slip due to small eye movements. Vision Research, 41(2), 173–186.

    Article  PubMed  Google Scholar 

  • Murakami, I., Kitaoka, A., & Ashida, H. (2006). A positive correlation between fixation instability and the strength of illusory motion in a static display. Vision Research, 46(15), 2421–2431.

    Article  PubMed  Google Scholar 

  • Müri, R., Nyffeler, T., & Cazzoli, D. (2019). Neurology. In C. Klein & U. Ettinger (Eds.), Eye movement research: An introduction to its scientific foundations and applications. Berlin: Springer Publishers.

    Google Scholar 

  • Nachmias, J. (1959). Two-dimensional motion of the retinal image during monocular fixation. Journal of the Optical Society of America, 49, 901–908.

    Article  PubMed  Google Scholar 

  • Nachmias, J. (1961). Determiners of the drift of the eye during monocular fixation. Journal of the Optical Society of America, 51, 761–766.

    Article  PubMed  Google Scholar 

  • Nyström, M., Hansen, D. W., Andersson, R., & Hooge, I. (2014). Why have microsaccades become larger? Investigating eye deformations and detection algorithms. Vision Research.

    Google Scholar 

  • Optican, L. M. (1995). A field theory of saccade generation: Temporal-to-spatial transform in the superior colliculus. Vision Research, 35(23), 3313–3320.

    Article  PubMed  Google Scholar 

  • Otero-Millan, J., Macknik, S. L., Langston, R. E., & Martinez-Conde, S. (2013a). An oculomotor continuum from exploration to fixation. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6175–6180. https://doi.org/10.1073/pnas.1222715110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Otero-Millan, J., Troncoso, X. G., Macknik, S. L., Serrano-Pedraza, I., & Martinez-Conde, S. (2008). Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator. Journal of Vision, 8(14), 1–18, 21. https://doi.org/10.1167/8.14.21/8/14/21.

  • Otero-Millan, J., Macknik, S. L., & Martinez-Conde, S. (2012). Microsaccades and blinks trigger illusory rotation in the “rotating snakes” illusion. Journal of Neuroscience, 32(17), 6043–6051. https://doi.org/10.1523/JNEUROSCI.5823-11.2012.

    Article  PubMed  Google Scholar 

  • Otero-Millan, J., Macknik, S. L., Serra, A., Leigh, R. J., & Martinez-Conde, S. (2011). Triggering mechanisms in microsaccade and saccade generation: A novel proposal. Annals of the New York Academy of Sciences, 1233(1), 107–116. https://doi.org/10.1111/j.1749-6632.2011.06177.x.

    Article  PubMed  Google Scholar 

  • Otero-Millan, J., Schneider, R., Leigh, R. J., Macknik, S. L., & Martinez-Conde, S. (2013b). Saccades during Attempted Fixation in Parkinsonian Disorders and Recessive Ataxia: From microsaccades to square-wave jerks. PLoS ONE, 8(3), e58535. https://doi.org/10.1371/journal.pone.0058535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinnock, R. A., McGivern, R. C., Forbes, R., & Gibson, J. M. (2010). An exploration of ocular fixation in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Journal of Neurology.

    Google Scholar 

  • Poletti, M., Listorti, C., & Rucci, M. (2013). Microscopic eye movements compensate for nonhomogeneous vision within the fovea. Current Biology, 23(17), 1691–1695.

    Article  PubMed  Google Scholar 

  • Poletti, M., & Rucci, M. (2010). Eye movements under various conditions of image fading. Journal of Vision, 10(3), 6 1–18.

    Google Scholar 

  • Pritchard, R. M. (1961). Stabilized images on the retina. Scientific American, 204, 72–78.

    Article  PubMed  Google Scholar 

  • Ratliff, F., & Riggs, L. A. (1950). Involuntary motions of the eye during monocular fixation. Journal of Experimental Psychology, 40, 687–701.

    Google Scholar 

  • Riggs, L. A., & Ratliff, F. (1951). Visual acuity and the normal tremor of the eyes. Science, 114(2949), 17–18.

    Article  PubMed  Google Scholar 

  • Riggs, L. A., & Ratliff, F. (1952). The effects of counteracting the normal movements of the eye. Journal of the Optical Society of America, 42, 872–873.

    Google Scholar 

  • Riggs, L. A., Armington, J. C., & Ratliff, F. (1954). Motions of the retinal image during fixation. Journal of the Optical Society of America, 44, 315–321.

    Google Scholar 

  • Robinson, D. A. (1973). Models of the saccadic eye movement control system. Kybernetik, 14(2), 71–83.

    Article  PubMed  Google Scholar 

  • Rolfs, M. (2009). Microsaccades: Small steps on a long way. Vision Research, 49(20), 2415–2441. https://doi.org/10.1016/j.visres.2009.08.010. S0042-6989(09)00369-1 [pii].

    Article  PubMed  Google Scholar 

  • Rolfs, M., Engbert, R., & Kliegl, R. (2004). Microsaccade orientation supports attentional enhancement opposite a peripheral cue: Commentary on Tse, Sheinberg, and Logothetis (2003). Psychological Science, 15(10), 705–707; author reply 708–710. https://doi.org/10.1111/j.0956-7976.2004.00744.x.

    Article  PubMed  Google Scholar 

  • Rolfs, M. et al. (2005). Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Experimental Brain Research, 166, 427–439.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Kliegl, R., & Engbert, R. (2008). Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision, 8(11), 5, 1–23. https://doi.org/10.1167/8.11.5.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Laubrock, J., & Kliegl, R. (2006). Shortening and prolongation of saccade latencies following microsaccades. Experimental Brain Research, 169(3), 369–376. https://doi.org/10.1007/s00221-005-0148-1.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Laubrock, J., & Kliegl, R. (2008). Microsaccade-induced prolongation of saccadic latencies depends on microsaccade amplitude. Journal of Eye Movement Research, 1(3), 1, 1–8.

    Google Scholar 

  • Rucci, M., Iovin, R., Poletti, M., & Santini, F. (2007). Miniature eye movements enhance fine spatial detail. Nature, 447(7146), 851–854. https://doi.org/10.1038/nature05866.

    Article  PubMed  Google Scholar 

  • Rucci, M., & Poletti, M. (2015). Control and functions of fixational eye movements. Annual Review of Vision Science, 1, 499–518.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rucci, M., & Victor, J. D. (2015). The unsteady eye: An information-processing stage, not a bug. Trends in Neurosciences, 38(4), 195–206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryle, J. P., Al-Kalbani, M., Collins, N., Gopinathan, U., Boyle, G., Coakley, D., & Sheridan, J. T. (2009). Compact portable ocular microtremor sensor: Design, development and calibration. Journal of Biomedical Optics, 14(1), 014021-014021-014012.

    Google Scholar 

  • Sabrin, H. W., & Kertesz, A. E. (1980). Microsaccadic eye movements and binocular rivalry. Perception & Psychophysics, 28, 150–154.

    Google Scholar 

  • Sansbury, R. V., Skavenski, A. A., Haddad, G. M., & Steinman, R. M. (1973). Normal fixation of eccentric targets. Journal of the Opical Society of America, 63, 612–614.

    Google Scholar 

  • Schiller, P. H. (1984). The superior colliculus and visual function. In D.-S. I. (Ed.), Handbook of physiology—The nervous system III. Sensory processes part I. Bethesda MD: American Physiological Society.

    Google Scholar 

  • Schulz, E. (1984). Binocular micromovements in normal persons. Graefe’s Archive for Clinical and Experimental Ophthalmology, 222, 95–100.

    Article  PubMed  Google Scholar 

  • Schiller, P. H., & Stryker, M. (1972). Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. Journal of Neurophysiology, 35, 915–924.

    Article  PubMed  Google Scholar 

  • Scudder, C. A., Kaneko, C. R., & Fuchs, A. F. (2002). The brainstem burst generator for saccadic eye movements. Experimental Brain Research, 142(4), 439–462.

    Article  PubMed  Google Scholar 

  • Simons, D., Lleras, A., Martinez-Conde, S., Slichter, D., Caddigan, E., & Nevarez, G. (2006). Induced visual fading of complex images. Journal of Vision, 6, 1093–1101.

    Article  PubMed  Google Scholar 

  • Skavenski, A. A., Robinson, D. A., Steinman, R. M., & Timberlake, G. T. (1975). Miniature eye movements of fixation in rhesus monkey. Vision Research, 15(11), 1269–1273.

    Article  PubMed  Google Scholar 

  • Snodderly, D. M., Kagan, I., & Gur, M. (2001). Selective activation of visual cortex neurons by fixational eye movements: Implications for neural coding. Visual Neuroscience, 18, 259–277.

    Google Scholar 

  • Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience, 3(12), 952–964.

    Article  PubMed  Google Scholar 

  • Spauschus, A., Marsden, J., Halliday, D. M., Rosenberg, J. R., & Brown, P. (1999). The origin of ocular microtremor in man. Experimental Brain Research, 126(4), 556–562.

    Article  PubMed  Google Scholar 

  • Srebro, R. (1983). Fixation of normal and amblyopic eyes. Archives of Ophthalmology, 101, 214–217.

    Article  PubMed  Google Scholar 

  • Stanford, T. R., Freedman, E. G., & Sparks, D. L. (1996). Site and parameters of microstimulation: Evidence for independent effects on the properties of saccades evoked from the primate superior colliculus. Journal of Neurophysiology, 76(5), 3360–3381.

    Article  PubMed  Google Scholar 

  • Steinman, R. M. (1965). Effect of target size, luminance, and color on monocular fixation. Journal of the Optical Society of America, 55, 1158–1165.

    Article  Google Scholar 

  • Steinman, R. M., Cunitz, R. J., Timberlake, G. T., & Herman, M. (1967). Voluntary control of microsaccades during maintained monocular fixation. Science, 155(769), 1577–1579.

    Article  PubMed  Google Scholar 

  • Steinman, R. M. et al. (1973). Miniature eye movement. Science, 181, 810–819.

    Article  PubMed  Google Scholar 

  • Stevens, J. K., Emerson, R. C., Gerstein, G. L., Kallos, T., Neufeld, G. R., Nichols, C. W., & Rosenquis, A. C. (1976). Paralysis of the awake human: Visual perceptions. Vision Research, 16(1), 93–98.

    Article  PubMed  Google Scholar 

  • Thaler, L., Schutz, A. C., Goodale, M. A., & Gegenfurtner, K. R. (2013). What is the best fixation target? The effect of target shape on stability of fixational eye movements. Vision Research, 76, 31–42. https://doi.org/10.1016/j.visres.2012.10.012. S0042-6989(12)00338-0 [pii].

    Article  PubMed  Google Scholar 

  • Troncoso, X. G., Macknik, S. L., & Martinez-Conde, S. (2008). Microsaccades counteract perceptual filling-in. Journal of Vision, 8(14), 15, 11–19. https://doi.org/10.1167/8.14.15.

    Article  PubMed  Google Scholar 

  • Troncoso, X. G., Macknik, S. L., Otero-Millan, J., & Martinez-Conde, S. (2008). Microsaccades drive illusory motion in the Enigma illusion. Proceedings of the National Academy of Sciences, 105(41), 16033–16038. https://doi.org/10.1073/pnas.0709389105. 0709389105 [pii].

    Article  Google Scholar 

  • Tse, P. U., Baumgartner, F. J., & Greenlee, M. W. (2010). Event-related functional MRI of cortical activity evoked by microsaccades, small visually-guided saccades, and eyeblinks in human visual cortex. Neuroimage, 49(1), 805–816.

    Article  PubMed  Google Scholar 

  • Turatto, M., Valsecchi, M., Tame, L., & Betta, E. (2007). Microsaccades distinguish between global and local visual processing. NeuroReport, 18(10), 1015–1018.

    Article  PubMed  Google Scholar 

  • Valsecchi, M., & Turatto, M. (2007). Microsaccadic response to visual events that are invisible to the superior colliculus. Behavioral Neuroscience, 121, 786–793.

    Google Scholar 

  • Valsecchi, M., & Turatto, M. (2009). Microsaccadic responses in a bimodal oddball task. Psychological Research, 73, 23–33.

    Google Scholar 

  • van Dam, L. C., & van Ee, R. (2005). The role of (micro)saccades and blinks in perceptual bi-stability from slant rivalry. Vision Research, 45, 2417–2435.

    Google Scholar 

  • Van der Geest, J., & Frens, M. (2002). Recording eye movements with video-oculography and scleral search coils: A direct comparison of two methods. Journal of Neuroscience Methods, 114(2), 185–195.

    Article  PubMed  Google Scholar 

  • Van Ede, F., Chekroud, S. R. & Nobre, A. C. (2019). Human gaze tracks attentional focusing in memorized visual space. Nature Human Behaviour. https://doi.org/10.1038/s41562-019-0549-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verheijen, F. (1961). A simple after image method demonstrating the involuntary multidirectional eye movements during fixation. Journal of Modern Optics, 8(4), 309–312.

    Google Scholar 

  • West, D. C., & Boyce, P. R. (1968). The effect of flicker on eye movement. Vision Research, 8, 171–192.

    Google Scholar 

  • Winterson, B. J., & Collewijn, H. (1976). Microsaccades during finely guided visuomotor tasks. Vision Research, 16(12), 1387–1390.

    Article  PubMed  Google Scholar 

  • Yarbus, A. L. (1957). The perception of an image fixed with respect to the retina. Biophysics, 2, 683–690.

    Google Scholar 

  • Yarbus, A. L. (1967). Eye Movements and vision (B. Haigh, Trans.). New York: Plenum Press.

    Google Scholar 

  • Yuval-Greenberg, S. et al. (2008). Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron, 58, 429–441.

    Article  PubMed  Google Scholar 

  • Yuval-Greenberg, S., Merriam, E. P., & Heeger, D. J. (2014). Spontaneous microsaccades reflect shifts in covert attention. The Journal of Neuroscience, 34(41), 13693–13700. https://doi.org/10.1523/jneurosci.0582-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuber, B. L., & Stark, L. (1965). Microsaccades and the velocityamplitude relationship for saccadic eye movements. Science, 150, 1459–1460.

    Google Scholar 

Download references

Acknowledgements

This work was supported by a challenge grant from Research to Prevent Blindness Inc. to the Department of Ophthalmology at SUNY Downstate, the Empire Innovation Program (Award to SMC), and the National Science Foundation (Award 1734887). We thank Max Dorfman for his comments and Daniel Cortes-Rastrollo for administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Alexander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alexander, R.G., Martinez-Conde, S. (2019). Fixational Eye Movements. In: Klein, C., Ettinger, U. (eds) Eye Movement Research. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-20085-5_3

Download citation

Publish with us

Policies and ethics