Skip to main content
Log in

Microsaccadic modulation of response times in spatial attention tasks

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Covert shifts of attention are usually reflected in RT differences between responses to valid and invalid cues in the Posner spatial attention task. Such inferences about covert shifts of attention do not control for microsaccades in the cue-target interval. We analyzed the effects of microsaccade orientation on RTs in four conditions, crossing peripheral visual and auditory cues with peripheral visual and auditory discrimination targets. Reaction time was generally faster on trials without microsaccades in the cue-target interval. If microsaccades occurred, the target-location congruency of the last microsaccade in the cue-target interval interacted in a complex way with cue validity. For valid visual cues, irrespective of whether the discrimination target was visual or auditory, target-congruent microsaccades delayed RT. For invalid cues, target-incongruent microsaccades facilitated RTs for visual target discrimination but delayed RT for auditory target discrimination. No reliable effects on RT were associated with auditory cues or with the first microsaccade in the cue-target interval. We discuss theoretical implications on the relation about spatial attention and oculomotor processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baayen, R. H. (2008). Practical data analysis for the language sciences with R. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barlow, H. B. (1952). Eye movements during fixation. Journal of Physiology, 116, 290–306.

    PubMed  Google Scholar 

  • Bates, D. (2008). lme4: Linear mixed-effect models using S4 classes. R package version 0.999375–1 [Software]. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Betta, E., Galfano, G., & Turatto, M. (2007). Microsaccadic response during inhibition of return in a target-target paradigm. Vision Research, 47, 428–436.

    Article  PubMed  Google Scholar 

  • Betta, E., & Turatto, M. (2006). Are you ready? I can tell by looking at your microsaccades. Neuroreport, 17, 1001–1004.

    Article  PubMed  Google Scholar 

  • Clowes, M. B. (1962). A note on colour discrimination under conditions of retinal image constraint. Optica Acta, 9, 65–68.

    Google Scholar 

  • Deubel, H., & Elsner, T. (1986). Threshold perception and saccadic eye movements. Biological Cybernetics, 54, 351–358.

    Article  PubMed  Google Scholar 

  • Ditchburn, R. W. (1955). Eye-movements in relation to retinal action. Optica Acta, 1, 171–176.

    Google Scholar 

  • Ditchburn, R. W. (1980). The function of small saccades. Vision Research, 20, 271–272.

    Article  PubMed  Google Scholar 

  • Ditchburn, R. W., & Ginsborg, B. L. (1953). Involuntary eye movements during fixation. Journal of Physiology, 119, 1–17.

    PubMed  Google Scholar 

  • Donner, K., & Hemilä, S. (2007). Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research, 47, 1166–1177.

    Article  PubMed  Google Scholar 

  • Elsner, T., & Deubel, H. (1986). The effect of saccades on threshold perception—A model study. Biological Cybernetics, 54, 359–366.

    Article  PubMed  Google Scholar 

  • Engbert, R. (2006). Microsaccades: A microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research, 154, 177–192.

    Article  PubMed  Google Scholar 

  • Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43, 1035–1045.

    Article  PubMed  Google Scholar 

  • Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences of the United States of America, 103, 7192–7197.

    Article  Google Scholar 

  • Galfano, G., Betta, E., & Turatto, M. (2004). Inhibition of return in microsaccades. Experimental Brain Research, 159, 400–404.

    Article  Google Scholar 

  • Gerrits, H. J. M., & Vendrik, A. J. H. (1974). The influence of stimulus movements on perception in parafoveal stabilized vision. Vision Research, 14, 175–180.

    Article  PubMed  Google Scholar 

  • Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42, 2533–2545.

    Article  PubMed  Google Scholar 

  • Horowitz, T. S., Fine, E. M., Fencsik, D. E., Yurgenson, S., & Wolfe, J. M. (2007a). Fixational eye movements are not an index of covert attention. Psychological Science, 18, 356–363.

    Article  PubMed  Google Scholar 

  • Horowitz, T. S., Fencsik, D. E., Fine, E. M., Yurgenson, S., & Wolfe, J. M. (2007b). Microsaccades and attention: Does a weak correlation make an index? Reply to Laubrock, Engbert, Rolfs, & Kliegl (2007). Psychological Science, 18, 367–368.

    Article  Google Scholar 

  • Kliegl, R. (2007). Towards a perceptual-span theory of distributed processing in reading: A reply to Rayner, Pollatsek, Drieghe, Slattery, & Reichle (2007). Journal of Experimental Psychology. General, 138, 530–537.

    Article  Google Scholar 

  • Kliegl, R., Risse, S., & Laubrock, J. (2007). Preview benefit and parafoveal-on-foveal effects from word n + 2. Journal of Experimental Psychology: Human Perception and Performance, 33, 1250–1255.

    Article  PubMed  Google Scholar 

  • Krummenacher, J., Müller, H.J., & Geyer, T. (2008). RT performance in visual search is affected by dimension- and space-based intertribal contingencies. Psychological Research.

  • Laubrock, J., Engbert, R., & Kliegl, R. (2005). Microsaccade dynamics during covert attention. Vision Research, 45, 721–730.

    Article  PubMed  Google Scholar 

  • Laubrock, J., Engbert, R., & Kliegl, R. (2008). Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision, 8(14), 1–17.

    Article  PubMed  Google Scholar 

  • Laubrock, J., Engbert, R., Rolfs, M., & Kliegl, R. (2007). Microsaccades are an index of covert attention. Commentary on Horowitz, Fine, Fencsik, Yurgenson, and Wolfe (2007). Psychological Science, 18, 364–366.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49, 297–305.

    Article  PubMed  Google Scholar 

  • Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330.

    Article  PubMed  Google Scholar 

  • Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and S-Plus. New York: Springer.

    Google Scholar 

  • Posner, M. I. (1980). Orientation of attention. The VIIth Sir Frederic Bartlett lecture. Quarterly Journal of Experimental Psychology, 32A, 3–25.

    Google Scholar 

  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and Performance, X (pp. 531–556). Hillsdale: Erlbaum.

    Google Scholar 

  • Posner, M. I., Davidson, B. J., & Snyder, C. R. R. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.

    Article  Google Scholar 

  • Quené, H., & van den Bergh, H. (2004). On multi-level modeling of data from repeated measures designs: A tutorial. Speech Communication, 43, 103–121.

    Article  Google Scholar 

  • R Development Core Team (2007). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

  • Ratliff, F., & Riggs, L. A. (1950). Involuntary motions of the eye during monocular fixation. Journal of Experimental Psychology, 40, 687–701.

    Article  PubMed  Google Scholar 

  • Rattle, J. D., & Foley-Fisher, J. A. (1968). A relationship between vernier acuity and intersaccadic interval. Optica Acta, 15, 617–620.

    PubMed  Google Scholar 

  • Rolfs, M., Engbert, R., & Kliegl, R. (2004). Microsaccade orientation supports attentional enhancement opposite a peripheral cue. Psychological Science, 15, 705–707.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Engbert, R., & Kliegl, R. (2005). Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Experimental Brain Research, 166, 427–439.

    Article  Google Scholar 

  • Rolfs, M., Kliegl, R., & Engbert, R. (2008). Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision, 8(11), 1–23.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Laubrock, J., & Kliegl, R. (2008). Microsaccade-induced prolongation of saccadic latencies depends on microsaccade amplitude. Journal of Eye Movement Research, 1(3), 1–8.

    Google Scholar 

  • Rolfs, M., Laubrock, J., & Kliegl, R. (2006). Shortening and prolongation of saccade latencies following microsaccades. Experimental Brain Research, 169, 369–376.

    Article  Google Scholar 

  • Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2002). Fixational eye movements are not affected by abrupt onsets that capture attention. Vision Research, 42, 1663–1669.

    Article  PubMed  Google Scholar 

  • Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2003). Attentional enhancement opposite a peripheral flash revealed using change blindness. Psychological Science, 14, 91–99.

    Article  PubMed  Google Scholar 

  • Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2004). The distribution of microsaccade directions need not reveal the location of attention. Psychological Science, 15, 708–710.

    Article  Google Scholar 

  • Wickham, H. (2007a). Reshaping data with the reshape package. Journal of Statistical Software, 21,1–19. [Software] R package version 0.8.0.

    Google Scholar 

  • Wickham, H. (2007b). ggplot2: An implementation of the grammar of graphics. [Software] R package version 0.5.7. http://had.co.nz/ggplot2/.

  • Zuber, B. L., & Stark, L. (1966). Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Experimental Neurology, 16, 65–79.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Deutsche Forschungsgemeinschaft (grants KL-955/3 and KL/955-6). Data and R-scripts are available upon request. We thank Erich Schröger and a reviewer for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Kliegl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kliegl, R., Rolfs, M., Laubrock, J. et al. Microsaccadic modulation of response times in spatial attention tasks. Psychological Research 73, 136–146 (2009). https://doi.org/10.1007/s00426-008-0202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-008-0202-2

Keywords

Navigation