Skip to main content
Log in

Models of the saccadic eye movement control system

  • Published:
Kybernetik Aims and scope Submit manuscript

Abstract

  1. 1.

    A sequence of four models is proposed for the saccadic eye movement control system. The models become increasingly complex as they are made to respond to increasingly more complicated target movements in accordance with experimental results. Compatibility with neurological structure and function is stressed in the formation of the models. In each case, the elements of the models are constructed to conform as closely as possible to neuroanatomical structures and behave in a way that has been established or suggested by neurophysiology.

  2. 2.

    The dynamic behavior of the mechanics of the extraocular muscles and eyeball suspensory tissues has been established by recording from oculomotoneurons in alert monkeys. The transfer function of this mechanical system is used in these models.

  3. 3.

    Recent experiments on the neural circuits in the brain stem that are responsible for saccadic eye movements suggest an arrangement of the premotor circuitry that contains two principal neural networks; an integrator and a pulse generator. This circuitry is used in the models.

  4. 4.

    When the above modifications are made to existing models of the saccadic system, they remove the necessity of supposing that the visual information is sampled by the nervous system. The models do not include a sampler although the saccadic pulse generator still makes the overall system behavior similar to that of a sampled-data system.

  5. 5.

    The basic model is modified to make its behavior agree with experimental eye movement responses to target ramps and step-ramps. This is done by using error and its rate of change to estimate the error that will exist one reaction time in the future.

  6. 6.

    Parallel processing of data is a well recognized property of the nervous system. By utilizing it in combination with a random decision threshold, the model is extended to produce results in agreement with experiments for double-step target movements in which the second step occurs less than 0.2 sec after the first.

  7. 7.

    Finally, a model is presented which incorporates a continuum of parallel processing to represent the retinotopic spatial organization of the visual system and the tecto-bulbar motor commands. The model is conceptual; it was not constructed or tested but is used to discuss more complex eye movement phenomena such as those that appear to occur when the decision process must shift between hemispheres and how the system might produce quick correcting saccades with latencies as short as 85 msec.

Zusammenfassung

  1. 1.

    Es wird eine Folge von vier Modellen für das System der sakkadischen Augenbewegungen vorgeschlagen. Die Modelle werden von Stufe zu Stufe komplexer und bilden die experimentell gefundenen Antworten auf zunehmend kompliziertere Zielbewegungen nach. Bei der Konzeption der Modelle wird der Akzent auf Vereinbarkeit mit den strukturellen und funktioneilen Gegebenheiten der Neurologie gelegt. In jeder Stufe werden die Elemente dieser Modelle so gewählt, daß sie möglichst genau neuro-anatomischen Strukturen antsprechen und daß ihr Verhalten sich mit dem neurophysiologisch nachgewiesenen oder wahrscheinlich gemachten deckt.

  2. 2.

    Durch Ableitung von oculomotorischen Neuronen beim wachen Affen wurde die Dynamik des mechanischen Systems, bestehend aus den äußeren Augenmuskeln und dem Bindegewebe, in dem der Augapfel gelagert ist, erfaßt. Die Übergangsfunktion dieses Systems ist in die Modelle eingearbeitet.

  3. 3.

    Neuere Untersuchungen an den Strukturen des Hirnstamms, die für sakkadische Augenbewegungen verantwortlich sind, lassen im prämotorischen Apparat eine Anordnung vermuten, die im wesentlichen zwei neuronale Netzwerke enthält: einen Integrator und einen Pulsgenerator. Diese Schaltungen werden in den Modellen verwandt.

  4. 4.

    Nach Einarbeitung der obengenannten Änderungen in bestehende Modelle des sakkadischen Systems wird die Annahme, daß die visuelle Information durch das Nervensystem diskontinuierlich abgetastet wird, überflüssig. Die Modelle enthalten keine Abtastung, obwohl in Folge des sakkadischen Pulsgenerators ihr Verhalten als Ganzes noch immer das einer getasteten Regelung ist.

  5. 5.

    Das Grundmodell wird so modifiziert, daß sein Verhalten mit den Augenbewegungen übereinstimmt, die experimentell als Antwort auf kombinierte Sprung- und Rampenbewegungen des Ziels gefunden werden. Dies geschieht, indem der nach einer Reaktionszeit zu erwartende Fehler aufgrund des Momentanfehlers und seines Differentialquotienten geschätzt wird.

  6. 6.

    Parallele Datenverarbeitung ist eine allgemein bekannte Eigenschaft des Nervensystems. Durch Kombination dieser Eigenschaft mit einer zufälligen Entscheidungsschwelle wird das Modell so erweitert, daß es sich mit den experimentellen Befunden auch bei solchen Doppelsprüngen des Ziels deckt, bei denen der Sprungabstand kleiner als 0.2 sec ist.

  7. 7.

    Abschließend wird ein Modell vorgestellt, das ein Kontinuum von parallelen Datenverarbeitungskanälen einschließt und damit die retinotope räumliche Organisation des visuellen Systems sowie die tecto-bulbären motorischen Signale nachbildet. Es handelt sich hierbei um ein Denkmodell, das weder realisiert noch geprüft wurde. Es wird vielmehr dazu verwendet, komplexere Formen von Augenbewegungen zu diskutieren, wie sie z. B. aufzutreten scheinen, wenn der Entscheidungsprozeß zwischen den Hemisphären wechseln muß. Ebenso wird erörtert, wie das System schnelle Korrektursakkaden auslösen kann, deren Latenzen bis zu 85 msec kurz sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker,W., Fuchs, A.F.: Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vision Res. 9, 1247–1258 (1969)

    Google Scholar 

  • Benson,A.J.: Interaction between semicircular canals and gravireceptors. In: Busby,D.E. (Ed.): Recent advances in aerospace medicine. Dordrecht: D. Reidel Publ. Co. 1970

    Google Scholar 

  • Breinen,G.M.: Electromyographic evidence for ocular muscle proprioception in man. Arch. Ophthal. 57, 176–180 (1957)

    Google Scholar 

  • Carpenter,R.H.S.: Cerebellectomy and the transfer function of the vestibuloocular reflex in the decerebrate cat. Proc. roy. Soc. B181, 353–374 (1972)

    Google Scholar 

  • Childress,D.S., Jones,R.W.: Mechanics of horizontal movement of the human eye. J. Physiol. (Lond.) 188, 273–284 (1967)

    Google Scholar 

  • Collewijn,H.: An analog model of the rabbit's optokinetic system. Brain Res. 36, 71–88 (1972)

    Google Scholar 

  • Cook,G., Stark,L.: Derivation of a model for the human eye positioning mechanism. Bull. math. Biophys. 29, 153–174 (1967)

    Google Scholar 

  • Cook,G., Stark,L.: Dynamics of the saccadic eye movement system. Commun. Behav. Biol. 1, 197–204 (1968)

    Google Scholar 

  • Fernandez,C, Goldberg,J.M.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661–675 (1971)

    Google Scholar 

  • Fuchs,A.F.: The saccadic system. In: Bach-y-Rita, P., Collins, C.C., Hyde, J.E. (Ed.): The control of eye movements. New York: Academic Press 1971

    Google Scholar 

  • Fuchs,A.F., Luschei,E.S.: Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movement. J. Neurophysiol. 33, 382–392 (1970)

    Google Scholar 

  • Haddad,G.M., Steinman,R.M.: The smallest voluntary saccade: implications for fixation. Vision Res. 13, 1075–1086 (1973)

    Google Scholar 

  • Hyde,J.E.: Some characteristics of voluntary human ocular movements in the horizontal plane. Amer. J. Ophthal. 48, 85–94 (1959)

    Google Scholar 

  • Johnson,L.E.,Jr.: A model of model feedback control for saccadic eye movements. Proc. 16th Ann. Conf. on Eng. in Med. and Biol. 5, 76–77 (1963) Baltimore

    Google Scholar 

  • Keller,E.L., Robinson,D.A.: Absence of a stretch reflex in extraocular muscles of the monkey. J. Neurophysiol. 34, 908–919 (1971)

    Google Scholar 

  • Keller,E.L., Robinson,D.A.: Abducens unit behavior in the monkey during vergence movements. Vision Res. 12, 369–382 (1972)

    Google Scholar 

  • Luschei,E.S., Fuchs,A.F.: Activity of brain stem neurons during eye movements of alert monkeys. J. Neurophysiol. 35, 445–461 (1972)

    Google Scholar 

  • Maruo,T.: Electromyographical studies on stretch reflex in human extraocular muscle. Jap. J. Ophthal. 8, 96–111 (1964)

    Google Scholar 

  • Melvill Jones,G., Milsum,J.H.: Spatial and dynamic aspects of visual fixation. IEEE Trans. Bio-med. Eng. BME 12, 54–62 (1965)

    Google Scholar 

  • Melvill Jones,G., Milsum,J.H.: Frequency-response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J. Physiol. (Lond.) 219, 191–215 (1971)

    Google Scholar 

  • Newman,C.W.: An investigation of the human saccadic visual tracking system. Ph. D. Dissertation. University of Rochester (1970)

  • Oyster,C.W., Takahashi,E., Collewijn,H.: Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vision Res. 12, 183–193 (1972)

    Google Scholar 

  • Pettigrew,J.D., Nikara,T., Bishop, P.O.: Response to moving slits by single units in cat striate cortex. Exp. Brain Res. 6, 373–390 (1968)

    Google Scholar 

  • Rashbass,C.: The relationship between saccadic and smooth tracking eye movements. J. Physiol. (Lond.) 159, 326–338 (1961)

    Google Scholar 

  • Robinson,D.A.: The mechanics of human saccadic eye movement. J. Physiol. (Lond.) 174, 245–264 (1964)

    Google Scholar 

  • Robinson,D.A.: The mechanics of human smooth pursuit eye movement. J. Physiol. (Lond.) 180, 569–591 (1965)

    Google Scholar 

  • Robinson,D.A.: Oculomotor unit behavior in the monkey. J. Neurophysiol. 33, 393–404 (1970)

    Google Scholar 

  • Robinson,D.A.: Eye movements evoked by collicular stimulation in the alert monkey. Vision Res. 12, 1795–1808 (1972)

    Google Scholar 

  • Robinson,D.A., Fuchs,A.F.: Eye movements evoked by stimulation of the frontal eye fields. J. Neurophysiol. 32, 637–648 (1969)

    Google Scholar 

  • Robinson,D.A., Keller,E.L.: The behavior of eye movement motoneurons in the alert monkey. Bibl. ophthal. (Basel) 82, 7–16 (1972)

    Google Scholar 

  • Ron,S., Robinson,D.A., Skavenski,A.A.: Saccades and the quick phases of nystagmus. Vision Res. 12, 2015–2022 (1972)

    Google Scholar 

  • Schiller,P.H.: The discharge characteristics of single units in the oculomotor and abducens nuclei of the unanesthetized monkey. Exp. Brain Res. 10, 347–362 (1970)

    Google Scholar 

  • Schiller,P.H.: The role of the monkey superior colliculus in eye movement and vision. Invest. Ophthal. 11, 451–460 (1972)

    Google Scholar 

  • Sears,M.L., Teasdall,R.D., Stone,H.H.: Stretch effects in human extraocular muscle; an electromyographic study. Bull. Johns Hopkins Hosp. 104, 174–178 (1959)

    Google Scholar 

  • Skavenski,A.A., Robinson,D.A.: The role of abducens neurons in the vestibuloocular reflex. J. Neurophysiol. 36, 724–738 (1973)

    Google Scholar 

  • Sparks,D.L., Travis,R.P.,Jr.: Firing patterns of reticular formation neurons during horizontal eye movements. Brain Res. 33, 477–481 (1971)

    Google Scholar 

  • Steinman,R.M., Haddad,G.M., Skavenski,A.A., Wyman, D.: Miniature eye movement. Science 181, 810–819 (1973)

    Google Scholar 

  • Thomas,J.G.: The dynamics of small saccadic eye movements. J. Physiol. (Lond.) 200, 109–127 (1969)

    Google Scholar 

  • Vossius,G.: Das System der Augenbewegung (1). Z. Biol. 112, 27–57 (1960)

    Google Scholar 

  • Weber,R.B.,Daroff,R.B.: Corrective movements following refixation saccades: type and control system analysis. Vision Res. 12, 467–475 (1972)

    Google Scholar 

  • Westheimer,G.: Mechanism of saccadic eye movements. Arch. Ophthal. 52, 710–724 (1954)

    Google Scholar 

  • Wheeless,L.L.,Jr., Boynton,R.M., Cohen,G.H.: Eye movement responses to step and pulse-step stimuli. J. Opt. Soc. Amer. 56, 956–960 (1966)

    Google Scholar 

  • Young,L.R.: The current status of vestibular system models. Automatica 5, 369–383 (1969)

    Google Scholar 

  • Young,L. R., Forster,J.D., Van Houtte,N.: A revised stochastic sampled data model for eye tracking movements. Fourth Annual NASA-Univ. Conf. on Manual Control, Univ. Mich., Ann Arbor, Mich. (1968)

    Google Scholar 

  • Young,L.R., Stark,L.: Variable feedback experiments testing a sampled data model for eye tracking movements. IEEE Trans. of the Prof. Tech. Grp. on Human Factors in Electronics. HFE-4, 38–51 (1963)

    Google Scholar 

  • Zuber,B.L.: Eye movement dynamics in the cat: the final motor pathway. Exp. Neurol. 20, 255–260 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, D.A. Models of the saccadic eye movement control system. Kybernetik 14, 71–83 (1973). https://doi.org/10.1007/BF00288906

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288906

Keywords

Navigation