Skip to main content

Abstract

Basidiomycetous yeast species of the genus Mrakia have been reported from a variety of extreme cold environments such as polar regions, glaciers, and high mountains. Several reports indicate that fungal species within the genus Mrakia occupy a major mycoflora in Antarctic environments. These results strongly suggest that this genus is well adapted to the polar environment. The genus Mrakia has unique characteristics such as an ethanol fermentation ability, and the ability to decompose milk fat under low-temperature conditions. Thus, the genus Mrakia has quite interesting characteristics. We believe that the results obtained in previous studies will contribute to the progress of related research fields and hope that further investigation will offer many opportunities to obtain more valuable knowledge on Antarctic microbes and their potential uses for human activities. In this chapter, we review the taxonomic history, physiology, ecological role, and biotechnological applications of basidiomycetous yeasts within the genus Mrakia. In the near future, this genus will become an important agent in the field of low-temperature microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boomer E, Rousseau M (1900) Note préliminaire sur les champignons recueillis par l’Expedition Antarctique Belge. Bull Acad R Sci Belgiq Clas Sci 8:640–646

    Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  Google Scholar 

  • de Garcia V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold adapted yeasts from glacial meltwater rivers in Patagonia Argentina. FEMS Microbiol Ecol 59:331–341

    Article  Google Scholar 

  • de Garcia V, Brizzio S, Broock MR (2012) Yeasts from glacial ice of Patagonian Andes, Argentina. FEMS Microbiol Ecol 82:540–550

    Article  Google Scholar 

  • Deegenaars ML, Watson K (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    Article  CAS  Google Scholar 

  • di Menna ME (1966a) Three new yeasts from Antarctica soils: Candida nivalis, Candida gelida and Candida frigida spp n. Antonie Van Leeuenwoek 32:25–28

    Article  Google Scholar 

  • di Menna ME (1966b) Yeasts in Antarctic soil. Antonie Van Leeuwenhoek 32:29–38

    Article  Google Scholar 

  • Diaz MR, Fell JW (2000) Molecular analyses of the IGS & ITS regions of rDNA of the psychrophilic yeasts in the genus Mrakia. Antonie Van Leeuwenhoek 77:7–12

    Article  CAS  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364

    Article  CAS  Google Scholar 

  • Fell JW (2011) Mrakia Y. Yamada & Komagata (1987). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeast, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1503–1510

    Chapter  Google Scholar 

  • Fell JW, Kurtzman CP (1990) Nucleotide sequence analysis of a variable region of the large subunit rRNA for identification of marine-occurring yeasts. Curr Microbiol 21:295–300

    Article  CAS  Google Scholar 

  • Fell JW, Margesin R (2011) Mrakiella Margesin & Fell (2008). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeast, a taxonomic study, 5th edn. Elsevier, Amsterdam, Netherlands, pp 1847–1852

    Chapter  Google Scholar 

  • Fell JW, Statzell AC, Hunter IL, Phaff HJ (1969) Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie Van Leeuwenhoek 35:433–462

    Article  CAS  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scoretti G, Statzelll-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  Google Scholar 

  • Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eucaryotes in Antarctic Dry Valley soil with <5% soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  • Hua MX, Chi Z, Liu GL, Buzdar MA, Chi ZM (2010) Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 14:515–521

    Article  CAS  Google Scholar 

  • Komagata K, Nakase T (1965) New species of the genus Candida isolated from frozen foods. J Gen Appl Microbiol 11:255–267

    Article  Google Scholar 

  • Liu GL, Wang K, Hua MX, Buzdar MA, Chi ZM (2012) Purification and characterization of the cold-active killer toxin from the psychrotolerant yeast Mrakia frigida isolated from sea sediments in Antarctica. Process Biochem 47:822–827

    Article  CAS  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  Google Scholar 

  • Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol 58:2977–2982

    Article  CAS  Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459

    Article  CAS  Google Scholar 

  • Masaharu Tsuji, Yukiko Tanabe, Warwick F. Vincent, Masaki Uchida, (2019) Mrakia hoshinonis sp. nov., a novel psychrophilic yeast isolated from a retreating glacier on Ellesmere Island in the Canadian High Arctic. International Journal of Systematic and Evolutionary Microbiology 69 (4):944–948

    Article  Google Scholar 

  • Moreira SR, Schwan RF, de Carvalho P, Wheals AE (2001) Isolation and identification of yeasts and filamentous fungi from yoghurts in Brazil. Braz J Microbiol 32:117–122

    Google Scholar 

  • Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizawa N (2004) Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett Appl Microbiol 38:383–387

    Article  CAS  Google Scholar 

  • Panikov NS, Sizova M (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512

    Article  CAS  Google Scholar 

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of Midre Lovénbreenglacier, arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314

    Article  CAS  Google Scholar 

  • Shimohara K, Fujiu S, Tsuji M, Kudoh S, Hoshino T, Yokota Y (2012) Lipolytic activities and their thermal dependence of Mrakia species, basidiomycetous yeast from Antarctica. J Water Waste (in Japanese) 54:691–696

    CAS  Google Scholar 

  • Sinclair NA, Stokes JL (1965) Obligately psychrophilic yeasts from the polar regions. Can J Microbiol 11:259–269

    Article  CAS  Google Scholar 

  • Singh P, Singh SM (2012) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35:575–583

    Article  Google Scholar 

  • Singh SM, Tsuji M, Gawas-Sakhalker P, Loonen MJJE, Hoshino T (2016) Bird feather fungi from Svalbard Arctic. Polar Biol 39:523–532

    Article  Google Scholar 

  • Suh SO, Sugiyama J (1993) Phylogeny among the basidiomycetous yeasts inferred from small subunit ribosomal DNA sequence. J Gen Microbiol 139:1595–1598

    Article  CAS  Google Scholar 

  • Takagi M, Abe S, Suzuki S, Emert GH, Yata A (1977) A method for production of alcohol directly from cellulose using cellulase and yeast. In Bioconversion Symposium Proceedings. IIT, Delhi, pp 551–571

    Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Threelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and Italian alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  CAS  Google Scholar 

  • Thomsen MH, Thygesen A, Thomsen AB (2009) Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl Microbiol Biotechnol 83:447–455

    Article  CAS  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016) Thermophiles and Psychrophiles in Nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 89–127

    Chapter  Google Scholar 

  • Tsuji M, Fujiu S, Xiao N, Hanada Y, Kudoh S, Kondo H, Tsuda S, Hoshino T (2013a) Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctic. FEMS Microbiol Lett 346:121–130

    Article  CAS  Google Scholar 

  • Tsuji M, Singh SM, Yokota Y, Kudoh S, Hoshino T (2013b) Influence of initial pH on ethanol production by Antarctic Basidiomycetous yeast Mrakia blollopis. Biosci Biotechnol Biochem 77:2483–2485

    Article  CAS  Google Scholar 

  • Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T (2013c) An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis. PLoS One 8:e59376

    Article  CAS  Google Scholar 

  • Tsuji M, Goshima T, Matsushika A, Kudoh S, Hoshino T (2013d) Direct ethanol fermentation from lignocellulosic biomass by Antarctic Basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 67:241–243

    Article  CAS  Google Scholar 

  • Tsuji M, Yokota Y, Kudoh S, Hoshino T (2014a) Effects of nitrogen concentration and culturing temperature on lipase secretion and morphology of the Antarctic basidiomycetous yeast Mrakia blollopis. Int J Res Eng Sci 2:49–54

    Google Scholar 

  • Tsuji M, Yokota Y, Kudoh S, Hoshino T (2014b) Improvement of direct ethanol fermentation from woody biomasses by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 68:303–305

    Article  CAS  Google Scholar 

  • Tsuji M, Kudoh S, Hoshino T (2015a) Draft genome sequence of cryophilic basidiomycetous yeast Mrakia blollopis SK-4, isolated from an algal mat of Naga-ike Lake in the Skarvsnes ice-free area, East Antarctica. Genome Announc 3:e01454–e01414

    Article  Google Scholar 

  • Tsuji M, Yokota Y, Kudoh S, Hoshino T (2015b) Comparative analysis of milk fat decomposition activity by Mrakia spp. isolated from Skarvsnes ice-free area, East Antarctica. Cryobiology 70:293–296

    Article  CAS  Google Scholar 

  • Tsuji M, Kudoh S, Hoshino T (2016a) Ethanol productivity of cryophilic basidiomycetous yeast Mrakia spp. correlates with ethanol tolerance. Mycoscience 57:42–50

    Article  CAS  Google Scholar 

  • Tsuji M, Uetake J, Tanabe Y (2016b) Changes in the fungal community of Austre Brøggerbreen deglaciation area, Ny-Ã…lesund, Svalbard, High Arctic. Mycoscience 57:448–451

    Article  Google Scholar 

  • Tsuji M, Tanabe Y, Vincent WF, Uchida M (2018) Mrakia arctica sp. nov., a new psychrophilic yeast isolated from an ice island in the Canadian High Arctic. Mycoscience 59:54–58

    Article  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  CAS  Google Scholar 

  • Xin M, Zhou P (2007) Mrakia psychrophila sp. nov., a new species isolated from Antarctic soil. J Zhejiang Univ Sci B 8:260–265

    Article  CAS  Google Scholar 

  • Yamada Y, Komagata K (1987) Mrakia gen. nov., a heterobasidiomycetous yeast genus for the Q8-equipped, self-sporulating organisms which produce a unicellular metabasidium, formerly classified in the genus Leucosporidium. J Gen Appl Microbiol 33:455–457

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was partially supported byan NIPR Research Project (KP-309), a JSPS Grant-in-Aid for Young Scientists (A) to M. Tsuji (No. JP16H06211). Institution for Fermentation, Osaka, for Young Scientists to M. Tsuji (no. Y-2018–004), and the ArCS (Arctic Challenge for Sustainability) provided by the Ministry of Education, Culture, Sports, Science and Technology, Japan. We are deeply grateful to Masaki Uchida (NIPR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuji, M., Kudoh, S., Tanabe, Y., Hoshino, T. (2019). Basidiomycetous Yeast of the Genus Mrakia. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_8

Download citation

Publish with us

Policies and ethics