Skip to main content
Log in

Bird feather fungi from Svalbard Arctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Despite feather fungi being an important component of the Arctic fungal flora, their ecological role and diversity are not fully known. In the current study, fungal cultures were isolated from feathers (barnacle goose, common eider, and glaucous gull) collected in the Ny-Ålesund region, Svalbard. Isolates were identified by ITS region sequences, which include the ITS1, ITS2, and 5.8S rRNA. The result showed culturable yeast and filamentous fungi belonging to three classes: Ascomycota (Pyrenochaetopsis pratorum, Cladosporium herbarum, Thelebolus microsporus, Aspergillus versicolor, Penicillium commune, and Venturia sp.), Basidiomycota (Mrakia blollopis and Rhodotorula mucilaginosa), and Zygomycota (Mucor flavus). Most of the fungal isolates appeared to be cold-tolerant, and about 60 % of the isolates showed keratinase activity. The reasonably low fungal diversity colonizing feathers indicates that the birds of Svalbard are casual carriers of fungi which may result in a negligible impact on their health. To the best of our knowledge, this is the first record of fungal communities present on the feathers of birds in the high Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarnæs J-O (2002) Katalog over makro- og mikrosopp angitt for Norge og Svalbard [Catalogue of macro-and micromycetes recorded for Norway and Svalbard]. In Norwegian with an English summary. Synopsis Fungorum 16. Fungiflora A/S. Oslo, Norway

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Barron GL (1977) The genera of Hyphomycetes from soil. Robert E. Krieger Publishing Huntington, New York

  • Bergero R, Girlanda M, Varese GC, Intili D, Luppi AM (1999) Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol 21:361–368

    Article  Google Scholar 

  • Böckle B, Galunsky B, Müller R (1995) Characterization of a keratinolytic serine proteinase from Streptomyces pactum DMS-40530. Appl Environ Microbiol 61:3705–3710

    PubMed  PubMed Central  Google Scholar 

  • Böhme H, Ziegler H (1969) The distribution of geophilic dermatophytes and other keratinophilic fungi in relation to the ph of the soil. Mycopathol Mycol Appl 38:247–255

    Article  PubMed  Google Scholar 

  • Buck JD (1983) Occurrence of Candida albicans in fresh gull feces in temperate and subtropical areas. Microb Ecol 9:171–176

    Article  CAS  PubMed  Google Scholar 

  • Buck AM, Chabasse D (1998) Isolation of Candida albicans and halophilic Vibrio spp. from aquatic birds in Connecticut and Florida. Appl Environ Microb 56:826–828

    Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A Van Leeuw J Microb 91:277–289

    Article  Google Scholar 

  • Butinar L, Strmole T, Gunde-Cimerman N (2011) Relative incidence of ascomycetous yeasts in arctic coastal environments. Microb Ecol 61:832–843

    Article  PubMed  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Cafarchia C, Camarda A, Romito D, Campolo M, Quaglia NC, Tullio D, Otronto D (2006) Occurrence of yeasts in cloacae of migratory birds. Mycopathol 161:229–234

    Article  CAS  Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA et al (2004) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio 33:404–417

    Article  PubMed  Google Scholar 

  • Carmichael JW, BryceKendrick W, Conners IL, Sigler L (1980) Genera of hyphomycetes. The University of Alberta Press, Canada

    Google Scholar 

  • Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  CAS  PubMed  Google Scholar 

  • Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific Publications, Edinburgh

    Google Scholar 

  • Czeczuga B, Godlewska A, Kiziewicz B (2004) Aquatic fungi growing on feathers of wild and domestic bird species in limnologically different water bodies. Pol J Environ Stud 131:21–31

    Google Scholar 

  • de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102:1066–1081

    Article  PubMed  Google Scholar 

  • De Hoog GS, Gottlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • De Vries GA (1962) Keratinophilic fungi and their action. A Van Leeuw J Microb 28:121–133

    Article  Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Article  Google Scholar 

  • Dominik T, Inhatowicz A, Kopylow H, Mietkiewsky R (1973) Mycoflore of sand boxes in kindergardens in Szczecin. Ekol Pol 21:901–923

    Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (1980) Compendium of soil fungi. Academic Press, London

    Google Scholar 

  • Dupont C, Carrier M, Higgins R (1994) Bacterial and fungal flora in healthy eyes of birds of prey. Can Vet J 35:699–701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dynowska M, Kisicka I (2005a) Fungi isolated from selected birds potentially pathogenic to humans. Acta Mycol 40:141–147

    Article  Google Scholar 

  • Dynowska M, Kisicka I (2005b) Participation of birds in the circulation of pathogenic fungi descend from water environments: a case study of two species of Charadriiformes birds. Ecohydrol Hydrobiol 5:173–178

    Google Scholar 

  • Dynowska M, Wojczulanis-Jakubas K, Pacynśka JA, Jakubas D, Ejdys E (2013) Potentially pathogenic yeast isolated from the throat and cloaca of an Arctic colonial seabird: the little auk (Alle alle). Polar Biol 36:343–348

    Article  Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. CMI, Kew

    Google Scholar 

  • Ellis MB (1976) More dematiaceous hyphomycetes. CMI, Kew

    Google Scholar 

  • Elvebakk A, Gjaerum HB, Sivertsen S (1996) Myxomycota, Oomycota, Chytridiomycota, Zygomycota, Ascomycota, Deuteromycota, Basidiomycota: Uredinales and Ustilaginales. In: Elvebakk A, Prestrud P (eds) A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Part 4. Fungi II. Oslo, pp 207–259

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Filipello Marchisio V (1986) Keratinolytic and keratinophilic fungi of children’s sandpits in the city of Turin. Mycopathologia 94:163–172

    Article  CAS  PubMed  Google Scholar 

  • Filipello Marchisio V (2000) Keratinophilic fungi: their role in nature and degradation of keratinic substrates. Revista Iberoamericana de Micología Apdo. 699, E-48080 Bilbao (Spain), pp 86–92

  • Filipello Marchisio V, Curetti V, Cassinelli C, Bordese C (1991) Keratinolytic and keratinophilic fungi in the soil of Papua New Guinea. Mycopathologia 115:113–120

    Article  CAS  PubMed  Google Scholar 

  • Filipello Marchisio V, Fusconi A, Rigo S (1994) Keratinolysis and its morphological expression in hair digestion by airborne fungi. Mycopathologia 127:103–115

    Article  CAS  PubMed  Google Scholar 

  • Friedrich J, Gradisar H, Mandin D, Chaumont JP (1999) Screening of fungi for synthesis of keratinolytic enzymes. Lett Appl Microbiol 28:127–130

    Article  CAS  Google Scholar 

  • Ghannuaum AM, Abu-Elteen KH (1990) Pathogenicity determinants of candida. Mycoses 33:265–282

    Google Scholar 

  • Griffin DM (1960) Fungal colonization of sterile hair in contact with soil. Trans Br Mycol Soc 43:583–596

    Article  Google Scholar 

  • Gungnani HC, Sharma S, Gupta B (2012) Keratinophilic fungi recovered from feathers of different species of birds in St Kitts and Nevis. West Indian Med J 61:912–915

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Holding AJ (1981) The microflora of tundra. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge University Press, Cambridge, pp 561–585

    Google Scholar 

  • Hoog GS (1996) Risk assessment of fungi reported from humans and animals. Mycoses 39:407–417

  • Hoshino T, Tojo M, Okada G, Kanda H, Ohgiya S, Ishizaki K (1999) A filamentous fungus, Pythium ultimum Throw var. ultimum, isolated from moribund moss colonies from Svalbard, northern island of Norway. Polar Biosci 12:68–75

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Summary for policy makers. In: Contribution of working group I to the fourth assessment report of the inter-governmental panel on climate change. Cambridge University Press, Cambridge

  • Ivarson KC (1965) The microbiology of some permafrost soils in the McKenzie Valley. NWT Arctic 18:256–260

    Article  Google Scholar 

  • Karsten PF (1872) Fungi in insulis Spetsbergen et Beeren Eiland collecti. Öfvers. Kungliga Vetensk -Akad Förh 2:91–108

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of the fungi, 10th edn. CABI Publishing, UK

    Google Scholar 

  • Kunert J (1972) Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Sabouraudia 10:1025–1026

    Google Scholar 

  • Kurek E, Korniłowicz-Kowalska T, Słomka A, Melke J (2007) Characteristics of soil filamentous fungi communities isolated from various micro relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Polish Polar Res 28:57–73

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study, 5th edn. Elsevier, Tokyo

    Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts: a review. Yeast 25:465–483

    Article  CAS  PubMed  Google Scholar 

  • Kytöviita MM (2005) Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol Ecol 53:27–32

    Article  PubMed  Google Scholar 

  • Lehninger AL (1984) Biochimica. Bologna, Zanichelli

    Google Scholar 

  • Majchrowicz I, Dominik T (1969) Further contribution to the knowledge of keratinolytic and keratinophilic soil fungi of the region of Szczecin—Keratinolytic and keratinophilic fungi in the immediate surroundings of cattle. Ekol Pol 17:87–116

    Google Scholar 

  • Malviya HK, Rajak RC, Hasija SK (1992) Purification and partial characterization of extracellular keratinases of Scopulariopsis brevicaulis. Mycopathologia 119:161–165

    Article  CAS  PubMed  Google Scholar 

  • Mancianti F, Nardoni S, Ceccherelli R (2002) Occurrence of yeasts in psittacines droppings from captive birds in Italy. Mycopathol 153:121–124

    Article  Google Scholar 

  • Mandeel Q, Nardoni S, Mancianti F (2011) Keratinophilic fungi on feathers of common clinically healthy birds in Bahrain. Mycoses 54:71–77

    Article  PubMed  Google Scholar 

  • McAleer R (1980) Investigation of keratinophilic fungi from soil in Western-Australia: a preliminary survey. Mycopathologia 72:155–166

    Article  CAS  PubMed  Google Scholar 

  • Miljković B, Pavlovski Z, Jovičić D, Radanović O, Kureljušić B (2011) Fungi on feathers of common clinically healthy birds in Belgrade. Biotech Anim Husbandry 27:45–54

    Article  Google Scholar 

  • Nygaard EJ (2009) Ny-Ålesund, International Arctic Research and Monitoring Station at 79°N. Kings Bay AS, Ny-Ålesund

    Google Scholar 

  • Ogbonna CIC, Pugh GJF (1987) Keratinophilic fungi from Nigerian soil. Mycopathologia 99:115–118

    Article  CAS  PubMed  Google Scholar 

  • Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Margesin R (ed) Permafrost soils. Soil Biology 16. Springer, Berlin, pp 85–95

  • Pang KL, Chiang MW, Vrijmoed LLP (2008) Havispora longyearbyenensis gen. et sp. nov.: an arctic marine fungus from Svalbard, Norway. Mycologia 100:291–295

    Article  PubMed  Google Scholar 

  • Pang KL, Chiang MW, Vrijmoed LLP (2009) Remispora spitsbergenensis sp. nov., a marine lignicolous ascomycete from Svalbard, Norway. Mycologia 101:531–534

    Article  PubMed  Google Scholar 

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2009) Diversity of yeasts from puddles in the vicinity of Midre Lovénbreen glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314

    Article  PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2008) Fungal community ecology: a hybrid beast with a molecular master. Bioscience 58:799–810

    Article  Google Scholar 

  • Piontelli E, Caretta G (1974) Considerazioni ecologiche su alcuni geomiceti isolati su substrati cheratinici in località montagnose delle Ande del Cile. Rivista Patol Veg 10:261–314

    Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London

    Google Scholar 

  • Pugh GJF, Evans MD (1970) Keratinophilic fungi associated with birds. II. Physiological studies. Trans Br Mycoi Soc 54:241–250

    Article  Google Scholar 

  • Rapper KB, Fennell DI (1965) The Aspergillus. The Williams & Wilkins Company, Baltimore

    Google Scholar 

  • Reeve JN, Christner BC, Kvitko BH, Mosley-Thompson E, Thompson LG (2002) Life in glacial ice (Abstract). In: Rossi M, Bartolucci S, Ciaramella M, Moracci M (eds) Extremophiles 2002. 4th international congress on extremophiles, September 2002, Naples, Italy 27, pp 22–26

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Samson RA, Frisvad JC (2004) Penicillium Subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. Stud Mycol 49:1–251

    Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Google Scholar 

  • Schneider R (1979) Die Gattung Pyrenochaeta De Notaris. Mitt Biol Bundesanst Land Forstw 189:1–73

    Google Scholar 

  • Singh P, Singh SM (2012) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35:575–583

    Article  Google Scholar 

  • Singh SM, Singh PN, Singh SK, Sharma PK (2014) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica. Polar Rec 50:31–36

  • Singh SM, Singh SK, Yadav L, Singh PN, Ravindra R (2012) Filamentous soil fungi from Ny-Ålesund, Spitsbergen, and screening for extracellular enzymes. Arctic 65:35–55

    Article  Google Scholar 

  • Singh P, Tsuji M, Singh SM, Roy U, Hoshino T (2013) Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovénbreen glacier, Svalbard, Arctic. Cryobiology 66:167–175

    Article  CAS  PubMed  Google Scholar 

  • Sjolund M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, Kahlmeter G, Olsen B (2008) Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis 14:70–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Takiuchi I, Sei I, Takagi H, Negi M (1984) Partial characterization of the extracellular keratinase from Microsporum canis. J Med Vet Mycol 22:219–224

    Article  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. doi:10.1093/molbev/mst197

    PubMed  PubMed Central  Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiodras S, Kelesidis T, Kelesidis I, Bauchinger V, Falagas ME (2008) Human infections associated with wild birds. J Infect 56:83–98

    Article  PubMed  Google Scholar 

  • Tsuji M, Fujiu S, Xiao N, Hanada Y, Kudoh S, Kondo H, Tsuda S, Hoshino T (2013a) Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol Lett 346:121–130

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Goshima T, Matsushika A, Kudoh S, Hoshino T (2013b) Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 67:241–243

    Article  CAS  PubMed  Google Scholar 

  • Ulfig K, Ulfig A (1990) Keratinophilic fungi in bottom sediments of surface waters. J Med Vet Mycol 28:261–268

    Article  Google Scholar 

  • Wawrzkiewicz K, Wolski T, Lobarzewski J (1991) Screening the keratinolytic activity of dermatophytes in vitro. Mycopathologia 114:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wojczulanis-Jakubas K, Dynowska M, Jakubas D (2011) Fungi prevalence in breeding pairs of monogamous seabird: little auk, Alle alle. Ethol Ecol Evol 23:240–247

    Article  Google Scholar 

  • Yu RJ, Harmon SR, Blank F (1969) Hair digestion by a keratinase of Trichophyton mentagrophytes. J Invest Dermatol 5:166–171

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Directors NCAOR—India, NIPR—Japan, AIST—Japan, Arctic Centre, University of Groningen and King Bay—Norway for facilities. Authors are also thankful to Mr. Gary Stanley Fernandes and Dr. Dominique Paré, Consorminex Inc. (Canada), for English corrections. The publication compliance with Ethical Standards of journal of Polar Biology. This is NCAOR Publication no. 31/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv M. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.M., Tsuji, M., Gawas-Sakhalker, P. et al. Bird feather fungi from Svalbard Arctic. Polar Biol 39, 523–532 (2016). https://doi.org/10.1007/s00300-015-1804-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1804-y

Keywords

Navigation