Skip to main content

Advances in Pediatric Musculoskeletal Ultrasonography

  • Chapter
  • First Online:
Pediatric Musculoskeletal Ultrasonography
  • 777 Accesses

Abstract

In the past 20 years, musculoskeletal ultrasound has accumulated important evidence supporting its role for the assessment and treatment monitoring of several inflammatory rheumatic diseases.

The expanding applications of this imaging modality include many examinations that are new to pediatric rheumatologists but are known to the adult colleagues.

In this chapter, we present an introduction of some of these more sophisticated imaging technologies, such as three-dimensional ultrasound, elastography, and fusion imaging as well as their potential clinical impact in assessing pediatric musculoskeletal disorders. Three-dimensional US (B-mode and Doppler imaging) offers objective quantification of synovial proliferation and vascularity, and it can improve the assessment accuracy of bone erosions due to its multiplanar view (longitudinal, transverse, and coronal planes) as well as three-dimensional reconstruction. Elastography offers tissue elasticity evaluation by measurement of tissue displacement in terms of tissue stiffness changes, promising improved assessment of tendon pathology. However, it is still looking for its role in juvenile inflammatory myopathies. Fusion imaging is an exciting development that displays simultaneously in the monitor, the ultrasound image, and the corresponding computed tomography/magnetic resonance imaging scan. This technique is considered helpful in guiding challenging intra-articular injections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tonni G, Araujo Junior E. Three-dimensional ultrasound in obstetrics practice: myth or reality? Rev Bras Ginecol Obstet. 2014;36(4):143–5.

    Article  PubMed  Google Scholar 

  2. Goncalves LF, Lee W, Espinoza J, Romero R. Three- and 4-dimensional ultrasound in obstetric practice: does it help? J Ultrasound Med. 2005;24(12):1599–624.

    Article  PubMed  Google Scholar 

  3. Kurjak A, Miskovic B, Andonotopo W, Stanojevic M, Azumendi G, Vrcic H. How useful is 3D and 4D ultrasound in perinatal medicine? J Perinat Med. 2007;35(1):10–27.

    Article  PubMed  Google Scholar 

  4. Cool DW, Connolly MJ, Sherebrin S, Eagleson R, Izawa JI, Amann J, et al. Repeat prostate biopsy accuracy: simulator-based comparison of two- and three-dimensional transrectal US modalities. Radiology. 2010;254(2):587–94.

    Article  PubMed  Google Scholar 

  5. Surkova E, Muraru D, Aruta P, Romeo G, Bidviene J, Cherata D, et al. Current clinical applications of three-dimensional echocardiography: when the technique makes the difference. Curr Cardiol Rep. 2016;18(11):109.

    Article  PubMed  Google Scholar 

  6. Filippucci E, Meenagh G, Epis O, Iagnocco A, Riente L, Delle Sedie A, et al. Ultrasound imaging for the rheumatologist. XIII. New trends. Three-dimensional ultrasonography. Clin Exp Rheumatol. 2008;26(1):1–4.

    CAS  PubMed  Google Scholar 

  7. Iagnocco A, Riente L, Delle Sedie A, Filippucci E, Salaffi F, Meenagh G, et al. Ultrasound imaging for the rheumatologist. XXII. Achilles tendon involvement in spondyloarthritis. A multi-Centre study using high frequency volumetric probe. Clin Exp Rheumatol. 2009;27(4):547–51.

    CAS  PubMed  Google Scholar 

  8. Wallny TA, Schild RL, Schulze Bertelsbeck D, Hansmann ME, Kraft CN. Three-dimensional ultrasonography in the diagnosis of rotator cuff lesions. Ultrasound Med Biol. 2001;27(6):745–9.

    Article  CAS  PubMed  Google Scholar 

  9. Downey DB, Fenster A, Williams JC. Clinical utility of three-dimensional US. Radiographics. 2000;20(2):559–71.

    Article  CAS  PubMed  Google Scholar 

  10. Acebes C, McKay N, Ciechomska A, Alcorn N, Harvie JP, Robson B, et al. Level of agreement between three-dimensional volumetric ultrasound and real-time conventional ultrasound in the assessment of synovitis, tenosynovitis and erosions in rheumatoid arthritis patients. Rheumatol Int. 2017;37(2):197–205.

    Article  PubMed  Google Scholar 

  11. Strunk J, Klingenberger P, Strube K, Bachmann G, Muller-Ladner U, Kluge A. Three-dimensional Doppler sonographic vascular imaging in regions with increased MR enhancement in inflamed wrists of patients with rheumatoid arthritis. Joint Bone Spine. 2006;73(5):518–22.

    Article  PubMed  Google Scholar 

  12. Strunk J, Lange U. Three-dimensional power Doppler sonographic visualization of synovial angiogenesis in rheumatoid arthritis. J Rheumatol. 2004;31(5):1004–6.

    PubMed  Google Scholar 

  13. Filippucci E, Meenagh G, De Agustin JJ, De Miguel E, Iagnocco A, Mayordomo L, et al. Level of agreement between rheumatologists on US image acquisition using a 3D volumetric probe. Clin Exp Rheumatol. 2007;25(1):116.

    CAS  PubMed  Google Scholar 

  14. Filippucci E, Meenagh G, Delle Sedie A, Salaffi F, Riente L, Iagnocco A, et al. Ultrasound imaging for the rheumatologist. XX. Sonographic assessment of hand and wrist joint involvement in rheumatoid arthritis: comparison between two- and three-dimensional ultrasonography. Clin Exp Rheumatol. 2009;27(2):197–200.

    CAS  PubMed  Google Scholar 

  15. Naredo E, Moller I, Acebes C, Batlle-Gualda E, Brito E, de Agustin JJ, et al. Three-dimensional volumetric ultrasonography. Does it improve reliabililty of musculoskeletal ultrasound? Clin Exp Rheumatol. 2010;28(1):79–82.

    CAS  PubMed  Google Scholar 

  16. Peluso G, Bosello SL, Gremese E, Mirone L, Di Gregorio F, Di Molfetta V, et al. Detection of bone erosions in early rheumatoid arthritis: 3D ultrasonography versus computed tomography. Clin Rheumatol. 2015;34(7):1181–6.

    Article  CAS  PubMed  Google Scholar 

  17. Lai KL, Chen DY, Chen YH, Huang WN, Hsieh TY, Hsieh CW, et al. Assessment of wrist joint inflammation in patients with rheumatoid arthritis by quantitative two- and three-dimensional power Doppler ultrasonography. Clin Exp Rheumatol. 2014;32(5):674–9.

    PubMed  Google Scholar 

  18. Meenagh G, Filippucci E, Abbattista T, Busilacchi P, Grassi W. Three-dimensional power Doppler sonography in short-term therapy monitoring of rheumatoid synovitis. Rheumatology (Oxford). 2007;46(11):1736.

    Article  CAS  Google Scholar 

  19. Strunk J, Strube K, Muller-Ladner U, Lange U. Three dimensional power Doppler ultrasonography confirms early reduction of synovial perfusion after intra-articular steroid injection. Ann Rheum Dis. 2006;65(3):411–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Strunk J, Strube K, Rumbaur C, Lange U, Muller-Ladner U. Interobserver agreement in two- and three-dimensional power Doppler sonographic assessment of synovial vascularity during anti-inflammatory treatment in patients with rheumatoid arthritis. Ultraschall Med. 2007;28(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  21. Naredo E, Acebes C, Brito E, de Agustin JJ, de Miguel E, Mayordomo L, et al. Three-dimensional volumetric ultrasound: a valid method for blinded assessment of response to therapy in rheumatoid arthritis. J Rheumatol. 2013;40(3):253–60.

    Article  PubMed  Google Scholar 

  22. Albrecht H, Stroszczynski C, Felix R, Hunerbein M. Real time 3D (4D) ultrasound-guided percutaneous biopsy of solid tumours. Ultraschall Med. 2006;27(4):324–8.

    Article  CAS  PubMed  Google Scholar 

  23. de Miguel E, Falcao S, Castillo C, Plasencia C, Garcia M, Branco JC, et al. Enthesis erosion in spondyloarthritis is not a persistent structural lesion. Ann Rheum Dis. 2011;70(11):2008–10.

    Article  PubMed  Google Scholar 

  24. Diederichs C, Heath A, Hareendranathan AR, Zonoobi D, Kuntze G, Dulai S, et al. Cross-modality validation of acetabular surface models using 3-d ultrasound versus magnetic resonance imaging in normal and dysplastic infant hips. Ultrasound Med Biol. 2016;42(9):2308–14.

    Article  PubMed  Google Scholar 

  25. Mabee MG, Hareendranathan AR, Thompson RB, Dulai S, Jaremko JL. An index for diagnosing infant hip dysplasia using 3-D ultrasound: the acetabular contact angle. Pediatr Radiol. 2016;46(7):1023–31.

    Article  PubMed  Google Scholar 

  26. Jaremko JL, Mabee M, Swami VG, Jamieson L, Chow K, Thompson RB. Potential for change in US diagnosis of hip dysplasia solely caused by changes in probe orientation: patterns of alpha-angle variation revealed by using three-dimensional US. Radiology. 2014;273(3):870–8.

    Article  PubMed  Google Scholar 

  27. Hareendranathan AR, Zonoobi D, Mabee M, Diederichs C, Punithakumar K, Noga M, et al. Semiautomatic classification of acetabular shape from three-dimensional ultrasound for diagnosis of infant hip dysplasia using geometric features. Int J Comput Assist Radiol Surg. 2017;12(3):439–47.

    Article  PubMed  Google Scholar 

  28. Frey H. Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe. 2003;43(10):850–5.

    Article  CAS  PubMed  Google Scholar 

  29. Garra BS. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q. 2007;23(4):255–68.

    Article  PubMed  Google Scholar 

  30. Klauser AS, Faschingbauer R, Jaschke WR. Is sonoelastography of value in assessing tendons? Semin Musculoskelet Radiol. 2010;14(3):323–33.

    Article  PubMed  Google Scholar 

  31. Taljanovic MS, Gimber LH, Becker GW, Latt LD, Klauser AS, Melville DM, et al. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3):855–70.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Winn N, Lalam R, Cassar-Pullicino V. Sonoelastography in the musculoskeletal system: current role and future directions. World J Radiol. 2016;8(11):868–79.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kot BC, Zhang ZJ, Lee AW, Leung VY, Fu SN. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One. 2012;7(8):e44348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elkateb Hachemi M, Calle S, Remenieras JP. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements. Ultrasonics. 2006;44(Suppl 1):e221–5.

    Article  PubMed  Google Scholar 

  35. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341–50.

    Article  PubMed  Google Scholar 

  36. Evans A, Whelehan P, Thomson K, McLean D, Brauer K, Purdie C, et al. Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology. 2012;263(3):673–7.

    Article  PubMed  Google Scholar 

  37. Tozaki M, Isobe S, Sakamoto M. Combination of elastography and tissue quantification using the acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. Jpn J Radiol. 2012;30(8):659–70.

    Article  PubMed  Google Scholar 

  38. Carlsen J, Ewertsen C, Sletting S, Vejborg I, Schafer FK, Cosgrove D, et al. Ultrasound elastography in breast cancer diagnosis. Ultraschall Med. 2015;36(6):550–62; quiz 63-5.

    Article  CAS  PubMed  Google Scholar 

  39. Bojunga J, Dauth N, Berner C, Meyer G, Holzer K, Voelkl L, et al. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One. 2012;7(8):e42735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, et al. Thyroid nodules and shear wave elastography: a new tool in thyroid cancer detection. Ultrasound Med Biol. 2015;41(11):2855–65.

    Article  PubMed  Google Scholar 

  41. Correas JM, Tissier AM, Khairoune A, Vassiliu V, Mejean A, Helenon O, et al. Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology. 2015;275(1):280–9.

    Article  PubMed  Google Scholar 

  42. Woo S, Suh CH, Kim SY, Cho JY, Kim SH. Shear-wave elastography for detection of prostate cancer: a systematic review and diagnostic meta-analysis. AJR Am J Roentgenol. 2017;209(4):806–14.

    Article  PubMed  Google Scholar 

  43. Barr RG, Ferraioli G, Palmeri ML, Goodman ZD, Garcia-Tsao G, Rubin J, et al. Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement. Ultrasound Q. 2016;32(2):94–107.

    Article  PubMed  Google Scholar 

  44. Fusini F, Langella F, Busilacchi A, Tudisco C, Gigante A, Masse A, et al. Real-time sonoelastography: principles and clinical applications in tendon disorders. A systematic review. Muscles Ligaments Tendons J. 2017;7(3):467–77.

    Article  PubMed  Google Scholar 

  45. De Zordo T, Chhem R, Smekal V, Feuchtner G, Reindl M, Fink C, et al. Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall Med. 2010;31(4):394–400.

    Article  PubMed  Google Scholar 

  46. Tan S, Kudas S, Ozcan AS, Ipek A, Karaoglanoglu M, Arslan H, et al. Real-time sonoelastography of the Achilles tendon: pattern description in healthy subjects and patients with surgically repaired complete ruptures. Skelet Radiol. 2012;41(9):1067–72.

    Article  Google Scholar 

  47. Lee SU, Joo SY, Kim SK, Lee SH, Park SR, Jeong C. Real-time sonoelastography in the diagnosis of rotator cuff tendinopathy. J Shoulder Elb Surg. 2016;25(5):723–9.

    Article  Google Scholar 

  48. Klauser AS, Pamminger M, Halpern EJ, Abd Ellah MMH, Moriggl B, Taljanovic MS, et al. Extensor tendinopathy of the elbow assessed with sonoelastography: histologic correlation. Eur Radiol. 2017;27(8):3460–6.

    Article  PubMed  Google Scholar 

  49. Turan A, Tufan A, Mercan R, Teber MA, Tezcan ME, Bitik B, et al. Real-time sonoelastography of Achilles tendon in patients with ankylosing spondylitis. Skelet Radiol. 2013;42(8):1113–8.

    Article  Google Scholar 

  50. Silvestri E, Garlaschi G, Bartolini B, Minetti G, Schettini D, D’Auria MC, et al. Sonoelastography can help in the localization of soft tissue damage in polymyalgia rheumatica (PMR). Clin Exp Rheumatol. 2007;25(5):796.

    CAS  PubMed  Google Scholar 

  51. Orman G, Ozben S, Huseyinoglu N, Duymus M, Orman KG. Ultrasound elastographic evaluation in the diagnosis of carpal tunnel syndrome: initial findings. Ultrasound Med Biol. 2013;39(7):1184–9.

    Article  PubMed  Google Scholar 

  52. Hofauer B, Mansour N, Heiser C, Gahleitner C, Thuermel K, Bas M, et al. Sonoelastographic modalities in the evaluation of salivary gland characteristics in Sjogren’s syndrome. Ultrasound Med Biol. 2016;42(9):2130–9.

    Article  PubMed  Google Scholar 

  53. Tang Y, Yan F, Yang Y, Xiang X, Wang L, Zhang L, et al. Value of shear wave Elastography in the diagnosis of gouty and non-gouty arthritis. Ultrasound Med Biol. 2017;43(5):884–92.

    Article  PubMed  Google Scholar 

  54. Wu CH, Chen WS, Wang TG. Elasticity of the Coracohumeral ligament in patients with adhesive capsulitis of the shoulder. Radiology. 2016;278(2):458–64.

    Article  PubMed  Google Scholar 

  55. Botar-Jid C, Damian L, Dudea SM, Vasilescu D, Rednic S, Badea R. The contribution of ultrasonography and sonoelastography in assessment of myositis. Med Ultrason. 2010;12(2):120–6.

    PubMed  Google Scholar 

  56. Song Y, Lee S, Yoo DH, Jang KS, Bae J. Strain sonoelastography of inflammatory myopathies: comparison with clinical examination, magnetic resonance imaging and pathologic findings. Br J Radiol. 2016;89(1065):20160283.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Santiago T, Santiago M, Ruaro B, Salvador MJ, Cutolo M, da Silva JAP. Ultrasonography for the assessment of skin in systemic sclerosis: a systematic review. Arthritis Care Res (Hoboken). 2018;

    Google Scholar 

  58. Berko NS, Fitzgerald EF, Amaral TD, Payares M, Levin TL. Ultrasound elastography in children: establishing the normal range of muscle elasticity. Pediatr Radiol. 2014;44(2):158–63.

    Article  PubMed  Google Scholar 

  59. Lee SY, Park HJ, Choi YJ, Choi SH, Kook SH, Rho MH, et al. Value of adding sonoelastography to conventional ultrasound in patients with congenital muscular torticollis. Pediatr Radiol. 2013;43(12):1566–72.

    Article  PubMed  Google Scholar 

  60. Park GY, Kwon DR, Kwon DG. Shear wave sonoelastography in infants with congenital muscular torticollis. Medicine (Baltimore). 2018;97(6):e9818.

    Article  Google Scholar 

  61. Kwon DR, Park GY, Lee SU, Chung I. Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology. 2012;263(3):794–801.

    Article  PubMed  Google Scholar 

  62. Drakonaki EE, Allen GM. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skelet Radiol. 2010;39(4):391–6.

    Article  Google Scholar 

  63. Vasilescu D, Vasilescu D, Dudea S, Botar-Jid C, Sfrangeu S, Cosma D. Sonoelastography contribution in cerebral palsy spasticity treatment assessment, preliminary report: a systematic review of the literature apropos of seven patients. Med Ultrason. 2010;12(4):306–10.

    PubMed  Google Scholar 

  64. Berko NS, Hay A, Sterba Y, Wahezi D, Levin TL. Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI? Pediatr Radiol. 2015;45(10):1522–8.

    Article  PubMed  Google Scholar 

  65. McCullough MB, Domire ZJ, Reed AM, Amin S, Ytterberg SR, Chen Q, et al. Evaluation of muscles affected by myositis using magnetic resonance elastography. Muscle Nerve. 2011;43(4):585–90.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Klauser AS, De Zordo T, Feuchtner GM, Djedovic G, Weiler RB, Faschingbauer R, et al. Fusion of real-time US with CT images to guide sacroiliac joint injection in vitro and in vivo. Radiology. 2010;256(2):547–53.

    Article  PubMed  Google Scholar 

  67. Iagnocco A, Perella C, D’Agostino MA, Sabatini E, Valesini G, Conaghan PG. Magnetic resonance and ultrasonography real-time fusion imaging of the hand and wrist in osteoarthritis and rheumatoid arthritis. Rheumatology (Oxford). 2011;50(8):1409–13.

    Article  Google Scholar 

  68. Liu J, Zhan W, Zhou M, Zhang X, Hu Y, Zhu Y. The feasibility study of US-MRI virtual navigation in the shoulder. Clin Imaging. 2012;36(6):803–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Bruns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruns, A. (2020). Advances in Pediatric Musculoskeletal Ultrasonography. In: El Miedany, Y. (eds) Pediatric Musculoskeletal Ultrasonography. Springer, Cham. https://doi.org/10.1007/978-3-030-17824-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17824-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17823-9

  • Online ISBN: 978-3-030-17824-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics