Skip to main content

Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments

  • Chapter
  • First Online:
Cell Migrations: Causes and Functions

Abstract

The last 20 years have seen the blooming of microfluidics technologies applied to biological sciences. Microfluidics provides effective tools for biological analysis, allowing the experimentalists to extend their playground to single cells and single molecules, with high throughput and resolution which were inconceivable few decades ago. In particular, microfluidic devices are profoundly changing the conventional way of studying the cell motility and cell migratory dynamics. In this chapter we will furnish a comprehensive view of the advancements made in the research domain of confinement-induced cell migration, thanks to the use of microfluidic devices. The chapter is subdivided in three parts. Each section will be addressing one of the fundamental questions that the microfluidic technology is contributing to unravel: (i) where cell migration takes place, (ii) why cells migrate and, (iii) how the cells migrate. The first introductory part is devoted to a thumbnail, and partially historical, description of microfluidics and its impact in biological sciences. Stress will be put on two aspects of the devices fabrication process, which are crucial for biological applications: materials used and coating methods. The second paragraph concerns the cell migration induced by environmental cues: chemical, leading to chemotaxis, mechanical, at the basis of mechanotaxis, and electrical, which induces electrotaxis. Each of them will be addressed separately, highlighting the fundamental role of microfluidics in providing the well-controlled experimental conditions where cell migration can be induced, investigated and ultimately understood. The third part of the chapter is entirely dedicated to how the cells move in confined environments. Invadosomes (the joint name for podosomes and invadopodia) are cell protrusion that contribute actively to cell migration or invasion. The formation of invadosomes under confinement is a research topic that only recently has caught the attention of the scientific community: microfluidic design is helping shaping the future direction of this emerging field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J et al (2002) The extracellular matrix of animals. In: Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 119:pe6–pe6

    Google Scholar 

  • Alexander NR, Branch KM, Parekh A et al (2008) Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 18(17):1295–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alt W, Deutsch A, Dunn G (2012) Dynamics of cell and tissue motion. Birkhäuser, Basel

    Google Scholar 

  • Andresen V, Pollok K, Rinnenthal JL (2012) High-resolution intravital microscopy. PLoS One 7(12):e50915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthier E, Young EWK, Beebe D (2012) Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12(7):1224–1237

    Article  CAS  PubMed  Google Scholar 

  • Bhuwania R, Cornfine S, Fang Z et al (2012) Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J Cell Sci 125(Pt9):2300–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brassard D, Clime L, Kebin L et al (2011) 3D thermoplastic elastomer microfluidic devices for biological probe immobilization. Lab Chip 11(23):4099–4107

    Article  CAS  PubMed  Google Scholar 

  • Budday S, Nay R, de Rooij R et al (2015) Mechanical properties of gray and white matter brain tissue by indentation. J Mech Behav Biomed Mater 46:318–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Caelen I, Bernard A, Juncker D et al (2000) Formation of gradients of proteins on surfaces with microfluidic networks. Langmuir 16(24):9125–9130

    Article  CAS  Google Scholar 

  • Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rosse C, Chavrier P (2016) Cellular and molecular mechanisms of MT1-MMP-deis now present in the text.Pendent cancer cell invasion. Annu Rev Cell Dev Biol 32:555–576

    Google Scholar 

  • Carter SB (1967) Haptotaxis and the mechanism of cell motility. Nature 213(5073):256–260

    Article  CAS  PubMed  Google Scholar 

  • Cervero P, Wiesner C, Boussou A et al (2018) Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 9(1):515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang HC, Yeo LY (2009) Electrokinetically driven microfluidics and nanofluidics. Cambridge University Press, Cambridge, NY, pp 379–406

    Google Scholar 

  • Charati SG, Stern SA (1998) Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31(16):5529–5535

    Article  CAS  Google Scholar 

  • Chaurey V, Block F, Su YH et al (2012) Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Acta Biomater 8:3982–3990

    Article  CAS  PubMed  Google Scholar 

  • Chiu DT, deMello AJ, Di Carlo D et al (2017) Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2(2):201–223

    Article  CAS  Google Scholar 

  • Collin O, Tracqui P, Stephanou A et al (2006) Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J Cell Sci 119(Pt 9):1914–1925

    Article  CAS  PubMed  Google Scholar 

  • Cortese B, Palama IE, D’Amone S et al (2014) Influence of electrotaxis on cell behaviour. Integr Biol 6(9):817–830

    Article  CAS  Google Scholar 

  • Dalby MJ, Riehle MO, Sutherland DS et al (2005) Morphological and microarray analysis of human fibroblasts cultured on nanocolumns produced by colloidal lithography. Eur Cell Mater 9(1):1–8

    CAS  PubMed  Google Scholar 

  • Daubon T, Spuul P, Alonso F et al (2016) E VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci 129(13):2586–2598

    Article  CAS  PubMed  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Doolin MT, Stroka KM (2018) Physical confinement alters cytoskeletal contributions towards human mesenchymal stem cell migration. Cytoskeleton 75(3):103–117

    Google Scholar 

  • Duffy DM, Garrett SM, Ellis SE et al (2008) Influence of supramammary lymph node extract on in vitro cell proliferation. Cell Prolif 41(2):299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englert DL, Manson MD, Jayaraman A (2009) Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol 75(13):4557–4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evstrapov AA (2017) Micro-and nanofluidic systems in devices for biological, medical and environmental research. J Phys Conf Ser 917(2). IOP Publishing

    Google Scholar 

  • Feng J, Levine H, Mao X et al (2018) Stiffness sensing and cell motility: durotaxis and contact guidance. bioRxiv:320705

    Google Scholar 

  • Gabriel EM, Fisher DT, Evans S et al (2018) Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget 9(28):20165

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawden-Bone C, Zhou Z, King E et al (2010) Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J Cell Sci 123(pt9):1427–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Genot E, Gligorijevic B (2014) Invadosomes in their natural habitat. Eur J Cell Biol 93(0):367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3(4):168

    Article  CAS  Google Scholar 

  • Gu J, Gupta R, Chou CF, Wei Q, Zenhausern F (2007) A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature. Lab Chip 7(9):1198–1201

    Article  CAS  PubMed  Google Scholar 

  • Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273(2):669–672

    Article  CAS  PubMed  Google Scholar 

  • Han SJ, Bielawski KS, Ting LH et al (2012) Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys J 103(4):640–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handorf AM, Zhou Y, Halanski MA et al (2015) Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11(1):1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(2):159–163

    Article  CAS  PubMed  Google Scholar 

  • Harland B, Walcott S, Sun XS (2011) Adhesion dynamics and durotaxis in migrating cells. Phys Biol 8(1):015011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartman CD, Isenberg BC, Chua SG et al (2017) Extracellular matrix type modulates cell migration on mechanical gradients. Exp Cell Res 359(2):361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepler JR, Gilman AG (1992) G proteins. Trends Biochem Sci 17(10):383–387

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B 126(843):136–195

    Article  Google Scholar 

  • Hirooka S, Akashi T, Ando N et al (2011) Localization of the invadopodia-related proteins actinin-1 and cortactin to matrix-contact-side cytoplasm of cancer cells in surgically resected lung adenocarcinomas. Pathobiology 78(1):10–23

    Article  CAS  PubMed  Google Scholar 

  • Hsu S, Thakar R, Liepmann D et al (2005) Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Biochem Biophys Res Commun 337(1):401–409

    Article  CAS  PubMed  Google Scholar 

  • Infante E, Castagnino A, Ferrari R et al (2018) LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. Nat Commun 9(1):2443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irimia D (2010) Microfluidic technologies for temporal perturbations of chemotaxis. Annu Rev Biomed Eng 12:259–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irimia D, Geba DA, Toner M (2006) Universal microfluidic gradient generator. Anal Chem 78(10):3472–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irimia D, Geba DA, Toner M (2009) Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr Biol 1(8–9):506–512

    Article  CAS  Google Scholar 

  • Jiang X, Bruzewicz DA, Wong AP et al (2005a) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci 102(4):975–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Xu Q, Dertinger SK et al (2005b) A general method for patterning gradients of biomolecules on surfaces using microfluidic networks. Anal Chem 77(8):2338–2347

    Article  CAS  PubMed  Google Scholar 

  • Juin A, Billottet C, Moreau VC et al (2012) Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol Biol Cell 23(2):297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai FB, Laklai H, Weaver VM (2016) Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol 26(7):486–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedziora KM, Isogai T, Jalink K et al (2016) Invadosomes–shaping actin networks to follow mechanical cues. Front Biosci (Landmark Ed) 21:1092–1117

    Article  CAS  Google Scholar 

  • Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Teixeira AI, Nealey PF et al (2002) Fabrication of polymeric substrates with well-defined nanometer-scale topography and tailored surface chemistry. Adv Mater 14(20):1468–1472

    Article  CAS  Google Scholar 

  • Kim P, Jeong HE, Khademhosseini A et al (2006) Fabrication of non-biofouling polyethylene glycol micro-and nanochannels by ultraviolet-assisted irreversible sealing. Lab Chip 6(11):1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Kim P, Kwon KW, Park MC et al (2008) Soft lithography for microfluidics: a review. Biochip J 2(1):1–11

    Google Scholar 

  • Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2(11–12):584–603

    Article  CAS  Google Scholar 

  • Kirby BJ (2010) Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, New York: Jul 26

    Book  Google Scholar 

  • Koch TM, Münster S, Bonakdar N et al (2012) 3D traction forces in cancer cell invasion. PLoS One 7(3):e33476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollmannsberger P, Mierke CT, Fabry B (2011) Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension. Soft Matter 7(7):3127–3132

    Article  CAS  Google Scholar 

  • Kramer N, Walzl A, Unger C et al (2013) In vitro cell migration and invasion assays. Mutat Res 752(1):10–24

    Article  CAS  PubMed  Google Scholar 

  • Ladoux B (2009) Biophysics: cells guided on their journey. Nat Phys 5(6):377–378

    Article  CAS  Google Scholar 

  • Lange JR, Fabry B (2013) Cell and tissue mechanics in cell migration. Exp Cell Res 319(16):2418–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Article  CAS  PubMed  Google Scholar 

  • Le Roux-Goglin E, Varon C, Spuul P et al (2012) Helicobacter infection induces podosome assembly in primary hepatocytes in vitro. Eur J Cell Biol 91:161–170

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Park NC, Whitesides GM (2003) Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Gu Y, Wang H et al (2012) Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials. Biomaterials 33(4):999–1006

    Article  CAS  PubMed  Google Scholar 

  • Leichlé T, Lin YL, Chiang PC et al (2012) Biosensor-compatible encapsulation for pre-functionalized nanofluidic channels using asymmetric plasma treatment. Sensors Actuators B Chem 161(1):805–810

    Article  CAS  Google Scholar 

  • Li J, Francis L (2011) Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol 21(8):489–497

    Article  PubMed  CAS  Google Scholar 

  • Li L, Marchant RE, Dubnisheva A et al (2011) Anti-biofouling sulfobetaine polymer thin films on silicon and silicon nanopore membranes. J Biomater Sci Polym Ed 22(1–3):91–106

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhu L, Zhang M et al (2012) Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields. Biomicrofluidics 6(2):024121

    Article  PubMed Central  CAS  Google Scholar 

  • Li R, Hebert JD, Lee TA et al (2017) Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res 77(2):279–290

    Article  CAS  PubMed  Google Scholar 

  • Liao KT, Chou CF (2012) Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers. J Am Chem Soc 134(21):8742–8745

    Article  CAS  PubMed  Google Scholar 

  • Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17(3):107–117

    Article  CAS  PubMed  Google Scholar 

  • Linder S, Wiesner C (2015) Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 72:121–135

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zheng H, Poh PS et al (2015) Hydrogels for engineering of perfusable vascular networks. Int J Mol Sci 16(7):15997–16016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo CM, Wang HB, Dembo M et al (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luxenburg C, Geblinger D, Klein E et al (2007) The architecture of the adhesive apparatus of cultured osteo-clasts: from podosome formation to sealing zone assembly. PLoS One 2(1):e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manz A, Graber N, Widmer HÁ (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B Chem 1(1–6):244–248

    Article  CAS  Google Scholar 

  • Mark D, Haeberle S, Roth G et al (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Microfluidics based microsystems. Springer, Dordrecht, pp 305–376

    Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM et al (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10

    Article  CAS  Google Scholar 

  • Masedunskas A, Milberg O, Porat-Shliom N et al (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. BioArchitecture 2(5):143–157

    Article  PubMed  PubMed Central  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B et al (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3):943–978

    Article  PubMed  Google Scholar 

  • McClelland R, Wauthier E, Uronis J et al (2008) Gradients in the liver’s extracellular matrix chemistry from periportal to pericentral zones: influence on human hepatic progenitors. Tissue Eng Part A 14(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    Article  CAS  PubMed  Google Scholar 

  • McUsic AC, Lamba DA, Reh TA (2012) Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 33(5):1396–1405

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Arotzena O, Mendoza G, Cóndor M et al (2014) Inducing chemotactic and haptotactic cues in microfluidic devices for three-dimensional in vitro assays. Biomicrofluidics 8(6):064122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemir S, West JL (2010) Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng 38(1):2–20

    Article  PubMed  Google Scholar 

  • Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113(4):2550–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palchesko RN, Zhang L, Sun Y et al (2012) Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 7(12):e51499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Kim DH, Kim G et al (2010a) Simple haptotactic gradient generation within a triangular microfluidic channel. Lab Chip 10(16):2130–2138

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Yoo SJ, Lee EJ et al (2010b) Increased poly (dimethylsiloxane) stiffness improves viability and morphology of mouse fibroblast cells. Biochip J 4(3):230–236

    Article  CAS  Google Scholar 

  • Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson EK, Courtneidge S (2018) Invadosomes are coming: new insights into function and disease relevance. FEBS J 285:8–27

    Article  CAS  PubMed  Google Scholar 

  • Pelham RJ Jr, Wang YL (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 194(3):348–350

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Soper SA, Pingle MR et al (2010) Ligase detection reaction generation of reverse molecular beacons for near real-time analysis of bacterial pathogens using single-pair fluorescence resonance energy transfer and a cyclic olefin copolymer microfluidic chip. Anal Chem 82(23):9727–9735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren K et al (2011) Whole-Teflon microfluidic chips. Proc Natl Acad Sci 108(20):8162–8166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K et al (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    Article  CAS  PubMed  Google Scholar 

  • Robinson KR, Kenneth R (1985) The responses of cells to electrical fields: a review. J Cell Biol 101(6):2023–2027

    Article  CAS  PubMed  Google Scholar 

  • Roca-Cusachs P, Sunyer R, Trepat X (2013) Mechanical guidance of cell migration: lessons from chemotaxis. Curr Opin Cell Biol 25(5):543–549

    Article  CAS  PubMed  Google Scholar 

  • Rogers CI, Pagaduan JV, Nordin GP et al (2011) Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Anal Chem 83(16):6418–6425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottiers P, Saltel F, Daubon T et al (2009) TGFβ-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. J Cell Sci 122:4311–4318

    Article  CAS  PubMed  Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189

    Article  CAS  PubMed  Google Scholar 

  • Salomon S, Leichlé T, Nicu L (2011) A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction. Electrophoresis 32(12):1508–1514

    Article  CAS  PubMed  Google Scholar 

  • Seano G, Primo L (2015) Podosomes and invadopodia: tools to breach vascular basement membrane. Cell Cycle 14(9):1370–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman MA, Kennedy JP, Ely DL et al (1999) Novel polyisobutylene/polydimethylsiloxane bicomponent networks: III. Tissue compatibility. J Biomater Sci Polym Ed 10(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Spuul P, Ciufici P, Veillat V et al (2014) Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 5:e28195

    Article  PubMed  Google Scholar 

  • Spuul P, Chi P-Y, Billottet C et al (2016a) Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined slit. Methods 94:65–74

    Article  CAS  PubMed  Google Scholar 

  • Spuul P, Daubon T, Pitter B et al (2016b) VEGF-A/Notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis VEGF/Notch-induced podosomes mediate basement membrane collagen-IV proteolysis during sprouting angiogenesis in vivo. Cell Rep 17(2):484–500

    Article  CAS  PubMed  Google Scholar 

  • Sriram KK, Yeh JW, Lin YL et al (2014) Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices. Nucleic Acids Res 42:e85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriram KK, Nayak S, Pengel S et al (2017) 10 nm deep, sub-nanoliter fluidic nanochannels on germanium for attenuated total reflection infrared (ATR-IR) spectroscopy. Analyst 142(2):273–278

    Article  CAS  PubMed  Google Scholar 

  • Stolz M, Raiteri R, Daniels AU et al (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86(5):3269–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YH, Chiang PC, Cheng LJ et al (2015) High aspect ratio nanoimprinted grooves of poly(lactic-co-glycolic acid) control the length and direction of retraction fibers during fibroblast cell division. Biointerphases 10(4):041008

    Article  PubMed  CAS  Google Scholar 

  • Swami N, Chou CF, Ramamurthy V et al (2009) Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis. Lab Chip 9(22):3212–3220

    Article  CAS  PubMed  Google Scholar 

  • Tabeling P (2005) Introduction to microfluidics. Oxford University Press, Oxford

    Google Scholar 

  • Tambe DT, Hardin CC, Angelini TE et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10(6):469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan JL, Tien J, Pirone DM et al (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci 100(4):1484–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan SH, Nguyen NT, Chua YC et al (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3):032204

    Article  PubMed Central  CAS  Google Scholar 

  • Teerapanich P, Pugnière M, Henriquet C, Lin YL, Naillona A, Josepha P, Chou CF, Leichle T (2018) Nanofluidic fluorescence microscopy with integrated concentration gradient generation for one-shot parallel kinetic assays. Sensors Actuators B 274:338–342

    Article  CAS  Google Scholar 

  • Trepat X, Fredberg JJ (2011) Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol 21(11):638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trepat X, Wasserman MR, Angelini TE et al (2009) Physical forces during collective cell migration. Nat Phys 5(6):426–430

    Article  CAS  Google Scholar 

  • van den Dries K, van Helden SF, re Riet J et al (2012) Geometry sensing by dendritic cells dictates spatial organization and PGE(2)-induced dissolution of podosomes. Cell Mol Life Sci 69(11):1889–1901

    Article  PubMed  CAS  Google Scholar 

  • van den Dries K, Meddens MB, de Keijzer S et al (2013) Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat Commun 4:1412

    Article  PubMed  CAS  Google Scholar 

  • Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5(8):626

    Article  PubMed  Google Scholar 

  • Varon C, Tatin F, Moreau V et al (2006) Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 26(9):3582–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veillat V, Spuul P, Daubon T, Egaña I, Kramer I et al (2015) Podosomes: multipurpose organelles? Int J Biochem Cell Biol Organelles Focus 65:52–60

    Article  CAS  Google Scholar 

  • Velve-Casquillas G, Le Berre M, Piel M et al (2010) Microfluidic tools for cell biological research. Nano Today 5(1):28–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Tolić-Nørrelykke IM, Chen J et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Kao YC, Chi PY et al (2011) Asymmetric cancer-cell filopodium growth induced by electric-fields in a microfluidic culture chip. Lab Chip 11(4):695–699

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li E, Gao Y et al (2013) Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLoS One 8(2):e56448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler AR, Throndset WR, Whelan RJ et al (2003) Microfluidic device for single-cell analysis. Anal Chem 75(14):3581–3586

    Article  CAS  PubMed  Google Scholar 

  • Wolf K, Te Lindert M, Krause M et al (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201(7):1069–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wu X, Lin F (2013) Recent developments in microfluidics-based chemotaxis studies. Lab Chip 13(13):2484–2499

    Article  CAS  PubMed  Google Scholar 

  • Yeh JW, Taloni A, Chen YL et al (2012) Entropy-driven single molecule tug-of-war of DNA at micro-nanofluidic interfaces. Nano Lett 12(3):1597–1602

    Article  CAS  PubMed  Google Scholar 

  • Yeo LY, Chang HC, Chan PP et al (2011) Microfluidic devices for bioapplications. Small 7(1):12–48

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23(1):110–119

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Kanno H, Watabe D et al (2008) The role of heparin-binding EGF-like growth factor and amphiregulin in the epidermal proliferation of psoriasis in cooperation with TNFα. Arch Dermatol Res 300(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Young EW, Beebe DJ (2010) Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev 39(3):1036–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CH, Groves JT (2010) Engineering supported membranes for cell biology. Med Biol Eng Comput 48(10):955–963

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu CH, Rafig NB, Krishnasamy A et al (2013) Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 5(5):1456–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, He Y, Bharadwaj S et al (2009) Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 30(23–24):4021–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the AS Thematic Projects [AS-106-TP-A03] and the Ministry of Science and Technology (ROC) [105-2112-M-001-021-MY3, 106-2627-M-001-001, and 106-2119-M-001-005]. A.T. acknowledges the European Research Council through the Advanced Grant No.291002 SIZEFFECTS. P.S. acknowledges the support of TalTech Young Investigator grant B61, Estonian Research Council Starting Grant PUT1130 and G.F.Parrot Travel Grant. E.G. laboratory (http://genot-lab.org/) is funded by INSERM, the Ligue contre le Cancer, committee of the Gironde, the University of Bordeaux (transversal project HYPOXCELL) and the “Marfans” Association. The Invadosome Consortium is an international network of laboratories interested in adhesion structures involved in invasive processes. It is open to the entire scientific community (http://www.invadosomes.org/). We thank Chia-Tzi Kuo for the help in drawing Fig. 6.3. Confocal images of Fig. 6.1 were performed in part through the use of the advanced optical microscopes at Division of Instrument Service of Academia Sinica and with the assistance of Shu-Chen Shen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabeth Genot or Chia-Fu Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chi, PY., Spuul, P., Tseng, FG., Genot, E., Chou, CF., Taloni, A. (2019). Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments. In: La Porta, C., Zapperi, S. (eds) Cell Migrations: Causes and Functions. Advances in Experimental Medicine and Biology, vol 1146. Springer, Cham. https://doi.org/10.1007/978-3-030-17593-1_6

Download citation

Publish with us

Policies and ethics