Skip to main content

Extracellular Carbohydrate-Active Enzymes of Trichoderma and Their Role in the Bioconversion of Non-edible Biomass to Biofuel

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1217 Accesses

Abstract

The natural ability of Trichoderma species to secrete a wide array of enzymes, capable of targeting and hydrolysing complex plant biomass and fungal pathogens, finds diverse applications in biotechnology and agricultural, pharmaceutical and other industrial sectors. Secretion of lignocellulose-degrading enzymes in particular by Trichoderma species makes it one of the most explored fungi which has gained worldwide attention of researchers for biofuel production from agricultural biomass. In particular, Trichoderma reesei brought a paradigm shift for industrially relevant enzymes. Enzymes produced by Trichoderma species include cellulase complex which targets cellulose, xylanase which targets xylan and other non-glycosyl hydrolases. Mining genome and in silico analysis of reference strain T. reesei QM6a genomes and transcriptomes for carbohydrate-active enzymes (CAZyme) have led to the identification of several candidate genes. Besides this, laccase (phenol oxidase) and lytic mono-oxygenase system of Trichoderma have been explored for industrial applications. Here in this chapter, attempt has been made to discuss the role of extracellular carbohydrate-active enzymes of fungal origin with special emphasis on Trichoderma for their role in biofuel prpduction from non-edible biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El Monssef RA, Hassan EA, Ramadan EM (2016) Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann Agric Sci 61(1):145–154

    Article  Google Scholar 

  • Ahmed S, Aslam N, Latif F, Rajoka MI, Jamil A (2005) Molecular cloning of cellulase genes from Trichoderma harzianum. Front Nat Prod Chem 1:73–75

    Article  Google Scholar 

  • Anbia M, Ghaffari A (2011) Removal of malachite green from dye wastewater using mesoporous carbon adsorbent. J Iran Chem Soc 8:67–76

    Article  Google Scholar 

  • Assavanig A, Amornkitticharoen B, Ekpaisal N, Meevootisom V, Flegel TW (1992) Isolation, characterization and function of laccase from Trichoderma. Appl Microbiol Biotechnol 38:198–202

    Article  CAS  Google Scholar 

  • Avanthi A, Banerjee R (2016) A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Ind Crops Prod 92:174–185

    Article  CAS  Google Scholar 

  • Ayrinhac C, Margeot A, Ferreira NL, Chaabane FB, Monot F, Ravot G et al (2011) Improved saccharification of wheat straw for biofuel production using an engineered secretome of Trichoderma reesei. Org Process Res Dev 15(1):275–278

    Article  CAS  Google Scholar 

  • Barnett CC, Berka RM, Fowler T (1991) Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Nat Biotechnol 9(6):562–567

    Article  CAS  Google Scholar 

  • Barros-Rios J, Romani A, Peleteiro S, Garrote G, Ordas B (2016) Second-generation bioethanol of hydrothermally pretreated stover biomass from maize genotypes. Biomass Bioenergy 90:42–49

    Article  CAS  Google Scholar 

  • Bhatia R, Dogra RC, Sharma PK (2002) Construction of green fluorescent protein (GFP)-marked strains of Bradyrhizobium for ecological studies. J Appl Microbiol 93:835–839

    Article  CAS  PubMed  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2018) Metabolic engineering and enzyme-mediated processing: A biotechnological venture towards biofuel production – A review. Renew Sustain Energy Rev 82:436–447

    Article  CAS  Google Scholar 

  • Bischof R, Seiboth B (2014) Molecular tools for strain improvement of Trichoderma spp. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of trichoderma. Elsevier, Amsterdam, pp 179–191

    Chapter  Google Scholar 

  • Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira PA, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVC (2017) Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 18:501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchert JTM, Kantelinen A, Viikari L (1995) Application of xylanases in the pulp and paper industry. Bioresour Technol 50:65–72

    Article  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Catalano V, Vergara M, Hauzenberger JR, Seiboth B, Sarrocco S et al (2011) Use a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 57:13–23

    Article  CAS  PubMed  Google Scholar 

  • Cavaco-Paulo A, Cortez J, Almeida L (1997) The effect of cellulase treatment in textile washing processes. J Soc Dyers Colour 113(7–8):218–222

    CAS  Google Scholar 

  • Cázares-García SV, Vázquez-Garcidueñas MS, Vázquez-Marrufo G (2013) Structural and phylogenetic analysis of laccases from Trichoderma: A bioinformatic approach. PLoS One 8(1):e55295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakroun H, Mechichi T, Martinez MJ, Dhouib A, Sayadi S (2010) Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: application on bioremediation of phenolic compounds. Process Biochem 45(4):507–513

    Article  CAS  Google Scholar 

  • Chandra M, Kalra A, Sangwan NS, Sangwan RS (2013) Biochemical and proteomic characterization of a novel extracellular β-glucosidase from Trichoderma citrinoviride. Mol Biotechnol 53(3):289–299

    Article  CAS  PubMed  Google Scholar 

  • Chen LL, Zhang M, Zhang DH, Chen XL, Sun CY, Zhou BC et al (2009) Purification and enzymatic characterization of two β-endoxylanases from Trichoderma sp. K9301 and their actions in xylooligosaccharide production. Bioresour Technol 100:5230–5236

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Liu B, Su Y, Hu Y, Hong Y, Yi X, Chen L, Su S, Chu JSC, Chen N, Xiong X (2017) Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains. Microb Cell Fact 16(1):1–16

    Article  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443

    Google Scholar 

  • Chirino-Valle I, Kandula D, Littlejohn C, Hill R, Walker M, Shields M, Wratten S (2016) Potential of the beneficial fungus Trichoderma to enhance ecosystem-service provision in the biofuel grass Miscanthus × giganteus in agriculture. Sci Rep 6:1–8

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Cologna NMD, Gómez-Mendoza DP, Zanoelo FF, Giannesi GC, Guimarães NCA, Moreira LRS, Filho EXF, Ricart CAO (2018) Exploring Trichoderma and Aspergillus secretomes: Proteomics approaches for the identification of enzymes of biotechnological interest. Enzym Microb Technol 109:1–10

    Google Scholar 

  • de Porciuncula JO, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2013) Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC-3-7. Biosci Biotechnol Biochem 77(5):1014–1022

    Article  CAS  Google Scholar 

  • dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98(12):2369–2385

    Article  CAS  PubMed  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  CAS  PubMed  Google Scholar 

  • Dekker RFH, Barbosa AM, Sargent K (2002) The effect of lignin-related compounds on the growth and production of laccases by the ascomycete Botryosphaeria sp. Enzym Microb Technol 30:374–380

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116

    Article  CAS  Google Scholar 

  • Dias AA, Sampaio A, Bezerra RM (2007) Environmental applications of fungal and plant systems: decolourisation of textile wastewater and related dyestuffs. In: Environmental bioremediation technologies. Springer, Berlin/Heidelberg, pp 445–463

    Chapter  Google Scholar 

  • Divya LM, Prasanth GK, Sadasivan C (2013) Isolation of a salt tolerant laccase secreting strain of Trichoderma sp. NFCCI-2745 and optimization of culture conditions and assessing its effectiveness in treating saline phenolic effluents. J Environ Sci (China) 25(12):2410–2416

    Article  CAS  Google Scholar 

  • Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1:2–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-Cas Systems. Trends Biotechnol 36(2):134–146

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Castro L, Pedersoli WR, Antoniêto ACC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM et al (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analysis. Biotechnol Biofuels 7:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Eveleigh DE, Montenecourt BS (1979) Increasing yields of extracellular enzymes. Adv Appl Microbiol 25:57–74

    Google Scholar 

  • Eveleigh DE (1982) Reducing the cost of cellulase production-selection of the hypercellulolytic Trichoderma reesei RUT-C30 mutant. Rutgers University, New Brunswick

    Google Scholar 

  • Fang H, Xia L (2013) High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production. Bioresour Technol 144:693–697

    Article  CAS  PubMed  Google Scholar 

  • Ferreira Filho JA, Horta MAC, Beloti LL, Dos Santos CA, de Souza AP (2017) Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry. BMC Genomics 18(1):779

    Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJM, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278(34):31988–31997

    Article  PubMed  Google Scholar 

  • Fowler T, Brown RD (1992) The bgI1 gene encoding extracellular β-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6(21):3225–3235

    Article  CAS  PubMed  Google Scholar 

  • Gao J et al. (2017) Biotechnology for biofuels production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma Reesei. Biotechnol Biofuels 10:274

    Google Scholar 

  • Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sust Energ Rev 73:205–214

    Article  CAS  Google Scholar 

  • Gerber PJ, Heitmann JA, Joyce TW (1997) Purification and characterization of xylanases from Trichoderma. Bioresour Technol 61(2):127–140

    Article  CAS  Google Scholar 

  • Gochev VK, Krastanov AI (2007) Isolation of laccase producing Trichoderma spp. Bulg J Agric Sci 13:171–176

    Google Scholar 

  • Gong W, Zhang H, Liu S, Zhang L, Gao P, Chen G, Wang LS (2015) Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Appl Biochem Biotechnol 177(6):1252–1271

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Sato N, Biely P, Amano Y, Nozaki K (2016) Comparison of catalytic proper- ties of multiple β-glucosidases of Trichoderma reesei. Appl Microbiol Biotechnol 100:4959–4968

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567

    Article  CAS  Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cel- lulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97(5):1028–1038

    Article  CAS  PubMed  Google Scholar 

  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:1–26

    Article  CAS  Google Scholar 

  • Halaburgi VM, Sharma S, Sinha M, Singh TP, Karegoudar TB (2011) Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Process Biochem 46:1146–1152

    Article  CAS  Google Scholar 

  • He J, Yu B, Zhang K, Ding X, Chen D (2009) Expression of endo-1,4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol 9:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot J, Monot F, Asther M (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  • Holker H, Dohse J, Hofer M (2002) Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol 47:423–427

    Article  CAS  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Chandra R, Arantes V, Gourlay K, van Dyk JS, Saddler JN (2015) The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol 186:149–153

    Article  CAS  PubMed  Google Scholar 

  • Hu JG, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that infuence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energ Environ Sci 7:2308–2315

    Google Scholar 

  • Jeng WY, Wang NC, Lin MH, Lin CT, Liaw YC, Chang WJ et al (2011) Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol 173(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Jeya M, Zhang WY, Kin IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100(21):5155–5161

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: currentcurrent findings determine research priorities. Sci World J 2014:1–13

    CAS  Google Scholar 

  • Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100:1515–1523

    Article  CAS  PubMed  Google Scholar 

  • Knob A, Terrasan C, Carmona E (2010) β-xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  • Kolomytseva M, Myasoedova N, Samoilova A, Podieiablonskaia E, Chernykh A, Classen T, Golovleva L (2017) Rapid identification of fungal laccases/oxidases with different pH-optimum. Process Biochem 62:174–183

    Article  CAS  Google Scholar 

  • Krastanov AI, Gochev VK, Girova TD (2007) Nutritive medium dependent biosynthesis of extracellular laccase from Trichoderma spp. Bulg J Agric Sci 13:349–355

    Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 2:280696

    Google Scholar 

  • Kumar S, Phale P, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  • Kurasin M, Valjamae P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–178

    Article  CAS  PubMed  Google Scholar 

  • Ladeira Ázar RIS, Morgan T, dos Santos ACF, de Aquino XE, Ladisch MR, Guimarães VM (2018) Deactivation and activation of lignocellulose degrading enzymes in the presence of laccase. Enzyme Microb Technol 109:25–30

    Article  CAS  PubMed  Google Scholar 

  • Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed β-glucosidase. J Biol Chem 270:15789–15797

    Article  CAS  PubMed  Google Scholar 

  • Levasseur A, Saloheimo M, Navarro D, Andberg M, Pontarotti P et al (2010) Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. BMC Biochem 11:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41

    Google Scholar 

  • Li B, Walton JD (2017) Functional diversity for bio- mass deconstruction in family 5 subfamily 5 (GH5_5) of fungal endo-β-1,4-glucanases. Appl Microbiol Biotechnol 101:4093–4101

    Article  CAS  PubMed  Google Scholar 

  • Li C, Lin F, Li Y, Wei W, Wang H, Qin L et al (2016) A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microb Cell Fact 15(1):1–13

    Article  CAS  Google Scholar 

  • Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1–11:15007

    Article  CAS  Google Scholar 

  • Ma K, Ruan Z (2015) Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour Technol 175:586–593

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang J, Zou G, Wang C, Zhou Z (2011) Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta- glucosidase gene from Penicillium decumbens. Enzyme Microb Technol 49(4):366–371

    Article  CAS  PubMed  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4:1694–1717

    Google Scholar 

  • Mangan D, Cornaggia C, Liadova A, McCormack N, Ivory R, McKie VA et al (2017) Novel substrates for the automated and manual assay of endo-1,4-β-xylanase. Carbohydr Res 445:14–22

    Article  CAS  PubMed  Google Scholar 

  • Mansur M, Arias ME, Copa-Patiño JL, Flärdh M, González AE (2003) The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia 95(6):1013–1020

    Article  CAS  PubMed  Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20(3):372–380

    Article  CAS  PubMed  Google Scholar 

  • Margolles-Clark E, Saloheimo M, Siika-aho M, Penttilä M (1996a) The α-glucuronidase-encoding gene of Trichoderma reesei. Gene 172(1):171–172

    Article  CAS  PubMed  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Luonteri E, Penttilä M (1996b) Three α- galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur J Biochem 240(1):104–111

    Article  CAS  PubMed  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Nakari-Setala T, Penttila M (1996c) Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62(10):3840–3846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Soderlund H, Penttila M (1996d) Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur J Biochem 237(3):553–560

    Article  CAS  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Article  CAS  PubMed  Google Scholar 

  • Martinez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutierrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20(3):348–357

    Article  CAS  PubMed  Google Scholar 

  • Marx IJ, vanWyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H (2013) Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels 6(1):1–13

    Article  CAS  Google Scholar 

  • Min SY, Kim BG, Lee C, Hur H-G, Ahn JH (2002) Purification, characterization and cDNA cloning of xylanase from fungus Trichoderma strain SY. J Microbiol Biotechnol 12:890–894

    CAS  Google Scholar 

  • Monclaro AV, Filho EXF (2017) Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown. Int J Biol Macromol 102:771–778

    Article  CAS  PubMed  Google Scholar 

  • Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007) Blue laccases. Biochemistry (Mosc) 72:1136–1150

    Article  CAS  Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg C (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning Z, Liu J, Yang J, Lin Y, Yi Y, Lei J, Li M, Yuan HL (2016) Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. Biotechnol Biofuels 9(1):1–22

    Article  CAS  Google Scholar 

  • Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2012) A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates beta-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49(5):388–397

    Article  CAS  PubMed  Google Scholar 

  • Obeng EM, Adam SNN, Budiman C. Ongkudon CM, Jose RMJ (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:41–22

    Google Scholar 

  • Okada H, Tada K, Sekiya T, Yokoyama K, Takahashi A, Tohda H, Kumagai H, Morikawa Y (1998) Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl Environ Microbiol 64(2):555–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paes G, Berrin J-G, Beaugrand J (2012) GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 30(3):564–592

    Article  CAS  PubMed  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M et al (2015) Fungal cellulases. Chem Rev 115:1308–1448

    Article  CAS  PubMed  Google Scholar 

  • Peciulyte A, Anasontzis GE, Karlström K, Larsson PT, Olsson L (2014) Morphology and enzyme production of Trichoderma reesei rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet Biol 72:64–72

    Article  CAS  PubMed  Google Scholar 

  • Penttilä M, Lehtovaara P, Nevalainen H, Bhikhabhai R, Knowles J (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45(3):253–263

    Article  PubMed  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30– thirty years of strain improvement. Microbiology 158(Pt 1):58–68

    Article  CAS  PubMed  Google Scholar 

  • Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2(1):23

    Article  Google Scholar 

  • Pokorny R, Vargovic P, Holker U, Janssen M, Bend J et al (2005) Developmental changes in Trichoderma viride enzymes abundant in conidia and the light-induced conidiation signalling pathway. J Basic Microbiol 45:219–229

    Article  CAS  PubMed  Google Scholar 

  • Polizeli MLT, Rizzati ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Pryor SW, Nahar N (2015) β-glucosidase supplementation during biomass hydrolysis: how low can we go? Biomass Bioenergy 80:298–302

    Article  CAS  Google Scholar 

  • Puls J, Schuseil J (1993) Chemistry of hemicellulose: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 1–27

    Google Scholar 

  • Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y (2016) Characterization and strain improvement of a hypercellulytic variant, Trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement. Front Microbiol 7:1349

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Zhong L, Gao J, Sun N, Wang Y, Sun G et al (2017) Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues. Microb Cell Fact 16(1):1–16

    Article  CAS  Google Scholar 

  • Ramoni J, Marchetti-Deschmann M, Seidl-Seiboth V, Seiboth B (2017) Trichoderma reesei xylanase 5 is defective in the reference strain QM6a but functional alleles are present in other wild-type strains. Appl Microbiol Biotechnol 101(10):4139–4149

    Google Scholar 

  • Ravalason H, Grisel S, Chevret D, Favel A, Berrin JG, Sigoillot JC, Herpoël-Gimbert I (2012) Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. Bioresour Technol 114(2):589–596

    Article  CAS  PubMed  Google Scholar 

  • Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS (2007) Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23(6):1270–1276

    Article  CAS  PubMed  Google Scholar 

  • Sadhasivam S, Savitha S, Swwaminathan K (2009) Redox-mediated decolorization of recalcitrant textile dyes by Trichoderma harzianum WL1 laccase. World J Microbiol Biotechnol 25:1733–1741

    Article  CAS  Google Scholar 

  • Saloheimo M, Niku-Paavola ML (1991) Heterologous production of a ligninolytic enzyme: Expression of the Phlebia radiata laccase gene in Trichoderma reesei. Nat Biotechnol 9(10):987–990

    Article  CAS  Google Scholar 

  • Saloheimo A, Henrissat B, Hoffrén AM, Teleman O, Penttilä M (1994) A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol Microbiol 13(2):219–228

    Google Scholar 

  • Saloheimo M, Pakula TM (2012) The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 158:46–57

    Article  CAS  PubMed  Google Scholar 

  • Saloheimo M, Nakari-Setälä T, Tenkanen M, Penttilä M (1997) cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur J Biochem 249(2):584–591

    Article  CAS  PubMed  Google Scholar 

  • Saloheimo M, Kuja-Panula J, Ylosmaki E, Ward M, Penttila M (2002a) Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLII (cel1A). Appl Microbiol Biotechnol 68(9):4546–4553

    CAS  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002b) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Seiboth B, Ivanova C, Seidl-Seiboth V (2011) Trichoderma reesei: a fungal enzyme producer for cellulosic biofuels. In: dos Santos Bernardes MA (ed) Biofuel production recent developments and prospects. InTech, Rijeka, pp 309–340

    Google Scholar 

  • Shanmugam S, Hari A, Ulaganathan P, Yang F, Krishnaswamy S, Wu YR (2018) Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. Int J Hydrogen Energy 43(7):3618–3628

    Article  CAS  Google Scholar 

  • Sharma V, Shanmugam V (2012) Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 52:324–331

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Bhandari P, Singh B, Bhatacharya A, Shanmugam V (2013) Chitinase expression due to reduction in fusaric acid level in an antagonistic Trichoderma harzianum S17TH. Indian J Microbiol 53(2):214–220

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN (2016a) Differential response of extracellular proteases of Trichoderma harzianum against fungal phytopathogens. Curr Microbiol 73(3):419–425

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Kanwar SS (2016b) Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum. Int J Biol Macromol 92:615–624

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Gulati A (2017a) Integrated translatome and proteome: approach for accurate portraying of widespread multifunctional aspects of Trichoderma. Front Microbiol 8:1602

    Google Scholar 

  • Sharma V, Salwan R, Sharma PN (2017b) The comparative mechanistic aspects of Trichoderma and Probiotics: Scope for future research. Physiol Mol Plant Pathol 100:84–96

    Article  CAS  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Kanwar SS (2017c) Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. Int J Biol Macromol 95:72–79

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Shanmugam V (2018a) Unraveling the multilevel aspects of least explored plant beneficial Trichoderma saturnisporum isolate GITX-Panog (C). Eur J Plant Pathol 152(1):169–183

    Google Scholar 

  • Sharma V, Salwan R, Shanmugam V (2018b) Molecular characterization of β-endoglucanase from antagonistic Trichoderma saturnisporum isolate GITX-Panog (C) induced under mycoparasitic conditions. In Press Pest Biochem Physiol 149:73–80

    Article  CAS  Google Scholar 

  • Shida Y, Yamaguchi K, Nitta M, Nakamura A, Takahashi M, Kidokoro S, Mori K, Tashiro K, Kuhara S, Matsuzawa T et al (2015) The impact of a single- nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnol Biofuels 8:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira FQP, Sousa MV, Ricart CAO, Milagres AMF, Medeiros CL, Filho EXF (1999) A new xylanase from a Trichoderma harzianum strain. J Ind Microbiol Biotechnol 23:682–685

    Article  CAS  Google Scholar 

  • Sindhu R, Kuttiraja M, Prabisha TP, Binod P, Sukumaran RK, Pandey A (2016) Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer. Bioresour Technol 215:110–116

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549

    Article  CAS  Google Scholar 

  • Song B et al. (2018) Real-Time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility. Biotechnol Biofuels 11(1):41

    Google Scholar 

  • Stahlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157:107–113

    Article  CAS  PubMed  Google Scholar 

  • Stalbrand H, Saloheimo A, Vehmaanpera J, Henrissat B, Penttila M (1995) Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta- mannanase gene containing a cellulose binding domain. Appl Environ Microbiol 61(3):1090–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999) Molecular cloning and expression of the novel fungal β-glucosidase genes from Humicola grisea and Trichoderma reesei. J Biochem 125(4):728–736

    Article  CAS  PubMed  Google Scholar 

  • Tenkanen M, Puls J, Poutanen K (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb Technol 14(7):566–574

    Article  CAS  Google Scholar 

  • Tiwari P, Misra BN, Sangwan NS (2013) β-glucosidases from the fungus Trichoderma: An efficient cellulase machinery in biotechnological applications. Biomed Res Int 2013:203735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torronen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Nat Biotech 10(11):1461–1465

    Article  CAS  Google Scholar 

  • Trichoderma reesei genome database v2.0. http://genome.jgi-psf.org/Trire2/Trire2.home.html

  • Tsao GT, Chiang L-C (1983) Cellulose and hemicellulose technol-ogy. In: Smith JE, Berry DR, Kristiansen B (eds) The filamentous fungi, vol 4. Edward Arnold, London, pp 296–326

    Google Scholar 

  • Villares A, Moreau C, Bennati-Granier C, Garajova S, Foucat L, Falourd X et al (2017) Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci Rep 7:1–9

    Article  CAS  Google Scholar 

  • Vu VV, Marletta MA (2016) Starch-degrading polysaccharide monooxygenases. Cell Mol Life Sci 73(14):2809–2819

    Article  CAS  PubMed  Google Scholar 

  • Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA (2014) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci U S A 111(38):13822–13827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan C, Zhou Y, Li Y (2001) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102(10):6254–6259

    Article  CAS  Google Scholar 

  • Wang B, Xia L (2011) High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei. Bioresour Technol 102(6):4568–4572

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen L, Yu D, Lin H, Shen Q, Zhao Y (2017) Excellent waste biomass-degrading performance of Trichoderma asperellum T-1 during submerged fermentation. Sci Total Environ 609:1329–1339

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299

    Article  CAS  PubMed  Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: Functions and applications. Microbiol Rev 52:305–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Takakuwa N, Nogawa M, Okada H, Okada H (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49(6):718–724

    Article  CAS  Google Scholar 

  • Xu J, Zhao G, Kou Y, Zhang W, Zhou Q, Chen G, Liu W (2014) Intracellular beta- glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryot Cell 13(8):1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes SB, Sayadi S (2011) Purification and characterization of a novel trimeric and thermotolerant laccase produced from the ascomycete Scytalidium thermophilum strain. J Mol Catal B Enzym 73:35–42

    Article  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Moller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468

    Article  CAS  PubMed  Google Scholar 

  • Zeilinger S, Kristufek D, Arisan-Atac I, Hodits R, Kubicek CP (1993) Conditions of formation, purification, and characterization of an alpha-galactosidase of Trichoderma reesei RUT C-30. Appl Environ Microbiol 59(5):1347–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhong Y, Zhao X, Wang T (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresour Technol 101(24):9815–9818

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Huang H, Han H, Qiu Z, Achal V (2017) Stimulatory effect of in-situ detoxification on bioethanol production by rice straw. Energy 135:32–39

    Article  CAS  Google Scholar 

  • Zhang XY, Zi LH, Ge XM, Li YH, Liu CG, Bai FW (2017) Development of Trichoderma reesei mutants by combined mutagenesis and induction of cellulase by low-cost corn starch hydrolysate. Process Biochem 54:96–101

    Article  CAS  Google Scholar 

  • Zhao J, Xia L (2009) Simultaneous saccharification and fermentation of alkaline- pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Process Technol 90:1193–1197

    Article  CAS  Google Scholar 

  • Zhao J, Xia L (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32

    Article  CAS  Google Scholar 

  • Zhao LL, Ou XM, Chang SY (2016) Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: current perspectives and future prospectives. Energy 115:303–313

    Article  CAS  Google Scholar 

  • Zhao C, Zou Z, Li J, Jia H, Liesche J, Chen S, Fang H (2018a) Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renew Energy 118:14–24

    Article  CAS  Google Scholar 

  • Zhao J, Zeng S, Xia Y, Xia L (2018b) Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A. J Biosci Bioeng 125(4):371–376

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang Y, Chu J, Zhuang Y, Zhang S, Yin P (2008) Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour Technol 99(15):6826–6833

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang Y, Chu J, Luo L, Zhuang Y, Zhang S (2009) Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour Technol 100(2):819–825

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Zhu H, Yan Q, Katrolia P, Jiang Z (2011) Purification and properties of a psychrotrophic Trichoderma sp. xylanase and its gene sequence. Appl Biochem Biotechnol 164:944–956

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W (2012) Differential involvement of beta-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell 11(11):1371–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Chandigarh University for providing necessary infrastructure and SEED Division, Department of Science and Technology, GOI for providing financial benefits (SP/YO/125/2017).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, V., Salwan, R. (2019). Extracellular Carbohydrate-Active Enzymes of Trichoderma and Their Role in the Bioconversion of Non-edible Biomass to Biofuel. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14846-1_12

Download citation

Publish with us

Policies and ethics