Skip to main content

Zinc-Based Nanostructures in Plant Protection Applications

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Abstract

Green nanochemistry reduces pollution risk at source levels where the principal focus is on the choice of reagents that are safe for the environment. Zinc oxide nanoparticles (ZnO NPs) are considered to be a biosafe material for biological species, especially plants. ZnO NPs have the potential to increase the yield and growth of food crops. The use of ZnO NPs as a Zn fertilizer and also the positive and negative effects are discussed in detail. However, their outcome can be either positive or negative, depending on the size, shape, surface structure, physicochemical properties, the concentration of the nanoparticles, and the cell type and age. The possible antimicrobial mechanisms of ZnO nanomaterials include disruption of the cell wall and depletion in intracellular content as well as the disturbance in DNA replication and ROS generation in the microbial cell. This review emphasizes the main applications of zinc nanomaterials in plant promotion and protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afrayeem SM, Chaurasia AK (2017) Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.). J Pharmacol Phytochem 6(5):1564–1566

    CAS  Google Scholar 

  • Akir S, Hamdi A, Addad A, Coffinier Y, Boukherroub R, Omrani AD (2017) Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Appl Surf Sci 400:461–470

    Article  CAS  Google Scholar 

  • Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  • Al-Dhabi NA, Arasu MV (2018) Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials (Basel) 8(7):500

    Article  CAS  Google Scholar 

  • Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci 68(4):723–735

    Article  Google Scholar 

  • Amooaghaie R, Norouzi M, Saeri M (2017) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 95:441–455

    Article  CAS  Google Scholar 

  • Aponiene K, Rasiukeviciute J, Viskelis A, Valiuskaite P, Viskelis P, Uselis N, Luksiene Z (2015) First attempts to control microbial contamination of strawberries by ZnO nanoparticles. Greece. In: International nonthermal process work, Athens

    Google Scholar 

  • Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE (2017) ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 7:225–241

    Article  CAS  Google Scholar 

  • Athauda TJ, Hari P, Ozer RR (2013) Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers. ACS Appl Mater Interfaces 5:6237–6246

    Article  CAS  PubMed  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. In: Maret W (ed) Zinc biochemistry, physiology, and homeostasis. Springer, Dordrecht, pp 85–127. ISBN 978-90-481-5916-1

    Chapter  Google Scholar 

  • Awasthi A, Bansal S, Jangir LK, Awasthi G, Awasthi KK, Awasthi K (2017) Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromol Symp 8:1909. https://doi.org/10.3389/fmicb.2017.01909

    Article  Google Scholar 

  • Bagheri H, Amanzadeh H, Yamini Y, Masoomi MY, Salar-Amoli AMJ, Hassan J (2018) A nanocomposite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides. Microchim Acta 185:62. https://doi.org/10.1007/s00604-017-2607-3

    Article  CAS  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2:21–36

    Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Becheri A, Durr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  CAS  Google Scholar 

  • Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed. Int J Biosci Biochem Bioinform 1:282–285

    Google Scholar 

  • Borboa L, De la Torre C (1996) The genotoxicity of Zn (II) and Cd (II) in Allium cepa root meristematic cells. New Phytol 134:481–486

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-lliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870

    Article  CAS  PubMed  Google Scholar 

  • Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94(4):490–505

    Article  CAS  PubMed  Google Scholar 

  • Chiahi N, Bouloudenine M, Louhichi BR (2016) The effect of nanoparticles on development parameters in a plant species: durum wheat (Triticum durum Desf). Pharm Lett 8(6):154–159

    CAS  Google Scholar 

  • Coradeghini R, Gioria S, Garcia CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217:205–216

    Article  CAS  PubMed  Google Scholar 

  • Collins D, Luxton T, Kumar N, Shah S, Walker VK, Shah V (2012) Assessing the Impact of Copper and Zinc Oxide Nanoparticles on Soil: A Field Study. PLoS ONE, 7(8): e42663. doi:10.1371/journal.pone.0042663

    Google Scholar 

  • David CA, Galceran J, Rey-Castro C, Puy J, Companys E, Salvador J, Monné J, Wallace R, Vakourov A (2012) Dissolution kinetics and solubility of zinc oxide nanoparticles followed by AGNES. J Phys Chem C 116:11758–11767. https://doi.org/10.1021/jp301671b

    Article  CAS  Google Scholar 

  • De la Rosa G, Lopez-Moreno ML, Hernandez-Viezcas JA et al (2011) Toxicity and biotransformation of ZnO nanoparticles in the desert plants Prosopis juliflora-velutina, Salsola tragus and Parkinsonia florida. Int J Nanotechnol 8:492–506

    Article  Google Scholar 

  • De la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174

    Article  Google Scholar 

  • De la Rosa-García SC, Martínez-Torres P, Gómez-Cornelio S, Corral-Aguado MA, Quintana P, Gómez-Ortíz NM (2018) Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. J Nanomater 2018:9, Article ID 3498527. https://doi.org/10.1155/2018/3498527

    Article  CAS  Google Scholar 

  • Decelis S, Sardella D, Triganza T, Brincat J-P, Gatt R, Valdramidis VP (2017) Assessing the anti-fungal efficiency of filters coated with zinc oxide nanoparticles. R Soc Open Sci 4:161032. https://doi.org/10.1098/rsos.161032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18(4):348–355

    Article  CAS  Google Scholar 

  • Devirgiliis C, Murgia C, Danscher G, Perozzi G (2004) Ex-changeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 323(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2011) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78(5):1404–1410

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924

    Article  CAS  PubMed  Google Scholar 

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  CAS  PubMed  Google Scholar 

  • Duan CQ, Wang HX (1995) Cytogenetical toxical effects of heavy metals on Vicia faba and inquires into the Vicia-micronucleus. Acta Bot Sin 37:14–24

    CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Duran N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288

    Article  CAS  PubMed  Google Scholar 

  • Esfahani MN (2006) Present status of Fusarium dry rot of potato tubers in Isfahan (Iran). Indian Phytopathol 59(2):142–147

    Google Scholar 

  • Espitia PPJ, Soares NDFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  • Estrada-Urbina J, Cruz-Alonso A, Santander-González M, Méndez-Albores A, Vázquez-Durán A (2018) Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials 8:247

    Article  CAS  PubMed Central  Google Scholar 

  • Fadaei A, Kargar M (2013) Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresen Environ Bull 22(8):2442–2447

    CAS  Google Scholar 

  • FDA (2016) Part 182—Substances generally recognized as safe. Accessed 01 Feb 2017. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.8991

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  PubMed  Google Scholar 

  • Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10(1):31. doi:10.1186/1477-3155-10-31

    Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–272

    Article  CAS  PubMed  Google Scholar 

  • Gangloff WJ, Westfall DG, Peterson GA, Mortvedt JJ (2006) Mobility of organic and inorganic zinc fertilizers in soils. Commun Soil Sci Plant Anal 37:199–209

    Article  CAS  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res/Genet Toxicol Environ Mutagen 807:25–32

    Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Graham JH, Dewdney MM, Myers ME (2010) Streptomycin and copper formulations for control of citrus canker on grapefruit. Proc Fla State Hortic Soc 123:92–99

    Google Scholar 

  • Graham JH, Johnson EG, Myers ME, Young M, Rajasekaran P, Das S, Santra S (2016) Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis 100:2442–2447

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Obendorf SK (2016) Reactivity and reusability of immobilized zinc oxide nanoparticles in fibers on methyl parathion decontamination. Text Res J 86:339–349

    Article  CAS  Google Scholar 

  • Hassan AA, Howayda M, El-Shafei A, Mahmoud HH (2013) Effect of zinc oxide nanoparticles on the growth of some mycotoxigenic moulds. J Stud Chem Process Technol (SCPT) ASSE 1:16–25

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Hernández-Meléndez D, Salas-Téllez E, Zavala-Franco A, Téllez G, Méndez-Albores A, Vázquez-Durán A (2018) Inhibitory effect of flower-shaped zinc oxide nanostructures on the growth and aflatoxin production of a highly toxigenic strain of Aspergillus flavus link. Materials 11:1265. https://doi.org/10.3390/ma11081265

    Article  CAS  PubMed Central  Google Scholar 

  • Hua J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJGM (2014) Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem 33:2859–2868

    Article  CAS  PubMed  Google Scholar 

  • Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B Biol 178:249–258

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry interactions and potential environmental implications. Sci Total Environ 400:396–414

    Article  CAS  PubMed  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  PubMed  Google Scholar 

  • Khan SH, Suriyaprabha R, Pathak B, Fulekar MH (2015) Photocatalytic degradation of organophosphate pesticides (Chlorpyrifos) using synthesized zinc oxide nanoparticle by membrane filtration reactor under UV irradiation. Front Nanosci Nanotechnol 1(1):23–27. https://doi.org/10.15761/FNN.1000105

    Article  Google Scholar 

  • Khooshe-bast Z, Sahebzadeh N, Mansour GM, Ali M (2016) Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agric Sloven 107(2):299–309

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim SH, Lee SY, Lee IS (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806

    Article  CAS  Google Scholar 

  • Kisan B, Shruthi H, Sharanagouda H, Revanappa SB, Pramod NK (2015) Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5:135

    Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  CAS  PubMed  Google Scholar 

  • Kuriakose S, Satpati B, Mohapatra S (2015) Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys Chem Chem Phys 17:25172–25181

    Article  CAS  PubMed  Google Scholar 

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62

    Article  CAS  PubMed  Google Scholar 

  • Latef AA, Alhmad MF, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70

    Article  CAS  Google Scholar 

  • Laware SL, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Appl Sci 3(7):874–881

    CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  PubMed  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. https://doi.org/10.1016/j.envpol.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585. https://doi.org/10.1021/es800422x

    Article  CAS  PubMed  Google Scholar 

  • Lin WS, Xu Y, Huang CC, Ma YF, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39

    Article  CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO(2) nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Google Scholar 

  • Ma R, Levard C, Marinakos SM, Cheng YW, Liu J, Michel FM, Brown GE, Lowry GV (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759

    Article  CAS  PubMed  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS, Tarafdar JC (2011) Effect of nano-ZnO on growth of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Appl Biol Res 13(2):54–61

    Google Scholar 

  • Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1992) Crop response to level of water-soluble zinc in granular zinc fertilizers. Fertil Res 33:249–255

    Article  CAS  Google Scholar 

  • Mostafa WA, Elgazzar E, Beall GW, Rashed SS, Rashad EM (2018) Insecticidal effect of zinc oxide and aluminum oxide nanoparticles synthesized by co-precipitation technique on Culex quinquefasciatus larvae (Diptera: Culicidae). Int J Appl Res 4(4):290–297

    Google Scholar 

  • Mukherjee A, Pokhrel S, Bandyopadhyay S, Madler L, Peralta-Videa JR, Gardea-Torresdey JL (2014) A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L.). J Chem Eng 258:394–401

    Article  CAS  Google Scholar 

  • Mukherjee A, Sun Y, Morelius E, Tamez C, Bandyopadhyay S, Niu G, White JC et al (2016) Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): a life cycle study. Front Plant Sci 12(6):1242

    Google Scholar 

  • Muthumariappan S, Vedhi C (2017) Nonenzymatic sensing of methyl parathion based on RGO-Zno nanocomposite modified glassy carbon electrode. IOSR J Appl Chem 10:55–64

    Article  CAS  Google Scholar 

  • Nair S, Sasidharan A, Rani VVD, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:235–241

    Article  CAS  Google Scholar 

  • Niranjani R, Anchana-Devi C (2017) Photocatalytic degradation of pesticide phorate using zinc oxide nanoparticles. Int J Acad Res Dev 2:35–40

    Google Scholar 

  • Ohira T, Yamamoto O, Iida Y, Nakagawa Z (2008) Antibacterial activity of ZnO powder with crystallographic orientation. J Materil Sci. Materials in Medicine 19(3):1407– 1412

    Google Scholar 

  • Panwar J, Jain N, Bhargaya A, Akhtar MS, Yun YS (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing “Nano-fertilizers.” In: Proceedings of 3rd international conference on environmental research and technology (ICERT), May 30–June 1, 2012, Penang

    Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. J Plant Pathol 22:25–34

    Google Scholar 

  • Park S, Lee JH, Kim HS, Park HJ, Lee JC (2009) Effect of ZnO nanopowder dispersion on photocatalytic reactions for the removal of Ag ions from aqueous solution. J Electroceram 22:105–109

    Article  CAS  Google Scholar 

  • Patra P, Mitra S, Debnath N, Goswami A (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide, an in vivo and in vitro toxicity study. Langmuir 28:16966–16978

    Article  CAS  PubMed  Google Scholar 

  • Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  PubMed  Google Scholar 

  • Pramod M, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedling using plant agar method. J Nanotechnol. https://doi.org/10.1155/2011/696535

  • Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Prakash MG, Chung IM (2016) Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum Aestivum l.) seedlings. Acta Biologica Hungarica 67(3): 286–296

    Google Scholar 

  • Priyanka N, Venkatachalam P (2016) Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Adv Nat Sci Nanosci Nanotechnol 7(4):045018. https://doi.org/10.1088/2043-6262/7/4/045018

    Article  CAS  Google Scholar 

  • Raigond P, Raigond B, Kaundal B, Singh B, Joshi A, Dutt S (2017) Effect of zinc nanoparticles on antioxidative system of potato plants. J Environ Biol 38(3):435–439

    Article  CAS  Google Scholar 

  • Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc 112:384–387

    Article  CAS  PubMed  Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotech Monit Manag 9:76–84

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467–473

    CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78. https://doi.org/10.3389/fchem.2017.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E et al (2016) Soil pH effects on the interactions between dissolved zinc, non-nano and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res Int 23:4120–4128

    Article  CAS  PubMed  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72(4):590–594

    Article  Google Scholar 

  • Ruffolo SA, La Russa MF, Malagodi M, Rossi CO, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process 100(3):829–834

    Article  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. J Sci World 2014:1–8. ID 925494

    Article  CAS  Google Scholar 

  • Sahithya K, Das N (2016) Application of bimetallic Zn-Ag nanoparticles embedded in MMT-biopolymer nanobiocomposites for the removal of monocrotophos from aqueous environment: equilibrium, kinetic and thermodynamic studies. Pharm Lett 8(9):258–268

    CAS  Google Scholar 

  • Sahoo D, Mandal A, Mitra T, Chakraborty K, Bardhan M, Dasgupta AK (2018) Nanosensing of pesticides by zinc oxide quantum dot: an optical and electrochemical approach for the detection of pesticides in water. J Agric Food Chem 66:414–423

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700

    Article  Google Scholar 

  • Sardella D, Gatt R, Valdramidis VP (2018) Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology 9(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Sathiyanarayanan S, Ravi PE, Ramesh A (2009) Applications of zinc oxide nanorods as photocatalyst for the decontamination of imidacloprid and spirotetramat residues in water. Open Catal J 2:24–32

    Article  CAS  Google Scholar 

  • Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29(4):627–633

    Article  CAS  Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Univ Timisoara Ser Biol XVI 2:73–78

    Google Scholar 

  • Selivanov VN, Zorin EV (2001) Sustained action of ultrafine metal powders on seeds of grain crops. Perspekt Mater 4:66–69

    Google Scholar 

  • Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360:794–802

    Article  CAS  Google Scholar 

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92

    Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2011) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6(3):241–248

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9(5):912–918

    Article  CAS  Google Scholar 

  • Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197

    Article  CAS  PubMed  Google Scholar 

  • Shyla KK, Natarajan N (2014) Customising zinc oxide, silver and titanium dioxide nanoparticles for enhancing groundnut seed quality. Indian J Sci Technol 7(9):1376–1381

    Google Scholar 

  • Sierra-Fernandez A, De la Rosa-García SC, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces 929:24873–24886

    Article  CAS  Google Scholar 

  • Sillanpaa M (1990) Micronutrient assessment at country level: an international study. FAO, Rome, p 208

    Google Scholar 

  • Singh A, Singh NB, Afzal S, Singh T, Hussain I (2017) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci. https://doi.org/10.1007/s10853-017-1544-1

  • Stampoulis D, Sinha SK, White JC (2009)Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. doi: 10.1021/es901695c

    Google Scholar 

  • Sudhakar R, Gowda N, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia 66:235–239

    Article  Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Thunugunta T, Reddy AC, Seetharamaiah SK, Hunashikatt LR, Chandrappa SG, Kalathi NC, Reddy LRDC (2018) Impact of zinc oxide nanoparticles on eggplant (S. melongena): studies on growth and the accumulation of nanoparticles. J IET Nanobiotechnol 12(6):706–713

    Article  Google Scholar 

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Processes Impacts 15:1830–1843

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, et al. (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110: 167–177

    Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  CAS  PubMed  Google Scholar 

  • Vitchuli N, Shi Q, Nowak J (2011) Multifunctional ZnO/nylon 6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications. Sci Technol Adv Mater 12:055004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waalewijn-Kool PL, Ortiz MD, Lofts S, van-Gestel CA (2013) The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil. Environ Toxicol Chem 32(10):2349–2355

    Article  CAS  PubMed  Google Scholar 

  • Wagner G, Korenkov V, Judy JD, Bertsch PM (2016) Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials 6:50. https://doi.org/10.3390/nano6030050

    Article  CAS  PubMed Central  Google Scholar 

  • Wang B, Feng W, Wang M, Wang TC, Gu YQ, Zhu MT, Ouyang H, Shi JW, Zhang F, Zhao YL et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276

    Article  CAS  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157(4):1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2(3):40–44

    Google Scholar 

  • Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22:10452–10462

    Article  CAS  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mode of action of ZnO. Appl Environ Microbiol 77:2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Luo X, Wang Y, Feng Y (2017) Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environ Sci Pollut Res 25:6026–6035

    Article  CAS  Google Scholar 

  • Ye J, Hui Q, Li N (2015) Fabrication of CNFs/ZnO nanocomposites with enhanced photocatalytic activity and mechanical properties. Fibers Polym 16:113–119

    Article  CAS  Google Scholar 

  • Yehia RS, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicillium expansum. Afr J Microbiol Res 7:1917–1923

    Article  CAS  Google Scholar 

  • Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535. https://doi.org/10.3389/fpls.2016.00535

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9(3):479–489

    Article  CAS  Google Scholar 

  • Zhang RC, Zhang HB, Tu C, Hu XF, Li LZ, Luo YM, Christie P (2015) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22:11109–11117

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Renato JA, Gardea-Torresdey JL (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. J Chem Eng 184:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)-South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mostafa, M., Almoammar, H., Abd-Elsalam, K.A. (2019). Zinc-Based Nanostructures in Plant Protection Applications. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13296-5_4

Download citation

Publish with us

Policies and ethics