Skip to main content

Personalized Medicine - Dream or Reality?

  • Chapter
  • First Online:
Biomarkers in Inflammatory Bowel Diseases

Abstract

Precision medicine is gaining popularity since it strives to take into account individuals’ differences in genes, environment, and lifestyle choices. It has numerous applications within the IBD space. Current day applications include the idea of treating to target goals over a finite timeline and using proactive therapeutic drug monitoring. Future applications are myriad and range from alterations in the microbiome, to advanced modeling to better characterize patients, to decision support tools and to increasingly targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. National Research Council Committee on AFfDaNToD. The National Academies Collection: reports funded by National Institutes of Health. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington, D.C.: National Academies Press (US), National Academy of Sciences; 2011.

    Google Scholar 

  2. National Library of Medicine. Genetics home reference. https://ghr.nlm.nih.gov/primer/precisionmedicine/definition. Accessed 13 Jan 2018.

  3. Obama B. Remarks by the president on precision medicine. 2015.

    Google Scholar 

  4. Saussele S, Krauss MP, Hehlmann R, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML study IV. Blood. 2015;126(1):42–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koleva-Kolarova RG, Oktora MP, Robijn AL, et al. Increased life expectancy as a result of non-hormonal targeted therapies for HER2 or hormone receptor positive metastatic breast cancer: a systematic review and meta-analysis. Cancer Treat Rev. 2017;55:16–25.

    Article  CAS  PubMed  Google Scholar 

  6. Nakashoji A, Hayashida T, Yokoe T, et al. The updated network meta-analysis of neoadjuvant therapy for HER2-positive breast cancer. Cancer Treat Rev. 2018;62:9–17.

    Article  CAS  PubMed  Google Scholar 

  7. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med. 2017;377(9):849–61.

    Article  CAS  PubMed  Google Scholar 

  8. Making Merck Work. The Economist. 2018.

    Google Scholar 

  9. Alexander W. The checkpoint immunotherapy revolution: what started as a trickle has become a flood, despite some daunting adverse effects; new drugs, indications, and combinations continue to emerge. Pharm Ther. 2016;41(3):185–91.

    Google Scholar 

  10. Ek WE, D’Amato M, Halfvarson J. The history of genetics in inflammatory bowel disease. Ann Gastroenterol. 2014;27(4):294–303.

    PubMed  PubMed Central  Google Scholar 

  11. Yang H, McElree C, Roth MP, et al. Familial empirical risks for inflammatory bowel disease: differences between Jews and non-Jews. Gut. 1993;34(4):517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niv Y, Abuksis G, Fraser GM. Epidemiology of Crohn’s disease in Israel: a survey of Israeli kibbutz settlements. Am J Gastroenterol. 1999;94(10):2961–5.

    Article  CAS  PubMed  Google Scholar 

  13. Jess T, Riis L, Jespersgaard C, et al. Disease concordance, zygosity, and NOD2/CARD15 status: follow-up of a population-based cohort of Danish twins with inflammatory bowel disease. Am J Gastroenterol. 2005;100(11):2486–92.

    Article  CAS  PubMed  Google Scholar 

  14. Orholm M, Binder V, Sorensen TI, et al. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol. 2000;35(10):1075–81.

    Article  CAS  PubMed  Google Scholar 

  15. Spehlmann ME, Begun AZ, Burghardt J, et al. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study. Inflamm Bowel Dis. 2008;14(7):968–76.

    Article  PubMed  Google Scholar 

  16. Halfvarson J, Bodin L, Tysk C, et al. Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology. 2003;124(7):1767–73.

    Article  PubMed  Google Scholar 

  17. Ng SC, Woodrow S, Patel N, et al. Role of genetic and environmental factors in British twins with inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(4):725–36.

    Article  PubMed  Google Scholar 

  18. McGovern DP, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases. Gastroenterology. 2015;149(5):1163–76.e2.

    Article  CAS  PubMed  Google Scholar 

  19. Brant SR, Okou DT, Simpson CL, et al. Genome-wide association study identifies African-specific susceptibility loci in African Americans with inflammatory bowel disease. Gastroenterology. 2017;152(1):206–17.e2.

    Article  CAS  PubMed  Google Scholar 

  20. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang H, Fang M, Jostins L, et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature. 2017;547(7662):173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Lange KM, Moutsianas L, Lee JC, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49(2):256–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.

    Article  CAS  PubMed  Google Scholar 

  25. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.

    Article  CAS  PubMed  Google Scholar 

  26. Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 2005;102(50):18129–34.

    Google Scholar 

  27. Feerick CL, McKernan DP. Understanding the regulation of pattern recognition receptors in inflammatory diseases – a ‘Nod’ in the right direction. Immunology. 2017;150(3):237–47.

    Article  CAS  PubMed  Google Scholar 

  28. Cleynen I, Gonzalez JR, Figueroa C, et al. Genetic factors conferring an increased susceptibility to develop Crohn’s disease also influence disease phenotype: results from the IBDchip European Project. Gut. 2013;62(11):1556–65.

    Article  PubMed  CAS  Google Scholar 

  29. de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease. Expert Opin Ther Targets. 2017;21(12):1123–39.

    Article  PubMed  CAS  Google Scholar 

  30. Silverberg MS, Mirea L, Bull SB, et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9(1):1–9.

    Article  PubMed  Google Scholar 

  31. Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387(10014):156–67.

    Google Scholar 

  32. Kugathasan S, Denson LA, Walters TD, et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet. 2017;389(10080):1710–8.

    Google Scholar 

  33. Marigorta UM, Denson LA, Hyams JS, et al. Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn’s disease. Nat Genet. 2017;49(10):1517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vermeire S, Peeters M, Vlietinck R, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA), phenotypes of IBD, and intestinal permeability: a study in IBD families. Inflamm Bowel Dis. 2001;7(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  35. Annese V, Andreoli A, Andriulli A, et al. Familial expression of anti-Saccharomyces cerevisiae Mannan antibodies in Crohn’s disease and ulcerative colitis: a GISC study. Am J Gastroenterol. 2001;96(8):2407–12.

    Article  CAS  PubMed  Google Scholar 

  36. Seibold F, Stich O, Hufnagl R, et al. Anti-Saccharomyces cerevisiae antibodies in inflammatory bowel disease: a family study. Scand J Gastroenterol. 2001;36(2):196–201.

    Article  CAS  PubMed  Google Scholar 

  37. Cohavy O, Harth G, Horwitz M, et al. Identification of a novel mycobacterial histone H1 homologue (HupB) as an antigenic target of pANCA monoclonal antibody and serum immunoglobulin A from patients with Crohn’s disease. Infect Immun. 1999;67(12):6510–7.

    Google Scholar 

  38. Ruemmele FM, Targan SR, Levy G, et al. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology. 1998;115(4):822–9.

    Article  CAS  PubMed  Google Scholar 

  39. Quinton JF, Sendid B, Reumaux D, et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut. 1998;42(6):788–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duerr RH, Targan SR, Landers CJ, et al. Anti-neutrophil cytoplasmic antibodies in ulcerative colitis. Comparison with other colitides/diarrheal illnesses. Gastroenterology. 1991;100(6):1590–6.

    Article  CAS  PubMed  Google Scholar 

  41. Benor S, Russell GH, Silver M, et al. Shortcomings of the inflammatory bowel disease Serology 7 panel. Pediatrics. 2010;125(6):1230–6.

    Article  PubMed  Google Scholar 

  42. Plevy S, Silverberg MS, Lockton S, et al. Combined serological, genetic, and inflammatory markers differentiate non-IBD, Crohn’s disease, and ulcerative colitis patients. Inflamm Bowel Dis. 2013;19(6):1139–48.

    Article  PubMed  Google Scholar 

  43. Michail S, Durbin M, Turner D, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799–808.

    Article  PubMed  Google Scholar 

  44. Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53(5):685–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh S, Ding NS, Mathis KL, et al. Systematic review with meta-analysis: faecal diversion for management of perianal Crohn’s disease. Aliment Pharmacol Ther. 2015;42(7):783–92.

    Article  CAS  Google Scholar 

  46. Rutgeerts P, Goboes K, Peeters M, et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet. 1991;338(8770):771–4.

    Article  CAS  Google Scholar 

  47. Nagao-Kitamoto H, Shreiner AB, Gillilland MG 3rd, et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol Gastroenterol Hepatol. 2016;2(4):468–81.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sha S, Xu B, Wang X, et al. The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. Diagn Microbiol Infect Dis. 2013;75(3):245–51.

    Article  PubMed  Google Scholar 

  49. de Wouters T, Dore J, Lepage P. Does our food (environment) change our gut microbiome (‘in-vironment’): a potential role for inflammatory bowel disease? Dig Dis. 2012;30(Suppl 3):33–9.

    Article  PubMed  Google Scholar 

  50. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rolhion N, Darfeuille-Michaud A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(10):1277–83.

    Article  PubMed  Google Scholar 

  52. Strauss J, Kaplan GG, Beck PL, et al. Invasive potential of gut mucosa-derived fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):1971–8.

    Article  PubMed  Google Scholar 

  53. Norman JM, Handley SA, Baldridge MT, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Minot S, Sinha R, Chen J, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. El Mouzan M, Wang F, Al Mofarreh M, et al. Fungal microbiota profile in newly diagnosed treatment-naive children with Crohn’s disease. J Crohns Colitis. 2017;11(5):586–92.

    Google Scholar 

  56. Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92.

    Google Scholar 

  58. Lee JC. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet. 2017;49(2):262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Denson LA, Jurickova I, Karns R, et al. Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with Crohn’s disease. Gastroenterology. 2018;154:2097.

    Google Scholar 

  60. Kaur M, Panikkath D, Yan X, et al. Perianal Crohn’s disease is associated with distal colonic disease, stricturing disease behavior, IBD-associated serologies and genetic variation in the JAK-STAT pathway. Inflamm Bowel Dis. 2016;22(4):862–9.

    Article  PubMed  Google Scholar 

  61. Eder P, Michalak M, Katulska K, et al. Magnetic resonance enterographic predictors of one-year outcome in ileal and ileocolonic Crohn’s disease treated with anti-tumor necrosis factor antibodies. Sci Rep. 2015;5:10223.

    Google Scholar 

  62. Vasiliauskas EA, Kam LY, Karp LC, et al. Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut. 2000;47(4):487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dubinsky MC, Kugathasan S, Mei L, et al. Increased immune reactivity predicts aggressive complicating Crohn’s disease in children. Clin Gastroenterol Hepatol. 2008;6(10):1105–11.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Markowitz J, Kugathasan S, Dubinsky M, et al. Age of diagnosis influences serologic responses in children with Crohn’s disease: a possible clue to etiology? Inflamm Bowel Dis. 2009;15(5):714–9.

    Article  PubMed  Google Scholar 

  65. Spencer EA, Davis SM, Mack DR, Boyle BM, Griffiths AM, LeLeiko NS, Sauer CG, Keljo DJ, Markowitz JF, Baker SS, Rosh JR, Baldassano RN, Oliva-Hemker M, Pfefferkorn MD, Otley AR, Heyman MB, Noe JD, Patel AS, Rufo PA, PROTECT Study Group, Marquis MA, Walters TD, Collins MH, Kugathasan S, Denson LA, Hyams JS, Dubinsky MC. Serologic reactivity reflects clinical expression of ulcerative colitis in children. IBD. 2018;24(6):1335–43.

    Google Scholar 

  66. Xiong Y, Wang GZ, Zhou JQ, et al. Serum antibodies to microbial antigens for Crohn’s disease progression: a meta-analysis. Eur J Gastroenterol Hepatol. 2014;26(7):733–42.

    Article  CAS  Google Scholar 

  67. Fleshner PR, Vasiliauskas EA, Kam LY, et al. High level perinuclear antineutrophil cytoplasmic antibody (pANCA) in ulcerative colitis patients before colectomy predicts the development of chronic pouchitis after ileal pouch-anal anastomosis. Gut. 2001;49(5):671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gevers D, Kugathasan S, Knights D, et al. A microbiome foundation for the study of Crohn’s disease. Cell Host Microbe. 2017;21(3):301–4.

    Article  CAS  Google Scholar 

  69. Wright EK, Kamm MA, Wagner J, et al. Microbial factors associated with postoperative Crohn’s disease recurrence. J Crohns Colitis. 2017;11(2):191–203.

    Article  PubMed  Google Scholar 

  70. Moustafa A, Li W, Anderson EL, et al. Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clin Transl Gastroenterol. 2018;9(1):e132.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schirmer M, Franzosa EA, Lloyd-Price J, et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol. 2018;3(3):337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017;2:17004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980;32(5):651–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118(4):705–13.

    Article  CAS  PubMed  Google Scholar 

  75. Colombel JF, Ferrari N, Debuysere H, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118(6):1025–30.

    Article  CAS  PubMed  Google Scholar 

  76. Coenen MJ, de Jong DJ, van Marrewijk CJ, et al. Identification of patients with variants in TPMT and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease. Gastroenterology. 2015;149(4):907–17.e7.

    Article  PubMed  Google Scholar 

  77. Mascheretti S, Hampe J, Croucher PJ, et al. Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics. 2002;12(7):509–15.

    Article  CAS  PubMed  Google Scholar 

  78. Vermeire S, Louis E, Rutgeerts P, et al. NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology. 2002;123(1):106–11.

    Article  CAS  PubMed  Google Scholar 

  79. Jurgens M, Laubender RP, Hartl F, et al. Disease activity, ANCA, and IL23R genotype status determine early response to infliximab in patients with ulcerative colitis. Am J Gastroenterol. 2010;105(8):1811–9.

    Article  PubMed  CAS  Google Scholar 

  80. Bank S, Andersen PS, Burisch J, et al. Associations between functional polymorphisms in the NFkappaB signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease. Pharmacogenomics J. 2014;14(6):526–34.

    Article  PubMed  CAS  Google Scholar 

  81. Moroi R, Endo K, Kinouchi Y, et al. FCGR3A-158 polymorphism influences the biological response to infliximab in Crohn’s disease through affecting the ADCC activity. Immunogenetics. 2013;65(4):265–71.

    Article  CAS  PubMed  Google Scholar 

  82. Hlavaty T, Pierik M, Henckaerts L, et al. Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn’s disease. Aliment Pharmacol Ther. 2005;22(7):613–26.

    Article  CAS  PubMed  Google Scholar 

  83. Koder S, Repnik K, Ferkolj I, et al. Genetic polymorphism in ATG16L1 gene influences the response to adalimumab in Crohn’s disease patients. Pharmacogenomics. 2015;16(3):191–204.

    Article  CAS  PubMed  Google Scholar 

  84. Arijs I, Li K, Toedter G, et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut. 2009;58(12):1612–9.

    Article  CAS  PubMed  Google Scholar 

  85. Arijs I, Quintens R, Van Lommel L, et al. Predictive value of epithelial gene expression profiles for response to infliximab in Crohn’s disease. Inflamm Bowel Dis. 2010;16(12):2090–8.

    Article  PubMed  Google Scholar 

  86. Toedter G, Li K, Marano C, et al. Gene expression profiling and response signatures associated with differential responses to infliximab treatment in ulcerative colitis. Am J Gastroenterol. 2011;106(7):1272–80.

    Article  CAS  PubMed  Google Scholar 

  87. Ooi CY, Bohane TD, Lee D, et al. Thiopurine metabolite monitoring in paediatric inflammatory bowel disease. Aliment Pharmacol Ther. 2007;25(8):941–7.

    Article  CAS  PubMed  Google Scholar 

  88. Pozler O, Chladek J, Maly J, et al. Steady-state of azathioprine during initiation treatment of pediatric inflammatory bowel disease. J Crohns Colitis. 2010;4(6):623–8.

    Article  CAS  PubMed  Google Scholar 

  89. Grossman AB, Noble AJ, Mamula P, et al. Increased dosing requirements for 6-mercaptopurine and azathioprine in inflammatory bowel disease patients six years and younger. Inflamm Bowel Dis. 2008;14(6):750–5.

    Article  PubMed  Google Scholar 

  90. Cuffari C, Theoret Y, Latour S, et al. 6-Mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity. Gut. 1996;39(3):401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Osterman MT, Kundu R, Lichtenstein GR, et al. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology. 2006;130(4):1047–53.

    Article  CAS  PubMed  Google Scholar 

  92. Wong DR, Coenen MJ, Vermeulen SH, et al. Early assessment of thiopurine metabolites identifies patients at risk of thiopurine-induced leukopenia in inflammatory bowel disease. J Crohns Colitis. 2017;11(2):175–84.

    Article  PubMed  Google Scholar 

  93. Dubinsky MC, Yang H, Hassard PV, et al. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology. 2002;122(4):904–15.

    Article  CAS  PubMed  Google Scholar 

  94. Cornillie F, Hanauer SB, Diamond RH, et al. Postinduction serum infliximab trough level and decrease of C-reactive protein level are associated with durable sustained response to infliximab: a retrospective analysis of the ACCENT I trial. Gut. 2014;63(11):1721–7.

    Article  CAS  PubMed  Google Scholar 

  95. Ungar B, Levy I, Yavne Y, et al. Optimizing anti-TNF-alpha therapy: serum levels of infliximab and adalimumab are associated with mucosal healing in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2016;14(4):550–7.e2.

    Article  CAS  PubMed  Google Scholar 

  96. Yarur AJ, Kanagala V, Stein DJ, et al. Higher infliximab trough levels are associated with perianal fistula healing in patients with Crohn’s disease. Aliment Pharmacol Ther. 2017;45(7):933–40.

    Article  CAS  Google Scholar 

  97. Vande Casteele N, Ferrante M, Van Assche G, et al. Trough concentrations of infliximab guide dosing for patients with inflammatory bowel disease. Gastroenterology. 2015;148(7):1320–9.e3.

    Article  CAS  PubMed  Google Scholar 

  98. Singh N, Rosenthal CJ, Melmed GY, et al. Early infliximab trough levels are associated with persistent remission in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(10):1708–13.

    Article  PubMed  Google Scholar 

  99. Papamichael K, Van Stappen T, Vande Casteele N, et al. Infliximab concentration thresholds during induction therapy are associated with short-term mucosal healing in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2016;14(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  100. D’Haens G, Vermeire S, Lambrecht G, et al. Increasing infliximab dose based on symptoms, biomarkers, and serum drug concentrations does not increase clinical, endoscopic, or corticosteroid-free remission in patients with active luminal Crohn’s disease. Gastroenterology. 2018;154:1343.

    Article  PubMed  CAS  Google Scholar 

  101. Kolho KL, Korpela K, Jaakkola T, et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am J Gastroenterol. 2015;110(6):921–30.

    Article  PubMed  Google Scholar 

  102. Hansen JJ, Sartor RB. Therapeutic manipulation of the microbiome in IBD: current results and future approaches. Curr Treat Options Gastroenterol. 2015;13(1):105–20.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lopez J, Grinspan A. Fecal microbiota transplantation for inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2016;12(6):374–9.

    Google Scholar 

  104. Vaughn BP, Vatanen T, Allegretti JR, et al. Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn’s disease. Inflamm Bowel Dis. 2016;22(9):2182–90.

    Article  PubMed  Google Scholar 

  105. Angelberger S, Reinisch W, Makristathis A, et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol. 2013;108(10):1620–30.

    Article  CAS  PubMed  Google Scholar 

  106. Berg D, Clemente JC, Colombel JF. Can inflammatory bowel disease be permanently treated with short-term interventions on the microbiome? Expert Rev Gastroenterol Hepatol. 2015;9(6):781–95.

    Article  CAS  PubMed  Google Scholar 

  107. Walton C, Montoya MP, Fowler DP, et al. Enteral feeding reduces metabolic activity of the intestinal microbiome in Crohn’s disease: an observational study. Eur J Clin Nutr. 2016;70(9):1052–6.

    Article  CAS  PubMed  Google Scholar 

  108. Halmos EP, Christophersen CT, Bird AR, et al. Consistent prebiotic effect on gut microbiota with altered FODMAP intake in patients with Crohn’s disease: a randomised, controlled cross-over trial of well-defined diets. Clin Transl Gastroenterol. 2016;7:e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Amcoff K, Joossens M, Pierik MJ, et al. Concordance in anti-OmpC and anti-I2 indicate the influence of genetic predisposition: results of a European study of twins with Crohn’s disease. J Crohns Colitis. 2016;10(6):695–702.

    Article  PubMed  Google Scholar 

  110. van Schaik FD, Oldenburg B, Hart AR, et al. Serological markers predict inflammatory bowel disease years before the diagnosis. Gut. 2013;62(5):683–8.

    Article  PubMed  CAS  Google Scholar 

  111. Choung RS, Princen F, Stockfisch TP, et al. Serologic microbial associated markers can predict Crohn’s disease behaviour years before disease diagnosis. Aliment Pharmacol Ther. 2016;43(12):1300–10.

    Article  CAS  Google Scholar 

  112. Hu J, Torres J, Eisele C, et al. Infants born to mothers with inflammatory bowel disease exhibit distinct microbiome features that persist up to 3 months of life. Gastroenterology. 2017;152(5):S193.

    Article  Google Scholar 

  113. Palmer C. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:7.

    Article  CAS  Google Scholar 

  114. Almario CV, Keller MS, Chen M, et al. Optimizing selection of biologics in inflammatory bowel disease: development of an online patient decision aid using conjoint analysis. Am J Gastroenterol. 2018;113(1):58–71.

    Article  PubMed  Google Scholar 

  115. Siegel CA, Horton H, Siegel LS, et al. A validated web-based tool to display individualised Crohn’s disease predicted outcomes based on clinical, serologic and genetic variables. Aliment Pharmacol Ther. 2016;43(2):262–71.

    Article  CAS  Google Scholar 

  116. Dubinsky MC, Phan BL, Singh N, et al. Pharmacokinetic dashboard-recommended dosing is different than standard of care dosing in infliximab-treated pediatric IBD patients. AAPS J. 2017;19(1):215–22.

    Article  CAS  PubMed  Google Scholar 

  117. Dow LE, Fisher J, O’Rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33(4):390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97.

    Article  CAS  PubMed  Google Scholar 

  119. McCracken KW, Cata EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516(7531):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470(7332):105–9.

    Article  CAS  PubMed  Google Scholar 

  121. Administration FaD. About precisionFDA. https://precision.fda.gov/about. Accessed 26 Jan 2018.

  122. Asymmetrex. Asymmetrex launches a crowdsourcing campaign to introduce new biomarkers for counting previously elusive tissue stem cells. http://asymmetrex.com/asymmetrex-campaign-count-tissue-stem-cells/. 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla C. Dubinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spencer, E.A., Dubinsky, M.C. (2019). Personalized Medicine - Dream or Reality?. In: Sheng Ding, N., De Cruz, P. (eds) Biomarkers in Inflammatory Bowel Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-11446-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11446-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11445-9

  • Online ISBN: 978-3-030-11446-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics