Skip to main content

Modelling of Cerebrospinal Fluid Flow by Computational Fluid Dynamics

  • Chapter
  • First Online:
Biomechanics of the Brain

Abstract

The movement of cerebrospinal fluid (CSF) is linked to the cardiovascular and respiratory systems. The heart not only drives blood flow but is also at the origin of CSF pulsation through the expansion and contraction of cerebral blood vessels. Respiration modulates this cardiovascular action while also directly influencing spinal subarachnoid space (SAS) volume. CSF dynamics may be altered by pathologies such as hydrocephalus, Chiari malformation, syringomyelia and glioblastoma, and, in turn, dynamics of the CSF can be analysed to aid in disease diagnosis and prognosis. Several reviews delineate the current understanding of CSF motion [1–3]. This chapter describes the basic approach of and trends in computational fluid dynamics (CFD) modelling of CSF flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hladky, S.B., Barrand, M.A.: Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 11(1), 26 (2014)

    Article  Google Scholar 

  2. Linninger, A.A., Tangen, K., Hsu, C.-Y., Frim, D.: Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu. Rev. Fluid Mech. 48(1), 219–257 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Brinker, T., Stopa, E., Morrison, J., Klinge, P.: A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 11, 10 (2014)

    Article  Google Scholar 

  4. Bloomfield, I.G., Johnston, I.H., Bilston, L.E.: Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 28(5), 246–251 (1998)

    Article  Google Scholar 

  5. Brydon, H.L., Hayward, R., Harkness, W., Bayston, R.: Physical properties of cerebrospinal fluid of relevance to shunt function. 1: the effect of protein upon CSF viscosity. Br. J. Neurosurg. 9(5), 639–644 (1995)

    Article  Google Scholar 

  6. Jacobson, E.E., Fletcher, D.F., Morgan, M.K., Johnston, I.H.: Fluid dynamics of the cerebral aqueduct. Pediatr. Neurosurg. 24(5), 229–236 (1996)

    Article  Google Scholar 

  7. Caiazzo, A., Vignon-Clementel, I.E.: Mathematical modeling of blood flow in the cardiovascular system. In: Sack, I., Schaeffter, T. (eds.) Quantification of Biophysical Parameters in Medical Imaging, pp. 45–70. Springer, Cham (2018)

    Chapter  Google Scholar 

  8. Ballester, M.A.G., Zisserman, A., Brady, M.: Segmentation and measurement of brain structures in MRI including confidence bounds. Med. Image Anal. 4(3), 189–200 (2000)

    Article  Google Scholar 

  9. Gupta, S., Soellinger, M., Boesiger, P., Poulikakos, D., Kurtcuoglu, V.: Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J. Biomech. Eng. 131(2), 021010 (2009)

    Article  Google Scholar 

  10. Gupta, S., Soellinger, M., Grzybowski, D.M., Boesiger, P., Biddiscombe, J., Poulikakos, D., Kurtcuoglu, V.: Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model. J. R. Soc. Interface. 7(49), 1195–1204 (2010)

    Article  Google Scholar 

  11. Heidari Pahlavian, S., Yiallourou, T., Tubbs, R.S., Bunck, A.C., Loth, F., Goodin, M., Raisee, M., Martin, B.A.: The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLoS One. 9(4), e91888 (2014)

    Article  ADS  Google Scholar 

  12. Sass, L.R., Khani, M., Natividad, G.C., Tubbs, R.S., Baledent, O., Martin, B.A.: A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets. Fluids Barriers CNS. 14(1), 36 (2017)

    Article  Google Scholar 

  13. Cloyd, M.W., Low, F.N.: Scanning electron microscopy of the subarachnoid space in the dog. I. Spinal cord levels. J. Comp. Neurol. 153(4), 325–368 (1974)

    Article  Google Scholar 

  14. Allen, D.J., Low, F.N.: Scanning electron microscopy of the subarachnoid space in the dog. III. Cranial levels. J. Comp. Neurol. 161(4), 515–539 (1975)

    Article  Google Scholar 

  15. Killer, H.E., Laeng, H.R., Flammer, J., Groscurth, P.: Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br. J. Ophthalmol. 87(6), 777–781 (2003)

    Article  Google Scholar 

  16. Scott, G.G., Coats, B.: Microstructural characterization of the pia-arachnoid complex using optical coherence tomography. IEEE Trans. Med. Imaging. 34(7), 1452–1459 (2015)

    Article  Google Scholar 

  17. Mortazavi, M.M., Quadri, S.A., Khan, M.A., Gustin, A., Suriya, S.S., Hassanzadeh, T., Fahimdanesh, K.M., Adl, F.H., Fard, S.A., Taqi, M.A., Armstrong, I., Martin, B.A., Tubbs, R.S.: Subarachnoid trabeculae: a comprehensive review of their embryology, histology, morphology, and surgical significance. World Neurosurg. 111, 279–290 (2018)

    Article  Google Scholar 

  18. Vandenwesthuizen, J., Duplessis, J.P.: Quantification of unidirectional fiber bed permeability. J. Compos. Mater. 28(7), 619–637 (1994)

    Article  Google Scholar 

  19. Chai, Z.H., Shi, B.C., Lu, J.H., Guo, Z.L.: Non-Darcy flow in disordered porous media: a lattice Boltzmann study. Comput. Fluids. 39(10), 2069–2077 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tully, B., Ventikos, Y.: Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J. Fluid Mech. 667, 188–215 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kang, Q.J., Zhang, D.X., Chen, S.Y.: Unified lattice Boltzmann method for flow in multiscale porous media. Phys. Rev. E. 66(5), 056307 (2002)

    Article  ADS  Google Scholar 

  22. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  23. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  24. The Vascular Modeling Toolkit. Available from: www.vmtk.org

  25. Jain, K.: Transition to turbulence in physiological flows: Direct numerical simulation of hemodynamics in intracranial aneurysms and cerebrospinal fluid hydrodynamics in the spinal canal. 2016, Universität Siegen

    Google Scholar 

  26. Almotiri, J., Elleithy, K., Elleithy, A.: Retinal vessels segmentation techniques and algorithms: a survey. Appl. Sci. 8(2), 155 (2018)

    Article  Google Scholar 

  27. Simonovsky, M., et al.: A deep metric for multimodal registration. In: 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Athens, Greece (2016)

    Google Scholar 

  28. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging. 30(4), 449–459 (2017)

    Article  Google Scholar 

  29. Hjelle, Ø., Dæhlen, M.: Triangulations and applications. In: Mathematics and Visualization, p. 234. Springer-Verlag, Berlin/New York (2006)

    MATH  Google Scholar 

  30. De Boor, C.: A practical guide to splines. In: Applied Mathematical Sciences, Rev edn, p. 346. Springer. xviii, New York (2001)

    Google Scholar 

  31. Helgeland, A., Mardal, K.A., Haughton, V., Reif, B.A.: Numerical simulations of the pulsating flow of cerebrospinal fluid flow in the cervical spinal canal of a Chiari patient. J. Biomech. 47(5), 1082–1090 (2014)

    Article  Google Scholar 

  32. Kurtcuoglu, V., Soellinger, M., Summers, P., Boomsma, K., Poulikakos, D., Boesiger, P., Ventikos, Y.: Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius. J. Biomech. 40(6), 1235–1245 (2007)

    Article  Google Scholar 

  33. Stoverud, K.H., Langtangen, H.P., Ringstad, G.A., Eide, P.K., Mardal, K.A.: Computational investigation of cerebrospinal fluid dynamics in the posterior cranial fossa and cervical subarachnoid space in patients with Chiari I malformation. PLoS One. 11(10), e0162938 (2016)

    Article  Google Scholar 

  34. Rutkowska, G., Haughton, V., Linge, S., Mardal, K.A.: Patient-specific 3D simulation of cyclic CSF flow at the craniocervical region. Am. J. Neuroradiol. 33(9), 1756–1762 (2012)

    Article  Google Scholar 

  35. Jain, K., Ringstad, G., Eide, P.K., Mardal, K.A.: Direct numerical simulation of transitional hydrodynamics of the cerebrospinal fluid in Chiari I malformation: the role of cranio-vertebral junction. Int. J. Numer. Method Biomed. Eng. 33(9), (2017)

    Article  Google Scholar 

  36. Stockman, H.W.: Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space. J. Biomech. Eng. 128(1), 106 (2005)

    Article  Google Scholar 

  37. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Haslam, M., Zamir, M.: Pulsatile flow in tubes of elliptic gross sections. Ann. Biomed. Eng. 26(5), 780–787 (1998)

    Article  Google Scholar 

  39. Gupta, S., Poulikakos, D., Kurtcuoglu, V.: Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid. Phys. Fluids. 20(9), (2008)

    Article  ADS  MATH  Google Scholar 

  40. Boutsianis, E., Gupta, S., Boomsma, K., Poulikakos, D.: Boundary conditions by Schwarz-Christoffel mapping in anatomically accurate hemodynamics. Ann. Biomed. Eng. 36(12), 2068–2084 (2008)

    Article  Google Scholar 

  41. Enzmann, D.R., Pelc, N.J.: Brain motion: measurement with phase-contrast MR imaging. Radiology. 185(3), 653–660 (1992)

    Article  Google Scholar 

  42. Soellinger, M., Rutz, A.K., Kozerke, S., Boesiger, P.: 3D cine displacement-encoded MRI of pulsatile brain motion. Magn. Reson. Med. 61(1), 153–162 (2009)

    Article  Google Scholar 

  43. Pahlavian, S.H., Oshinski, J., Zhong, X., Loth, F., Amini, R.: Regional quantification of brain tissue strain using displacement-encoding with stimulated echoes magnetic resonance imaging. J. Biomech. Eng. 140(8), (2018)

    Article  Google Scholar 

  44. Shannon, C.E.: Communication in the presence of noise. Proceedings of the Institute of Radio Engineers. 37(1), 10–21 (1949)

    MathSciNet  Google Scholar 

  45. Luke, H.D.: The origins of the sampling theorem. IEEE Commun. Mag. 37(4), 106–108 (1999)

    Article  Google Scholar 

  46. Terem, I., Ni, W.W., Goubran, M., Rahimi, M.S., Zaharchuk, G., Yeom, K.W., Moseley, M.E., Kurt, M., Holdsworth, S.J.: Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 80, 2549 (2018)

    Article  Google Scholar 

  47. Ma, Q., Ineichen, B.V., Detmar, M., Proulx, S.T.: Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8(1), 1434 (2017)

    Article  ADS  Google Scholar 

  48. Grzybowski, D.M., Herderick, E.E., Kapoor, K.G., Holman, D.W., Katz, S.E.: Human arachnoid granulations part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex. Cerebrospinal Fluid Res. 4, 6 (2007)

    Article  Google Scholar 

  49. Holman, D.W., Kurtcuoglu, V., Grzybowski, D.M.: Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. II. In vitro arachnoid outflow model. J. R. Soc. Interface. 7(49), 1205–1218 (2010)

    Article  Google Scholar 

  50. Eide, P.K., Vatnehol, S.A.S., Emblem, K.E., Ringstad, G.: Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci. Rep. 8(1), 7194 (2018)

    Article  ADS  Google Scholar 

  51. Ma, Q., Ries, M., Decker, Y., Muller, A., Riner, C., Bucker, A., Fassbender, K., Detmar, M., Proulx, S.T.: Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 137, 151 (2019)

    Article  Google Scholar 

  52. Linge, S.O., Haughton, V., Lovgren, A.E., Mardal, K.A., Langtangen, H.P.: CSF flow dynamics at the craniovertebral junction studied with an idealized model of the subarachnoid space and computational flow analysis. Am. J. Neuroradiol. 31(1), 185–192 (2010)

    Article  Google Scholar 

  53. Siyahhan, B., Knobloch, V., de Zelicourt, D., Asgari, M., Schmid Daners, M., Poulikakos, D., Kurtcuoglu, V.: Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J. R. Soc. Interface. 11(94), 20131189 (2014)

    Article  Google Scholar 

  54. Xie, L.L., Kang, H.Y., Xu, Q.W., Chen, M.J., Liao, Y.H., Thiyagarajan, M., O'Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., Nedergaard, M.: Sleep drives metabolite clearance from the adult brain. Science. 342(6156), 373–377 (2013)

    Article  ADS  Google Scholar 

  55. Rikhtegar, F., Edelman, E.R., Olgac, U., Poulikakos, D., Kurtcuoglu, V.: Drug deposition in coronary arteries with overlapping drug-eluting stents. J. Control. Release. 238, 1–9 (2016)

    Article  Google Scholar 

  56. Rodi, W.: Turbulence modeling and simulation in hydraulics: a historical review. J. Hydraul. Eng. 143(5), (2017)

    Article  Google Scholar 

  57. Jacobson, E.E., Fletcher, D.F., Morgan, M.K., Johnston, I.H.: Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis. Med. Biol. Eng. Comput. 37(1), 59–63 (1999)

    Article  Google Scholar 

  58. Fin, L., Grebe, R.: Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius. Comput. Methods Biomech. Biomed. Engin. 6(3), 163–170 (2003)

    Article  Google Scholar 

  59. Kurtcuoglu, V., Poulikakos, D., Ventikos, Y.: Computational modeling of the mechanical behavior of the cerebrospinal fluid system. J. Biomech. Eng. 127(2), 264–269 (2005)

    Article  Google Scholar 

  60. Du Boulay, G., O'Connell, J., Currie, J., Bostick, T., Verity, P.: Further investigations on pulsatile movements in the cerebrospinal fluid pathways. Acta Radiol. Diagn. 13(0), 496–523 (1972)

    Article  Google Scholar 

  61. Kurtcuoglu, V., Soellinger, M., Summers, P., Poulikakos, D., Boesiger, P.: Mixing and modes of mass transfer in the third cerebral ventricle: a computational analysis. J. Biomech. Eng. 129(5), 695–702 (2007)

    Article  Google Scholar 

  62. Cheng, S., Tan, K., Bilston, L.E.: The effects of the interthalamic adhesion position on cerebrospinal fluid dynamics in the cerebral ventricles. J. Biomech. 43(3), 579–582 (2010)

    Article  Google Scholar 

  63. Howden, L., Giddings, D., Power, H., Aroussi, A., Vloeberghs, M., Garnett, M., Walker, D.: Three-dimensional cerebrospinal fluid flow within the human ventricular system. Comput. Methods Biomech. Biomed. Engin. 11(2), 123–133 (2008)

    Article  Google Scholar 

  64. Bergsneider, M., Black, P.M., Klinge, P., Marmarou, A., Relkin, N.: Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery. 57(3 Suppl), S29–S39; discussion ii--v (2005)

    Google Scholar 

  65. Gholampour, S., Fatouraee, N., Seddighi, A.S., Seddighi, A.: Numerical simulation of cerebrospinal fluid hydrodynamics in the healing process of hydrocephalus patients. J. Appl. Mech. Tech. Phys. 58(3), 386–391 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  66. Demerdash, A., Rocque, B.G., Johnston, J., Rozzelle, C.J., Yalcin, B., Oskouian, R., Delashaw, J., Tubbs, R.S.: Endoscopic third ventriculostomy: a historical review. Br. J. Neurosurg. 31(1), 28–32 (2017)

    Article  Google Scholar 

  67. Gholampour, S.: FSI simulation of CSF hydrodynamic changes in a large population of non-communicating hydrocephalus patients during treatment process with regard to their clinical symptoms. PLoS One. 13(4), e0196216 (2018)

    Article  MathSciNet  Google Scholar 

  68. Farnoush, A., Tan, K., Juge, L., Bilston, L.E., Cheng, S.: Effect of endoscopic third ventriculostomy on cerebrospinal fluid pressure in the cerebral ventricles. J. Clin. Neurosci. 23, 63–67 (2016)

    Article  Google Scholar 

  69. Khani, M., Sass, L., Xing, T., Sharp, M.K., Balédent, O., Martin, B.: Anthropomorphic model of intrathecal cerebrospinal fluid dynamics within the spinal subarachnoid space: spinal cord nerve roots increase steady-streaming. J. Biomech. Eng. 140, 081012 (2018)

    Article  Google Scholar 

  70. Elliott, N.S.J., Bertram, C.D., Martin, B.A., Brodbelt, A.R.: Syringomyelia: a review of the biomechanics. J. Fluids Struct. 40, 1–24 (2013)

    Article  ADS  Google Scholar 

  71. Shaffer, N., Martin, B., Loth, F.: Cerebrospinal fluid hydrodynamics in type I Chiari malformation. Neurol. Res. 33(3), 247–260 (2011)

    Article  Google Scholar 

  72. Loth, F., Yardimci, M.A., Alperin, N.: Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J. Biomech. Eng. 123(1), 71–79 (2001)

    Google Scholar 

  73. The Visible Human Project. 1997 [cited 2011 February]; Available from: http://www.nlm.nih.gov/research/visible/visible_human.html

  74. Stockman, H.W.: Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space. J. Biomech. Eng. 128(1), 106–114 (2006)

    Article  Google Scholar 

  75. Sweetman, B., Linninger, A.A.: Cerebrospinal fluid flow dynamics in the central nervous system. Ann. Biomed. Eng. 39(1), 484–496 (2011)

    Article  Google Scholar 

  76. Linninger, A.A., Xenos, M., Zhu, D.C., Somayaji, M.R., Kondapalli, S., Penn, R.D.: Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Eng. 54(2), 291–302 (2007)

    Article  Google Scholar 

  77. Sweetman, B., Xenos, M., Zitella, L., Linninger, A.A.: Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain. Comput. Biol. Med. 41(2), 67–75 (2011)

    Article  Google Scholar 

  78. Yiallourou, T.I., Kroger, J.R., Stergiopulos, N., Maintz, D., Martin, B.A., Bunck, A.C.: Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS One. 7(12), e52284 (2012)

    Article  ADS  Google Scholar 

  79. Lindstrom, E.K., Schreiner, J., Ringstad, G.A., Haughton, V., Eide, P.K., Mardal, K.A.: Comparison of phase-contrast MR and flow simulations for the study of CSF dynamics in the cervical spine. Neuroradiol. J. 31(3), 292–298 (2018)

    Article  Google Scholar 

  80. Clarke, E.C., Fletcher, D.F., Stoodley, M.A., Bilston, L.E.: Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J. Biomech. 46(11), 1801–1809 (2013)

    Article  Google Scholar 

  81. Heidari Pahlavian, S., Bunck, A.C., Loth, F., Shane Tubbs, R., Yiallourou, T., Kroeger, J.R., Heindel, W., Martin, B.A.: Characterization of the discrepancies between four-dimensional phase-contrast magnetic resonance imaging and in-silico simulations of cerebrospinal fluid dynamics. J. Biomech. Eng. 137(5), 051002 (2015)

    Article  Google Scholar 

  82. Heidari Pahlavian, S., Bunck, A.C., Thyagaraj, S., Giese, D., Loth, F., Hedderich, D.M., Kroger, J.R., Martin, B.A.: Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation. Ann. Biomed. Eng. 44(11), 3202–3214 (2016)

    Article  Google Scholar 

  83. Thyagaraj, S., Pahlavian, S.H., Sass, L.R., Loth, F., Vatani, M., Choi, J.W., Tubbs, R.S., Giese, D., Kroger, J.R., Bunck, A.C., Martin, B.A.: An MRI-compatible hydrodynamic simulator of cerebrospinal fluid motion in the cervical spine. IEEE Trans. Biomed. Eng. (2017)

    Google Scholar 

  84. Martin, B.A., Yiallourou, T.I., Pahlavian, S.H., Thyagaraj, S., Bunck, A.C., Loth, F., Sheffer, D.B., Kroger, J.R., Stergiopulos, N.: Inter-operator reliability of magnetic resonance image-based computational fluid dynamics prediction of cerebrospinal fluid motion in the cervical spine. Ann. Biomed. Eng. 44(5), 1524–1537 (2016)

    Article  Google Scholar 

  85. Bunck, A.C., Kroger, J.R., Juttner, A., Brentrup, A., Fiedler, B., Schaarschmidt, F., Crelier, G.R., Schwindt, W., Heindel, W., Niederstadt, T., Maintz, D.: Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal. Eur. Radiol. 21(8), 1788–1796 (2011)

    Article  Google Scholar 

  86. Bunck, A.C., Kroeger, J.R., Juettner, A., Brentrup, A., Fiedler, B., Crelier, G.R., Martin, B.A., Heindel, W., Maintz, D., Schwindt, W., Niederstadt, T.: Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia. Eur. Radiol. 22(9), 1860–1870 (2012)

    Article  Google Scholar 

  87. Khani, M., Xing, T., Gibbs, C., Oshinski, J.N., Stewart, G.R., Zeller, J.R., Martin, B.A.: Nonuniform moving boundary method for computational fluid dynamics simulation of intrathecal cerebrospinal flow distribution in a cynomolgus monkey. J. Biomech. Eng. 139(8), (2017)

    Article  Google Scholar 

  88. Gardner, W.J.: Hydrodynamic mechanism of Syringomyelia: its relationship to Myelocele. J. Neurol. Neurosurg. Psychiatry. 28, 247–259 (1965)

    Article  Google Scholar 

  89. Williams, B.: On the pathogenesis of syringomyelia: a review. J. R. Soc. Med. 73(11), 798–806 (1980)

    Article  Google Scholar 

  90. Lockey, P., Poots, G., Williams, B.: Theoretical aspects of the attenuation of pressure pulses within cerebrospinal-fluid pathways. Med. Biol. Eng. 13(6), 861–869 (1975)

    Article  Google Scholar 

  91. Berkouk, K., Carpenter, P.W., Lucey, A.D.: Pressure wave propagation in fluid-filled co-axial elastic tubes, part 1: basic theory. J. Biomech. Eng. 125(6), 852–856 (2003)

    Article  Google Scholar 

  92. Carpenter, P.W., Berkouk, K., Lucey, A.D.: Pressure wave propagation in fluid-filled co-axial elastic tubes, part 2: mechanisms for the pathogenesis of syringomyelia. J. Biomech. Eng. 125(6), 857–863 (2003)

    Article  Google Scholar 

  93. Carpenter, P.W., Berkouk, K., Lucey, A.D.: A theoretical model of pressure wave propagation in the human spinal CSF system. Eng. Mech. 6(4/5), 213–228 (1999)

    Google Scholar 

  94. Bertram, C.D., Brodbelt, A.R., Stoodley, M.A.: The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J. Biomech. Eng. 127(7), 1099–1109 (2005)

    Article  Google Scholar 

  95. Elliott, N.S.J., Lockerby, D.A., Brodbelt, A.R.: The pathogenesis of syringomyelia: a re-evaluation of the elastic-jump hypothesis. J. Biomech. Eng. 131(4), 044503–1–6 (2009)

    Article  Google Scholar 

  96. Chang, H.S., Nakagawa, H.: Hypothesis on the pathophysiology of syringomyelia based on simulation of cerebrospinal fluid dynamics. J. Neurol. Neurosurg. Psychiatry. 74(3), 344–347 (2003)

    Article  Google Scholar 

  97. Bertram, C.D., Bilston, L.E., Stoodley, M.A.: Tensile radial stress in the spinal cord related to arachnoiditis or tethering: a numerical model. Med. Biol. Eng. Comput. 46(7), 701–707 (2008)

    Article  Google Scholar 

  98. Bertram, C.D., Heil, M.: A poroelastic fluid/structure-interaction model of cerebrospinal fluid dynamics in the cord with syringomyelia and adjacent subarachnoid-space stenosis. J. Biomech. Eng. 139(1), (2017)

    Article  Google Scholar 

  99. Heil, M., Bertram, C.D.: A poroelastic fluid-structure interaction model of syringomyelia. J. Fluid Mech. 809, 360–389 (2016)

    Article  ADS  MATH  Google Scholar 

  100. Elliott, N.S., Lockerby, D.A., Brodbelt, A.R.: A lumped-parameter model of the cerebrospinal system for investigating arterial-driven flow in posttraumatic syringomyelia. Med. Eng. Phys. 33(7), 874–882 (2011)

    Article  Google Scholar 

  101. Elliott, N.S.: Syrinx fluid transport: modeling pressure-wave-induced flux across the spinal pial membrane. J. Biomech. Eng. 134(3), 031006 (2012)

    Article  Google Scholar 

  102. Elliott, N.S.J., Lucey, A.D., Lockerby, D.A., Brodbelt, A.R.: Fluid-structure interactions in a cylindrical layered wave guide with application in the spinal column to syringomyelia. J. Fluids Struct. 70, 464–499 (2017)

    Article  ADS  Google Scholar 

  103. Cirovic, S., Lloyd, R., Jovanovik, J., Volk, H.A., Rusbridge, C.: Computer simulation of syringomyelia in dogs. BMC Vet. Res. 14(1), 82 (2018)

    Article  Google Scholar 

  104. Cirovic, S.: A coaxial tube model of the cerebrospinal fluid pulse propagation in the spinal column. J. Biomech. Eng. 131(2), 021008 (2009)

    Article  Google Scholar 

  105. Cirovic, S., Kim, M.: A one-dimensional model of the spinal cerebrospinal-fluid compartment. J. Biomech. Eng. 134(2), 021005 (2012)

    Article  Google Scholar 

  106. Cheng, S., Fletcher, D., Hemley, S., Stoodley, M., Bilston, L.: Effects of fluid structure interaction in a three dimensional model of the spinal subarachnoid space. J. Biomech. 47(11), 2826–2830 (2014)

    Article  Google Scholar 

  107. Cheng, S., Stoodley, M.A., Wong, J., Hemley, S., Fletcher, D.F., Bilston, L.E.: The presence of arachnoiditis affects the characteristics of CSF flow in the spinal subarachnoid space: a modelling study. J. Biomech. 45(7), 1186–1191 (2012)

    Article  Google Scholar 

  108. Bilston, L.E., Fletcher, D.F., Stoodley, M.A.: Focal spinal arachnoiditis increases subarachnoid space pressure: a computational study. Clin. Biomech. 21(6), 579–584 (2006)

    Article  Google Scholar 

  109. Roldan, A., Wieben, O., Haughton, V., Osswald, T., Chesler, N.: Characterization of CSF hydrodynamics in the presence and absence of tonsillar ectopia by means of computational flow analysis. Am. J. Neuroradiol. 30(5), 941–946 (2009)

    Article  Google Scholar 

  110. Linge, S.O., Haughton, V., Lovgren, A.E., Mardal, K.A., Helgeland, A., Langtangen, H.P.: Effect of tonsillar herniation on cyclic CSF flow studied with computational flow analysis. Am. J. Neuroradiol. 32(8), 1474–1481 (2011)

    Article  Google Scholar 

  111. Martin, B.A., Kalata, W., Shaffer, N., Fischer, P., Luciano, M., Loth, F.: Hydrodynamic and longitudinal impedance analysis of cerebrospinal fluid dynamics at the craniovertebral junction in type I Chiari malformation. PLoS One. 8(10), e75335 (2013)

    Article  ADS  Google Scholar 

  112. Shaffer, N., Martin, B.A., Rocque, B., Madura, C., Wieben, O., Iskandar, B.J., Dombrowski, S., Luciano, M., Oshinski, J.N., Loth, F.: Cerebrospinal fluid flow impedance is elevated in type I Chiari malformation. J. Biomech. Eng. 136(2), 021012 (2014)

    Article  Google Scholar 

  113. Pahlavian, S.H., Loth, F., Oshinski, J.N., Luciano, M.G., Martin, B.A.: Cardiac related neural tissue motion impacts cerebrospinal fluid dynamics at the cervical-medullary junction: a patient-specific moving-boundary computational fluid dynamics model of type 1 Chiari malformation. Ann. Biomed. Eng. (2015)

    Google Scholar 

  114. Papisov, M.I., Belov, V.V., Gannon, K.S.: Physiology of the Intrathecal bolus: the Leptomeningeal route for macromolecule and particle delivery to CNS. Mol. Pharm. 10(5), 1522–1532 (2013)

    Article  Google Scholar 

  115. O’Donnell, J., Ding, F., Nedergaard, M.: Distinct functional states of astrocytes during sleep and wakefulness: is norepinephrine the master regulator? Curr. Sleep Med. Rep. 1(1), 1–8 (2015)

    Article  Google Scholar 

  116. Patel, T., Zhou, J.B., Piepmeier, J.M., Saltzman, W.M.: Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 64(7), 701–705 (2012)

    Article  Google Scholar 

  117. Lu, C.T., Zhao, Y.Z., Wong, H.L., Cai, J., Peng, L., Tian, X.Q.: Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomedicine. 9, 2241–2256 (2014)

    Article  Google Scholar 

  118. Watanabe, Y., Kazuki, Y., Kazuki, K., Ebiki, M., Nakanishi, M., Nakamura, K., Yoshida Yamakawa, M., Hosokawa, H., Ohbayashi, T., Oshimura, M., Nakashima, K.: Use of a human artificial chromosome for delivering trophic factors in a rodent model of amyotrophic lateral sclerosis. Mol. Ther. Nucleic Acids. 4, e253 (2015)

    Article  Google Scholar 

  119. Deepa, P., Shahani, N., Alladi, P.A., Vijayalakshmi, K., Sathyaprabha, T.N., Nalini, A., Ravi, V., Raju, T.R.: Down regulation of trophic factors in neonatal rat spinal cord after administration of cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients. J. Neural Transm. 118(4), 531–538 (2011)

    Article  Google Scholar 

  120. Myers, M.R.: A numerical investigation into factors affecting anesthetic distribution during spinal anesthesia. J. Biomech. 29(2), 139–149 (1996)

    Article  MathSciNet  Google Scholar 

  121. Kuttler, A., Dimke, T., Kern, S., Helmlinger, G., Stanski, D., Finelli, L.A.: Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs. J. Pharmacokinet. Pharmacodyn. 37(6), 629–644 (2010)

    Article  Google Scholar 

  122. Hsu, Y., Hettiarachchi, H.D., Zhu, D.C., Linninger, A.A.: The frequency and magnitude of cerebrospinal fluid pulsations influence intrathecal drug distribution: key factors for interpatient variability. Anesth. Analg. 115(2), 386–394 (2012)

    Article  Google Scholar 

  123. Haga, P.T., Pizzichelli, G., Mortensen, M., Kuchta, M., Pahlavian, S.H., Sinibaldi, E., Martin, B.A., Mardal, K.A.: A numerical investigation of intrathecal isobaric drug dispersion within the cervical subarachnoid space. PLoS One. 12(3), e0173680 (2017)

    Article  Google Scholar 

  124. Tangen, K.M., Leval, R., Mehta, A.I., Linninger, A.A.: Computational and in vitro experimental investigation of intrathecal drug distribution: parametric study of the effect of injection volume, cerebrospinal fluid pulsatility, and drug uptake. Anesth. Analg. 124(5), 1686–1696 (2017)

    Article  Google Scholar 

  125. Tangen, K.M., Hsu, Y., Zhu, D.C., Linninger, A.A.: CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J. Biomech. 48(10), 2144–2154 (2015)

    Article  Google Scholar 

  126. Linninger, A.A., Somayaji, M.R., Mekarski, M., Zhang, L.: Prediction of convection-enhanced drug delivery to the human brain. J. Theor. Biol. 250(1), 125–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  127. Sarntinoranont, M., Banerjee, R.K., Lonser, R.R., Morrison, P.F.: A computational model of direct interstitial infusion of macromolecules into the spinal cord. Ann. Biomed. Eng. 31(4), 448–461 (2003)

    Article  Google Scholar 

  128. Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media. 92(1), 119–143 (2012)

    Article  MathSciNet  Google Scholar 

  129. Tangen, K., Linninger, A., Narasimhan, N.S.: Clearance of subarachnoid hemorrhage from the central nervous system via lumbar drain - a bench-top and computational study. Cerebrovasc. Dis. 41, 202–202 (2016)

    Google Scholar 

  130. Tangen, K., Narasimhan, N.S., Sierzega, K., Preden, T., Alaraj, A., Linninger, A.A.: Clearance of subarachnoid hemorrhage from the cerebrospinal fluid in computational and in vitro models. Ann. Biomed. Eng. (2016)

    Google Scholar 

  131. Dichiro, G.: Movement of the cerebrospinal fluid in human beings. Nature. 204, 290–291 (1964)

    Article  ADS  Google Scholar 

  132. Asgari, M., de Zelicourt, D.A., Kurtcuoglu, V.: Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase. Fluids Barriers CNS. 14(1), 14 (2017)

    Google Scholar 

  133. Sanchez, A.L., Martinez-Bazan, C., Gutierrez-Montes, C., Criado-Hidalgo, E., Pawlak, G., Bradley, W., Haughton, V., Lasheras, J.C.: On the bulk motion of the cerebrospinal fluid in the spinal canal. J. Fluid Mech. 841, 203–227 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  134. Bilston, L.E., Fletcher, D.F., Brodbelt, A.R., Stoodley, M.A.: Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput. Methods Biomech. Biomed. Engin. 6(4), 235–241 (2003)

    Article  Google Scholar 

  135. Lloyd, R.A., Fletcher, D.F., Clarke, E.C., Bilston, L.E.: Chiari malformation may increase perivascular cerebrospinal fluid flow into the spinal cord: a subject-specific computational modelling study. J. Biomech. 65, 185–193 (2017)

    Article  Google Scholar 

  136. Wang, P., Olbricht, W.L.: Fluid mechanics in the perivascular space. J. Theor. Biol. 274(1), 52–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  137. Bilston, L.E., Stoodley, M.A., Fletcher, D.F.: The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development. J. Neurosurg. 112(4), 808–813 (2010)

    Article  Google Scholar 

  138. Schley, D., Carare-Nnadi, R., Please, C.P., Perry, V.H., Weller, R.O.: Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J. Theor. Biol. 238(4), 962–974 (2006)

    Article  Google Scholar 

  139. Asgari, M., de Zelicourt, D., Kurtcuoglu, V.: How astrocyte networks may contribute to cerebral metabolite clearance. Sci. Rep. 5, (2015)

    Google Scholar 

  140. Sharp, M.K., Diem, A.K., Weller, R.O., Carare, R.O.: Peristalsis with oscillating flow resistance: a mechanism for periarterial clearance of amyloid beta from the brain. Ann. Biomed. Eng. 44(5), 1553–1565 (2016)

    Article  Google Scholar 

  141. Asgari, M., de Zelicourt, D., Kurtcuoglu, V.: Glymphatic solute transport does not require bulk flow. Sci. Rep. 6, (2016)

    Google Scholar 

  142. Rey, J., Sarntinoranont, M.: Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study. Fluids Barriers CNS. 15, (2018)

    Google Scholar 

  143. Diem, A.K., Sharp, M.M., Gatherer, M., Bressloff, N.W., Carare, R.O., Richardson, G.: Arterial pulsations cannot drive intramural periarterial drainage: significance for a beta drainage. Front. Neurosci. 11, (2017)

    Google Scholar 

  144. Jin, B.J., Smith, A.J., Verkman, A.S.: Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J. Gen. Physiol. 148(6), 489–501 (2016)

    Article  Google Scholar 

  145. Coloma, M., Schaffer, J.D., Carare, R.O., Chiarot, P.R., Huang, P.: Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain. J. Math. Biol. 73(2), 469–490 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  146. Holter, K.E., Kehlet, B., Devor, A., Sejnowski, T.J., Dale, A.M., Omholt, S.W., Ottersen, O.P., Nagelhus, E.A., Mardal, K.A., Pettersen, K.H.: Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl. Acad. Sci. U. S. A. 114(37), 9894–9899 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vartan Kurtcuoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurtcuoglu, V., Jain, K., Martin, B.A. (2019). Modelling of Cerebrospinal Fluid Flow by Computational Fluid Dynamics. In: Miller, K. (eds) Biomechanics of the Brain. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04996-6_9

Download citation

Publish with us

Policies and ethics