Skip to main content

Microcrystalline Avian Keratin Protein Fibers

  • Chapter
Natural Fibers, Plastics and Composites

Abstract

Biopolymers compose the morphological structures generated in all living organisms. The macroscopic physical properties of biopolymers like keratin are due both to molecular level structure and microcrystallinity, the self-consistent packing arrays of molecular order within a defined space. Processing fiber into end products can retain the microcrystalline properties of the starting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, K.M., Rieko, T., Yoshiko, Y. and Akahane, K. The primary structure of feather keratins from duck (Anas platyrhynchos) and pigeon (Columba livid). Biochimica et Biophysica Acta 1986; 873:6–12.

    Article  CAS  Google Scholar 

  2. Church, J.S., Corino, G.L. and Woodhead, A.L The analysis of merino wool cuticle and cortical cells by Fourier transform Raman spectroscopy. Biopoly. 1997; 42:7–17.

    Article  CAS  Google Scholar 

  3. Heine, E., Hollfelder, B., Lorenz, W., Thomas, H., Wortmann, G.and Höecker, H. “Enzymes for wool fiber modification.” In Enzyme Applications in Fiber Processing, K-E. L. Erickson and A. Cavaco-Paulo, eds. A.C.S. Symposium Series, 1998; pp. 279–293.

    Google Scholar 

  4. Yukio, K., Atanabe, K. and Okamoto, S. On the formation of Yuba-like film from feathers and wool keratin solutions. Nippon Nogei Kagaku Kaishi 1975; 49: 513–517

    Article  Google Scholar 

  5. Galante, Y.M., Foglietta, D., Tonin, C, Innocenti, R., Ferrero, F. and Monteverdi, R. “Interactions of Subtilisin-Type Protease with Merino Wool Fibers” In Enzyme Applications in Fiber Processing, K-E. L. Erickson and A. Cavaco-Paulo, eds. A.C.S. Symposium Series, 1998; pp. 279–293.

    Google Scholar 

  6. Feughelman, M. and James, V. Hexagonal Packing of Intermediate Filaments (Microfibrils) in a-Keratin Fibers. Textile Res. J. 1998; 68:110–114.

    Article  CAS  Google Scholar 

  7. Rinoul, L., Carter, E.A., Stewart, S.D. Fredericks and P.M. Keratin Orientation in Wool and Feathers by Polarized Raman Spectroscopy. Biopolymers (Spectroscopy), 2000; 51:19–28.

    Article  Google Scholar 

  8. Haris, P.I. and Chapman, D. “Fourier Transform Infrared Spectroscopic Studies of Biomembrane Systems.” In Infrared Spectroscopy of Biomolecules, Mantsch H.H. and Chapman, D., eds. New York: Wiley-Liss, 1996; p. 242.

    Google Scholar 

  9. Twardowski, J. and Anzenbacher, P. Raman and IR Spectroscopy in Biology and Biochemistry. New York: Ellis Horwood, 1994; pp.110–117.

    Google Scholar 

  10. Raman spectra collected and interpreted within collaboration of Dr. Shalini Jayasundera and Dr. Fran Adar. Edison, NJ: Jobin Yvon Horiba.

    Google Scholar 

  11. Schmidt, W.F. and Line, M.J. Physical and Chemical Structures of Poultry Feather Fiber Fraction in Fiber Process Development Proceedings of the TAPPI Nonwovens Conference; 1996 March 11-13; Charlotte, NC. Atlanta, GA: Technical Association of the Pulp and Paper Industry, 1996; pp.135–140.

    Google Scholar 

  12. Hardy, J.L. and Hardy, T.M.P. Feathers from Domestic and Wild Fowl. Washington, DC: United States Department of Agriculture, 1949; Circular # 803. p. 1–28.

    Google Scholar 

  13. Lucas, A.M. and Stettenheim, P.R. Avian Anatomy Integument Part I. Washington, DC: Agricultural Handbook 362, 1972. pp. 97–138.

    Google Scholar 

  14. Kawaguchi, Y. Some Properties and the Applications of Fine Powder Prepared by Grinding Chicken Feathers. 70th Anniversary Conference on Colour Materials, Archadia Ichigaya, Shigaku Kaikan, Tokyo, Japan. 1997; pp. 154–157.

    Google Scholar 

  15. Schmidt, W.F. “Innovative Feather Utilization Strategies.” pp. 276–282. In Proceedings of the 1998 Poultry Waste Management Symposium, 19-22 October 1998, Springdale AR. Auburn, AL: Auburn University Printing Services, 1998.

    Google Scholar 

  16. Shih, J.C.H. Recent developments in poultry waste digestion and feather utilization — a review. Poultry Sci., 1993; 72: 1617–1620.

    Article  Google Scholar 

  17. Lin, X., Kelemen, D.W., Miller, E.S. and Shih, J.C.H. Nucleotide Sequence and Expression of kerA, the Gene Encoding a Keratinolytic Protease of Bacillus licheniformis PWD-1. Applied and Environ. Microbiology, 1995; 61:1469–1474.

    CAS  Google Scholar 

  18. Wang, J-J. and Shih, J.C.H. Fermentation production of keratinase from Bacillus licheniformis PWP-1 and recombinant B. subtilis FDB-29. J. Industrial Microbiology & Biotechnology, 1999; 22:608–616.

    Article  CAS  Google Scholar 

  19. Gassner, G., Schmidt, W.F., Line, M.J., Waters, R.M., and Thomas, CG. Fiber and Fiber Products from Feathers. U.S. Patent No. 5,750,030 issued January 6, 1998.

    Google Scholar 

  20. Kruchen, E. Method for Cleaning Poultry Feathers. U.S. Patent No. 4,169,706, issued October 2, 1979.

    Google Scholar 

  21. Maureen R. Feather fibers can take chicken feathers beyond feather dusters. Chemical and Engineering News. 1998; 76:68.

    Google Scholar 

  22. McGovern, V. Recycling Poultry Feathers: More Bang for the Cluck. Environmental Health Perspectives. 2000; 108:A366–A369.

    Article  CAS  Google Scholar 

  23. Martindale, D. Car Parts from Chicken, Scientific American, 2000; 282: 14.

    Google Scholar 

  24. Berenberg, B. Natural Fibers and Resins Turn Composites Green. Composites Technology. 2001; 7:12–16.

    Google Scholar 

  25. Gorman, J. Materials take Wing. Science News. 2002; 161: 120–121.

    Article  Google Scholar 

  26. Schmidt, W. Microcrystalline Keratin: From Feathers to Composite Products. Materials Research Society Symposium Proceedings. 2002; 702:U1.5 1–8.

    Google Scholar 

  27. Kawaguchi, Y. Yokota, H. and Kunitake, T. Pat # Jap Kokai H08-281048, Applicants: Ishihara Yakuhin (Chemicals) Co. and KAMI Trading Co. October 29, 1996.

    Google Scholar 

  28. Kunitake, T., Yokota, H., and Yoshioka, K Pat # Jap Kokai 2000-064197 Applicant: KAMI Trading Co. February 29, 2000.

    Google Scholar 

  29. Yoshioka, K. and Otani, M. Pat # Jap Kokai 2002-054066 Applicant: KAMI Trading Co. February 19, 2002.

    Google Scholar 

  30. Yokota, H., and Yoshioka, K Pat # Jap Kokai 2002-105938 Applicant: KAMI Trading Co. April 10, 2002.

    Google Scholar 

  31. Pavlath, A.E., Houssard, C, Camirand, W. and Robertson, G.H. Clarity of Films from Wool Keratin. Textile Res. J. 1999; 69:539–541.

    Article  CAS  Google Scholar 

  32. Pavlath, A.E., Levy, S., and Robertson, G.H. Films From Feather Keratin. Proc. UJNR Protein Panel Meeting, Monterrey, CA, 2002.

    Google Scholar 

  33. Schmidt, W.F., Codling, E.E., Thomas, C.G., Line, M.J., Stuzynski, T. and Gassner, G. “Binding of Heavy Metal Ions to Fibers and Filters from Poultry Feathers.” In: Proceedings of the TAPPI Nonwovens Conference. 17-19 March 1997, Memphis, TN. Atlanta, GA: Technical Association of the Pulp and Paper Industry, 1997; pp. 135–140.

    Google Scholar 

  34. Tratnyek, J.P. Waste Wool as Scavenger for Mercury Pollution. Environmental Protection Agency, Water pollution control research series, 16080, U.S. Government Printing Office, Washington, DC, 1972. p. 1–49.

    Google Scholar 

  35. http://www.ehime-iinet.or.jp/ehime_e/corp/e-paper/develop.htm

    Google Scholar 

  36. Misra, M., Kar, P., Priyadarshan, G. and Licata, C. Keratin Protein Nano-fiber for Removal of Heavy Metals and Contaminants. Materials Research Society Symposium Proceedings. 2002; 702:U2.1 1–7.

    Google Scholar 

  37. Evazynajad, M. A Study of Production of Turkey Feather Fiber/Nylon Yarns and Fabric. Master’s Thesis. Philadelphia University, 2000.

    Google Scholar 

  38. Evazynajad, M., Kar, A.,Veluswamy, S., McBride, H. and George, B.R. Production and Characterization of Yarns and Fabric Utilizing Turkey Feather Fibers. Materials Research Society Symposium Proceedings. 2002; 702: U1.2 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, W.F., Jayasundera, S. (2004). Microcrystalline Avian Keratin Protein Fibers. In: Wallenberger, F.T., Weston, N.E. (eds) Natural Fibers, Plastics and Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9050-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9050-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4774-3

  • Online ISBN: 978-1-4419-9050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics