Skip to main content

Advertisement

Log in

Abstract

This paper reviews the structure, function and applications of collagens as biomaterials. The various formats for collagens, either as tissue-based devices or as reconstituted soluble collagens are discussed. The major emphasis is on the new technologies that are emerging that will lead to new and improved collagen-based medical devices. In particular, the development of recombinant collagens, especially using microorganism systems, is allowing the development of safe and reproducible collagen products. These systems also allow for the development of novel, non-natural structures, for example collagen like structures containing repeats of key functional domains or as chimeric structures where a collagen domain is covalently linked to another biologically active component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A.M. Ramshaw, J.A. Werkmeister, V. Glattauer, Collagen-based biomaterials. Biotechnol. Genetic Eng. Rev. 13, 335–382 (1995)

    Google Scholar 

  2. J.A.M. Ramshaw, V. Glattauer, J.A. Werkmeister, Stabilisation of collagen in clinical applications, in Biomaterials and Bioengineering Handbook, ed. by D.L. Wise (Marcel Dekker Inc, New York, 2000), pp. 717–738

  3. J.A. Werkmeister, J.A.M Ramshaw, Immunology of collagen-based biomaterials, in Handbook of Biomaterials Engineering, ed. by D.L. Wise (Marcel Dekker Inc., New York, 2000), pp. 739–759

  4. G.J. Wilson, H. Yeger, P. Klement, J.M. Lee, D.W. Courtman, Acellular matrix allograft small caliber vascular prostheses. ASAIO Trans. 36, M340–M343 (1990)

    CAS  PubMed  Google Scholar 

  5. A.L. Brown, T. Brook-Allred, J.E. Waddell, J.F. White, J.A. Werkmeister, J.A.M. Ramshaw, D.J. Bagli, K.A. Woodhouse, Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions. Biomaterials 26, 529–543 (2004)

    Article  Google Scholar 

  6. T.W. Gilbert, T.L. Sellaro, S.F. Badylak, Decellularization of tissues and organs. Biomaterials 27, 3675–3683 (2006)

    CAS  PubMed  Google Scholar 

  7. W. Sung, W.H. Chang, C.Y. Ma, M.H. Lee, Crosslinking of biological tissues using genipin and/or carbodiimide. J. Biomed. Mater. Res. 64, 427–438 (2003)

    Article  Google Scholar 

  8. E.J. Miller, R.K. Rhodes, Preparation and characterisation of the different types of collagens. Meth. Enzymol. 82, 33–64 (1982)

    Article  CAS  PubMed  Google Scholar 

  9. D.G. Wallace, J.M. Mcpherson, L. Ellingsworth, L. Cooperman, R. Armstrong, K.A. Piez, Injectable collagen for tissue augmentation, in Collagen, vol. 3, ed. by M.E. Nimni (CRC Press, Boca Raton, 1988), pp. 117–144

  10. S. Herschorn, S.B. Radomski, D.J. Steele, Early experience with intraurethral collagen injections for urinary incontinence. J. Urol. 148, 1791–1800 (1992)

    Google Scholar 

  11. J.F. Bateman, S. Lamandé, J.A.M. Ramshaw, Collagen superfamily, in Extracellular Matrix: Molecular Components and Interactions, vol. 2, ed. by W.D. Comper (Harwood Academic Publishers, Amsterdam, 1995), pp. 22–67

  12. G. Veit, B. Kobbe, D.R. Keene, M. Paulsson, M. Koch, R. Wagener, Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. J. Biol. Chem. 281, 3494–3504 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. B. Brodsky, J.A.M. Ramshaw, The collagen triple-helix structure. Matrix Biol. 15, 545–554 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. R.A. Berg, D.J. Prockop, The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem. Biophys. Res. Commun. 52, 115–120 (1973)

    Article  CAS  PubMed  Google Scholar 

  15. W. Yang, V.C. Chan, A. Kirkpatrick, J.A.M. Ramshaw, B. Brodsky, Gly-Pro-Arg confers stability similar to Gly-Pro-Hyp in the collagen triple-helix of host-guest peptides. J. Biol. Chem. 272, 28837–28840 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. A.V. Persikov, J.A.M. Ramshaw, A. Kirkpatrick, B. Brodsky, Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 44, 1414–1422 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. M. Yamauchi, G. Mechanic, Cross-linking of collagen, in Collagen, ed. by M.E. Nimni (CRC Press, Boca Raton, 1988), pp. 157–172

  18. C.M. Kielty, A.P. Kwan, D.F. Holmes, S.L. Schor, M.E. Grant, Type X collagen, a product of hypertrophic chondrocytes. Biochem. J. 227, 545–554 (1985)

    CAS  PubMed  Google Scholar 

  19. R.W. Glanville, Type IV collagen, in Structure and function of collagen types, ed. by R. Mayne, R.E. Burgesson (Academic Press, Orlando, 1987), pp. 43–79

  20. B. Brodsky, N.K. Shah, The triple-helix motif in proteins. FASEB J. 9, 1537–1546 (1995)

    CAS  PubMed  Google Scholar 

  21. R. Mayne, R.E. Burgesson, Structure and Function of Collagen Types (Academic Press, Orlando, 1987)

  22. S. Ricard-Blum, B. Dublet, M. van der Rest, Unconventional Collagens (Oxford University Press, Oxford, 2000)

    Google Scholar 

  23. N. Nagai, K. Mori, Y. Satoh, N. Takahashi, S. Yunoki, K. Tajima, M. Munekata, In vitro growth and differentiated activities of human periodontal ligament fibroblasts cultured on salmon collagen gel. J. Biomed. Mater. Res. 82, 395–402 (2007)

    Article  Google Scholar 

  24. Y.Y. Peng, V. Glattauer, J.A. Werkmeister, J.A.M. Ramshaw, Evaluation of collagen products for cosmetic application. J. Cosmet. Sci. 55, 327–341 (2004)

    CAS  PubMed  Google Scholar 

  25. Y. Xu, D.R. Keene, J.M. Bujnicki, M. Höök, S. Lukomski, Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. J. Biol. Chem. 277, 27312–27318 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. F.W. Kotch, R.T. Raines, Self-assembly of synthetic collagen triple helices. Proc. Natl. Acad. Sci. USA 103, 3028–3033 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  27. V. Glattauer, J.A. Werkmeister, J.A.M. Ramshaw, Preparation and use of basement membrane particles. Patent Application WO2006128216 2006

  28. M.J. Lysaght, J. Reyes, The growth of tissue engineering. Tissue Eng. 7, 485–493 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. J. Myllyharju, Recombinant collagen trimers from insect cells and yeast. Meth. Mol. Biol. 139, 39–48 (2000)

    CAS  Google Scholar 

  30. A. Fertala, A.L. Sieron, A. Ganguly, S.W. Li, L. Ala-Kokko, K.R. Anumula, D.J. Prockop, Synthesis of recombinant human procollagen II in a stably transfected tumour cell line (HT1080). Biochem. J. 298, 31–37 (1994)

    CAS  PubMed  Google Scholar 

  31. A. Lamberg, T. Helaakoski, J. Myllyharju, S. Peltonen, H. Notbohm, T. Pihlajaniemi, K.I. Kivirikko, Characterization of human type III collagen expressed in a Baculovirus system. Production of a protein with a stable triple helix requires coexpression with the two types of recombinant prolyl 4-hydroxylase subunit. J. Biol. Chem. 271, 11988–11995 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. F. Ruggiero, J.-Y. Exposito, P. Bournat, V. Gruber, S. Perret, J. Comte, B. Olangnier, R. Garrone, M. Theisen, Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett. 469, 132–136 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. D.P. Toman, F. Pieper, N. Sakai, C. Karatzas, E. Platenburg, I. de Wit, C. Samuel, A. Dekker, G.A. Daniels, R.A. Berg, G. Platenburg, Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice. Transgen. Res. 8, 415–427 (1999)

    Article  CAS  Google Scholar 

  34. D.C. John, R. Kind, A.J. Scott, K.E. Kadler, N.J. Bulleid, Expression of an engineered form of recombinant procollagen in mouse milk. Nature Biotechnol. 17, 385–389 (1999)

    Article  CAS  Google Scholar 

  35. T. Adachi, M. Tomita, K. Shimizu, S. Ogawa, K. Yoshizato, Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase alpha-subunits and human collagens in posterior silk glands: Production of cocoons that contained collagens with hydroxylated proline residues. J. Biotechnol. 126, 205–219 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. K.I. Kivirikko, R. Myllyla, Posttranslational enzymes in the biosynthesis of collagen: intracellular enzymes. Meth. Enzymol. 82, 245–304 (1982)

    Article  CAS  PubMed  Google Scholar 

  37. K.I. Kivirikko, J. Myllyharju, Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol. 16, 357–368 (1998)

    Article  CAS  PubMed  Google Scholar 

  38. J.A.M. Ramshaw, P.R. Vaughan, J.A. Werkmeister, Applications of collagen in medical devices. Biomed. Eng. Appl. 13, 14–26 (2001)

    Article  Google Scholar 

  39. J. Báez, D. Olsen, J.W. Polarek, Recombinant microbial systems for the production of human collagen and gelatin. Appl. Microbiol. Biotechnol. 69, 245–252 (2005)

    Article  PubMed  Google Scholar 

  40. F.A. Ferrari, C. Richardson, J. Chambers, S.C. Causey, T.J. Pollock, J. Capello, J.W. Crissman, DNA composition encoding peptide containing oligopeptide repeating unit(s). US Patent 5,243,038, 1993

  41. J. Cappello, High molecular weight collagen-like protein polymers. U.S. Patent 5,773,249, 1998

  42. P.R. Vaughan, M. Galanis, K.M. Richards, T.A. Tebb, J.A.M. Ramshaw, J.A. Werkmeister, Production of recombinant hydroxylated human type III collagen fragment in Saccharomyces cerevisiae. DNA Cell Biol. 17, 511–518 (1998)

    Article  CAS  Google Scholar 

  43. P.D. Toman, G. Chisholm, H. Mcmullin, L.M. Giere, D.R. Olsen, R.J. Kovach, S.D. Leigh, B.E. Fong, R. Chang, G.A. Daniels, R.A. Berg, R.A. Hitzeman, Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 275, 23303–23309 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. M. Nokelainen, H. Tu, A. Vuorela, H. Notbohm, K.I. Kivirikko, J. Myllyharju, High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 18, 797–806 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. M.W. Werten, W.H. Wisselink, T.J. Jansen-van den Bosch, E.C. de Bruin, F.A. de Wolf, Secreted production of a custom-designed, highly hydrophilic gelatin in Pichia pastoris. Protein Eng. 14, 447–454 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. D.J. Prockop, L. Ala-Kokko, A. Fertala, A. Sieron, K.I. Kivirikko, A. Geddis, T. Pihlajaniemi, Synthesis of human procollagens and collagens in recombinant DNA systems. US Patent 5,593,859, 1997

  47. C. de Bruin, F.A. de Wolf, N.C. Laane, Expression and secretion of human (1(I) procollagen fragment by Hansenula polymorpha as compared to Pichia pastoris. Enzyme Microb. Technol. 26, 640–644 (2000)

    Article  PubMed  Google Scholar 

  48. J. Myllyharju, M. Nokelainen, A. Vuorela, K.I. Kivirikko, Expression of recombinant human type I-III collagens in the yeast Pichia pastoris. Biochem. Soc. Trans. 28, 353–357 (2000)

    Article  CAS  PubMed  Google Scholar 

  49. K.I. Kivirikko, T. Pihlajaniemi, Synthesis of human procollagens and collagens in recombinant DNA systems. Patent Application WO9738710, 1997

  50. K.A. Hasty, H. Wu, M. Byrne, M.B. Goldring, J.M. Seyer, R. Jaenisch, S.M. Krane, C.L. Mainardi, Susceptibility of type I collagen containing mutated alpha 1(1) chains to cleavage by human neutrophil collagenase. Matrix 13, 181–186 (1993)

    CAS  PubMed  Google Scholar 

  51. A.V. Persikov, J.A.M. Ramshaw, B. Brodsky, Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 280, 19343–19349 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. G.A. Di Lullo, S.M. Sweeney, J. Korkko, L. Ala-Kokko, J.D. San Antonio, Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277, 4223–4231 (2002)

    Article  CAS  PubMed  Google Scholar 

  53. A. Steplewski, V. Hintze, A. Fertala, Molecular basis of organization of collagen fibrils. J. Struct. Biol. 157, 297–307 (2007)

    Article  CAS  PubMed  Google Scholar 

  54. H. Ito, A. Steplewski, T. Alabyeva, A. Fertala, Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J. Biomed. Mater. Res. 76, 551–560 (2006)

    Article  Google Scholar 

  55. A. Fertala, W.B. Han, F.K. Ko, Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials. J. Biomed. Mater. Res. 57, 48–58 (2001)

    Article  CAS  PubMed  Google Scholar 

  56. P.R. Vaughan, M. Galanis, J.A.M. Ramshaw, J.A. Werkmeister, Stable expression of the triple helical proteins. US Patent 6,451,557, 2002

    Google Scholar 

  57. C.G. Knight, L.F. Morton, A.R. Peachey, D.S. Tuckwell, R.W. Farndale, M.J. Barnes, The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. M. Hayashi, M. Tomita, K. Yoshizato, Production of EGF-collagen chimeric protein which shows the mitogenic activity. Biochim. Biophys. Acta. 1528, 187–195 (2001)

    CAS  PubMed  Google Scholar 

  59. M. Hayashi, M. Tomita, K. Yoshizato, Interleukin-2-collagen chimeric protein which liberates interleukin-2 upon collagenolysis. Protein Eng. 15, 429–436 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. K.L. Kiick, E. Saxon, D.A. Tirrell, C.R. Bertozzi, Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Y. Tang, D.A. Tirrell, Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. J. Am. Chem. Soc. 123, 11089–11090 (2001)

    Article  CAS  PubMed  Google Scholar 

  62. D. Datta, P. Wang, I.S. Carrico, S.L. Mayo, D.A. Tirrell, A designed phenylalanyl-tRNA synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. J. Am. Chem. Soc. 124, 5652–5653 (2002)

    Article  CAS  PubMed  Google Scholar 

  63. S.L. Martin, B. Vrhovski, A.S. Weiss, Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. Gene 154, 159–166 (1995)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. M. Ramshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramshaw, J.A.M., Peng, Y.Y., Glattauer, V. et al. Collagens as biomaterials. J Mater Sci: Mater Med 20 (Suppl 1), 3–8 (2009). https://doi.org/10.1007/s10856-008-3415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3415-4

Keywords

Navigation