Skip to main content

Biomechanics and Modeling of Tissue-Engineered Heart Valves

  • Chapter
  • First Online:
Advances in Heart Valve Biomechanics

Abstract

Heart valve tissue engineering (HVTE) is a promising technique to overcome the limitations of currently available heart valve prostheses. However, before clinical use, still several challenges need to be overcome. The functionality of the developed replacements is determined by their biomechanical properties and, ultimately, by their collagen architecture. Unfortunately, current techniques are often not able to induce a physiological tissue remodeling, which compromises the long-term functionality. Therefore, a deeper understanding of the process of tissue remodeling is required to optimize the phenomena involved via improving the current HVTE approaches. Computational simulations can help in this process, being a valuable and versatile tool to predict and understand experimental results. This chapter first describes the similarities and differences in functionality and biomechanical properties between native and tissue-engineered heart valves. Secondly, the current status of computational models for collagen remodeling is addressed and, finally, future directions and implications for HVTE are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

HVTE:

Heart valve tissue engineering

SF:

Stress fiber

TE:

Tissue engineering

TEHV:

Tissue-engineered heart valves

References

  1. Yacoub MH, Takkenberg JJM. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005;2(2):60–1. https://doi.org/10.1038/ncpcardio0112.

    Article  CAS  PubMed  Google Scholar 

  2. Zilla P, Brink J, Human P, Bezuidenhout D. Prosthetic heart valves: catering for the few. Biomaterials. 2008;29(4):385–406. https://doi.org/10.1016/j.biomaterials.2007.09.033.

    Article  CAS  PubMed  Google Scholar 

  3. Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C, Rahimtoola SH. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol. 2000;36(4):1152–8. https://doi.org/10.1016/S0735-1097(00)00834-2.

    Article  CAS  PubMed  Google Scholar 

  4. Oxenham H, Bloomfield P, Wheatley DJ. Twelve-year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses. N Engl J Med. 2003;324(9):573–9. https://doi.org/10.1056/NEJM199102283240901.

    Article  Google Scholar 

  5. Curtil A, Pegg DE, Wilson A. Repopulation of freeze-dried porcine valves with human fibroblasts and endothelial cells. J Heart Valve Dis. 1997;6(3):296–306.

    CAS  PubMed  Google Scholar 

  6. Knight RL, Booth C, Wilcox HE, Fisher J, Ingham E. Tissue engineering of cardiac valves: re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells. J Heart Valve Dis. 2005;14(6):806–13.

    PubMed  Google Scholar 

  7. Schenke-Layland K. Complete dynamic repopulation of decellularized heart valves by application of defined physical signals—an in vitro study. Cardiovasc Res. 2003;60(3):497–509. https://doi.org/10.1016/j.cardiores.2003.09.002.

    Article  CAS  PubMed  Google Scholar 

  8. Weber B, Dijkman PE, Scherman J, Sanders B, Emmert MY, Grünenfelder J, et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials. 2013;34(30):7269–80. https://doi.org/10.1016/j.biomaterials.2013.04.059.

    Article  CAS  PubMed  Google Scholar 

  9. Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg. 1995;60(95):S513–6. https://doi.org/10.1016/0003-4975(95)00733-4.

    Article  CAS  PubMed  Google Scholar 

  10. Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, et al. Functional living trileaflet heart valves grown in vitro. Circulation. 2000;102(19 Suppl 3):III44–9. https://doi.org/10.1161/01.CIR.102.suppl_3.III-44.

    Article  CAS  PubMed  Google Scholar 

  11. Mol A, Driessen NJB, Rutten MCM, Hoerstrup SP, Bouten CVC, Baaijens FPT. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann Biomed Eng. 2005;33(12):1778–88. https://doi.org/10.1007/s10439-005-8025-4.

    Article  PubMed  Google Scholar 

  12. Schmidt D, Mol A, Breymann C, Achermann J, Odermatt B, Go M, et al. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006;114:125–32. https://doi.org/10.1161/CIRCULATIONAHA.105.001040.

    Article  Google Scholar 

  13. Sutherland FWH, Perry TE, Yu Y, Sherwood MC, Rabkin E, Masuda Y, et al. From stem cells to viable autologous semilunar heart valve. Circulation. 2005;111:2783–91. https://doi.org/10.1161/CIRCULATIONAHA.104.498378.

    Article  PubMed  Google Scholar 

  14. Dohmen PM, da Costa F, Holinski S, Lopes SV, Yoshi S, Reichert LH, et al. Is there a possibility for a glutaraldehyde-free porcine heart valve to grow? Eur Surg Res. 2006;38(1):54–61. https://doi.org/10.1159/000091597.

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein S, Clarke DR, Walsh SP, Black KS, O’Brien MF. Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann Thorac Surg. 2000;70(6):1962–9. https://doi.org/10.1016/S0003-4975(00)01812-9.

    Article  CAS  PubMed  Google Scholar 

  16. Leyh RG, Wilhelmi M, Rebe P, Fischer S, Kofidis T, Haverich A, et al. In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg. 2003;75(5):1457–63; discussion 1463.

    Article  Google Scholar 

  17. Dijkman PE, Driessen-Mol A, Frese L, Hoerstrup SP, Baaijens FPT. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials. 2012;33(18):4545–54. https://doi.org/10.1016/j.biomaterials.2012.03.015.

    Article  CAS  PubMed  Google Scholar 

  18. Driessen-Mol A, Emmert MY, Dijkman PE, Frese L, Sanders B, Weber B, et al. Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J Am Coll Cardiol. 2014;63(13):1320–9. https://doi.org/10.1016/j.jacc.2013.09.082.

    Article  Google Scholar 

  19. Flanagan TC, Cornelissen C, Koch S, Tschoeke B, Sachweh JS, Schmitz-Rode T, et al. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials. 2007;28(23):3388–97. https://doi.org/10.1016/j.biomaterials.2007.04.012.

    Article  CAS  PubMed  Google Scholar 

  20. Mol A, Smits AIPM, Bouten CVC, Baaijens FPT. Tissue engineering of heart valves: advances and current challenges. Expert Rev Med Devices. 2009;6(3):259–75. https://doi.org/10.1586/erd.09.12.

    Article  CAS  PubMed  Google Scholar 

  21. Sacks MS, Schoen FJ, Mayer JE. Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng. 2009;11(1):289–313. https://doi.org/10.1146/annurev-bioeng-061008-124903.

    Article  CAS  PubMed  Google Scholar 

  22. Anderson RH. The surgical anatomy of the aortic root. Multimed Man Cardiothorac Surg. 2007;102:1–8. https://doi.org/10.1510/mmcts.2006.002527.

    Article  Google Scholar 

  23. Thubrikar MJ. The aortic valve. Boca Raton, FL: CRC Press; 1990. 232 p

    Google Scholar 

  24. Sutton JP, Ho SY, Anderson RH. The forgotten interleaflet triangles: a review of the surgical anatomy of the aortic valve. Ann Thorac Surg. 1995;59(2):419–27.

    Article  Google Scholar 

  25. Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam. 2011;2011:263870. https://doi.org/10.4061/2011/263870.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Billiar KL, Sacks MS. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J Biomech Eng. 2000;122(1):23–30. https://doi.org/10.1115/1.429624.

    Article  CAS  PubMed  Google Scholar 

  27. Mavrilas D, Missirlis Y. An approach to the optimization of preparation of bioprosthetic heart valves. J Biomech. 1991;24(5):331–9.

    Article  CAS  Google Scholar 

  28. Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1369–91. https://doi.org/10.1098/rstb.2007.2122.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80. https://doi.org/10.1161/CIRCULATIONAHA.108.805911.

    Article  PubMed  Google Scholar 

  30. Ho SY. Structure and anatomy of the aortic root. Eur J Echocardiogr. 2009;10(1):i3–10. https://doi.org/10.1093/ejechocard/jen243.

    Article  PubMed  Google Scholar 

  31. Scott MJ, Vesely I. Morphology of porcine aortic valve cusp elastin. J Heart Valve Dis. 1996;5(5):464–71.

    CAS  PubMed  Google Scholar 

  32. Buchanan RM, Sacks MS. Interlayer micromechanics of the aortic heart valve leaflet. Biomech Model Mechanobiol. 2014;13(4):813–26. https://doi.org/10.1007/s10237-013-0536-6.

    Article  PubMed  Google Scholar 

  33. Hasan A, Ragaert K, Swieszkowski W, Selimovi Š, Paul A, Camci-Unal G, et al. Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech. 2014;47:1949–63. https://doi.org/10.1016/j.jbiomech.2013.09.023.

    Article  PubMed  Google Scholar 

  34. Boerboom RA, Rubbens MP, Driessen NJB, Bouten CVC, Baaijens FPT. Effect of strain magnitude on the tissue properties of engineered cardiovascular constructs. Ann Biomed Eng. 2008;36(2):244–53. https://doi.org/10.1007/s10439-007-9413-8.

    Article  PubMed  Google Scholar 

  35. Cox MAJ, Kortsmit J, Driessen NJB, Bouten CVC, Baaijens FPT. Tissue-engineered heart valves develop native-like collagen fiber architecture. Tissue Eng Part A. 2010;16(5):1527–37.

    Article  CAS  Google Scholar 

  36. Engelmayr GC, Papworth GD, Watkins SC, Mayer JE, Sacks MS. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J Biomech. 2006;39(10):1819–31. https://doi.org/10.1016/j.jbiomech.2005.05.020.

    Article  PubMed  Google Scholar 

  37. Engelmayr GC, Rabkin E, Sutherland FWH, Schoen FJ, Mayer JE, Sacks MS. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials. 2005;26(2):175–87. https://doi.org/10.1016/j.biomaterials.2004.02.035.

    Article  CAS  PubMed  Google Scholar 

  38. Engelmayr GC, Sales VL, Mayer JE, Sacks MS. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: implications for engineered heart valve tissues. Biomaterials. 2006;27(36):6083–95. https://doi.org/10.1016/j.biomaterials.2006.07.045.

    Article  CAS  PubMed  Google Scholar 

  39. Neidert MR, Tranquillo RT. Tissue-engineered valves with commissural alignment. Tissue Eng. 2006;12(4):891–903. https://doi.org/10.1089/ten.2006.12.891.

    Article  PubMed  Google Scholar 

  40. Ramaswamy S, Boronyak SM, Le T, Holmes A, Sotiropoulos F, Sacks MS. A novel bioreactor for mechanobiological studies of engineered heart valve tissue formation under pulmonary arterial physiological flow conditions. J Biomech Eng. 2014;136:1–14. https://doi.org/10.1115/1.4028815.

    Article  Google Scholar 

  41. Ramaswamy S, Gottlieb D, Engelmayr GC, Aikawa E, Schmidt DE, Gaitan-Leon DM, et al. The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells. Biomaterials. 2010;31(6):1114–25. https://doi.org/10.1016/j.biomaterials.2009.10.019.

    Article  CAS  PubMed  Google Scholar 

  42. Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJJC, van Kats JP, et al. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets—relevance for tissue engineering. Tissue Eng. 2007;13(7):1501–11. https://doi.org/10.1089/ten.2006.0279.

    Article  CAS  PubMed  Google Scholar 

  43. Driessen NJB, Mol A, Bouten CVC, Baaijens FPT. Modeling the mechanics of tissue-engineered human heart valve leaflets. J Biomech. 2007;40(2):325–34. https://doi.org/10.1016/j.jbiomech.2006.01.009.

    Article  PubMed  Google Scholar 

  44. Mol A, Rutten MCM, Driessen NJB, Bouten CVC, Zünd G, Baaijens FPT, et al. Autologous human tissue-engineered heart valves: prospects for systemic application. Circulation. 2006;114(Suppl. 1):152–9. https://doi.org/10.1161/CIRCULATIONAHA.105.001123.

    Article  Google Scholar 

  45. Schmidt D, Dijkman PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A, et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol. 2010;56(6):510–20. https://doi.org/10.1016/j.jacc.2010.04.024.

    Article  PubMed  Google Scholar 

  46. Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, et al. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation. 2000;102:III22–9.

    Article  CAS  Google Scholar 

  47. Syedain ZH, Lahti MT, Johnson SL, Robinson PS, Ruth GR, Bianco RW, et al. Implantation of a tissue-engineered heart valve from human fibroblasts exhibiting short term function in the sheep pulmonary artery. Cardiovasc Eng Technol. 2011;2(2):101–12. https://doi.org/10.1007/s13239-011-0039-5.

    Article  Google Scholar 

  48. Flanagan TC, Sachweh JS, Frese J, Schnöring H, Gronloh N, Koch S, et al. In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng Part A. 2009;15(10):2965–76. https://doi.org/10.1089/ten.tea.2009.0018.

    Article  CAS  PubMed  Google Scholar 

  49. Gottlieb D, Kunal T, Emani S, Aikawa E, Brown DW, Powell AJ, et al. In vivo monitoring of function of autologous engineered pulmonary valve. J Thorac Cardiovasc Surg. 2010;139(3):723–31. https://doi.org/10.1016/j.jtcvs.2009.11.006.

    Article  PubMed  Google Scholar 

  50. Loerakker S, Argento G, Oomens CWJ, Baaijens FPT. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J Biomech. 2013;46(11):1792–800. https://doi.org/10.1016/j.jbiomech.2013.05.015.

    Article  CAS  PubMed  Google Scholar 

  51. Sanders B, Loerakker S, Fioretta ES, Bax DJP, Driessen-Mol A, Hoerstrup SP, et al. Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann Biomed Eng. 2016;44:1061–71. https://doi.org/10.1007/s10439-015-1386-4.

    Article  PubMed  Google Scholar 

  52. Rock CA, Han L, Doehring TC. Complex collagen fiber and membrane morphologies of the whole porcine aortic valve. PLoS One. 2014;9(1):e86087. https://doi.org/10.1371/journal.pone.0086087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oomen PJA, Loerakker S, van Geemen D, Neggers J, Goumans MTH, van den Bogaerdt AJ, et al. Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomater. 2016;29:161–9. https://doi.org/10.1016/j.actbio.2015.10.044.

    Article  CAS  PubMed  Google Scholar 

  54. Sacks MS, Smith DB. A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng. 1997;25(4):678–89.

    Article  CAS  Google Scholar 

  55. Sacks MS, Smith DB, Hiester ED. The aortic valve microstructure: effects of transvalvular pressure. J Biomed Mater Res. 1998;41(1):131–41. https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<131::AID-JBM16>3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  56. Aikawa E. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation. 2006;113(10):1344–52. https://doi.org/10.1161/CIRCULATIONAHA.105.591768.

    Article  PubMed  Google Scholar 

  57. Rubbens MP, Driessen-Mol A, Boerboom RA, Koppert MMJ, van Assen HC, TerHaar Romeny BM, et al. Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng. 2009;37(7):1263–72. https://doi.org/10.1007/s10439-009-9698-x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Thomopoulos S, Fomovsky GM, Holmes JW. The development of structural and mechanical anisotropy in fibroblast populated collagen gels. J Biomech Eng. 2005;127(5):742–50. https://doi.org/10.1115/1.1992525.

    Article  PubMed  Google Scholar 

  59. Costa KD, Lee EJ, Holmes JW. Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 2003;9(4):567–77. https://doi.org/10.1089/107632703768247278.

    Article  PubMed  Google Scholar 

  60. Kostyuk O, Brown RA. Novel spectroscopic technique for in situ monitoring of collagen fibril alignment in gels. Biophys J. 2004;87(1):648–55. https://doi.org/10.1529/biophysj.103.038976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boerboom RA, Driessen NJB, Bouten CVC, Huyghe JM, Baaijens FPT. Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve. Ann Biomed Eng. 2003;31(9):1040–53. https://doi.org/10.1114/1.1603749.

    Article  PubMed  Google Scholar 

  62. Creane A, Maher E, Sultan S, Hynes N, Kelly DJ, Lally C. Prediction of fibre architecture and adaptation in diseased carotid bifurcations. Biomech Model Mechanobiol. 2011;10(6):831–43. https://doi.org/10.1007/s10237-010-0277-8.

    Article  PubMed  Google Scholar 

  63. Driessen NJB, Boerboom RA, Huyghe JM, Bouten CVC, Baaijens FPT. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng. 2003;125(4):549–57. https://doi.org/10.1115/1.1590361.

    Article  PubMed  Google Scholar 

  64. Driessen NJB, Bouten CVC, Baaijens FPT. Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng. 2005;127(2):329. https://doi.org/10.1115/1.1865187.

    Article  PubMed  Google Scholar 

  65. Driessen NJB, Cox MAJ, Bouten CVC, Baaijens FPT. Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechanobiol. 2008;7(2):93–103. https://doi.org/10.1007/s10237-007-0078-x.

    Article  PubMed  Google Scholar 

  66. Driessen NJB, Peters GWM, Huyghe JM, Bouten CVC, Baaijens FPT. Remodelling of continuously distributed collagen fibres in soft connective tissues. J Biomech. 2003;36(8):1151–8. https://doi.org/10.1016/S0021-9290(03)00082-4.

    Article  CAS  PubMed  Google Scholar 

  67. Driessen NJB, Wilson W, Bouten CVC, Baaijens FPT. A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol. 2004;226(1):53–64. https://doi.org/10.1016/j.jtbi.2003.08.004.

    Article  CAS  PubMed  Google Scholar 

  68. Hariton I, DeBotton G, Gasser TC, Holzapfel G a. Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol. 2007;6(3):163–75. https://doi.org/10.1007/s10237-006-0049-7.

    Article  CAS  PubMed  Google Scholar 

  69. Kuhl E, Holzapfel GA. A continuum model for remodeling in living structures. J Mater Sci. 2007;42(21):8811–23. https://doi.org/10.1007/s10853-007-1917-y.

    Article  CAS  Google Scholar 

  70. Menzel A, Harrysson M, Ristinmaa M. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues. Comput Methods Biomech Biomed Eng. 2008;11(5):505–24. https://doi.org/10.1080/10255840701771776.

    Article  CAS  Google Scholar 

  71. Menzel A, Waffenschmidt T. A microsphere-based remodelling formulation for anisotropic biological tissues. Philos Trans A Math Phys Eng Sci. 2009;367(1902):3499–523. https://doi.org/10.1098/rsta.2009.0103.

    Article  PubMed  Google Scholar 

  72. Sáez P, Peña E, Doblaré M, Martinez MÁ. An anisotropic microsphere-based approach for fiber orientation adaptation in soft tissue. IEEE Trans Biomed Eng. 2011;58(12 Part 2):3500–3. https://doi.org/10.1109/TBME.2011.2166154.

    Article  PubMed  Google Scholar 

  73. Kuhl E, Garikipati K, Arruda EM, Grosh K. Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids. 2005;53(7):1552–73. https://doi.org/10.1016/j.jmps.2005.03.002.

    Article  CAS  Google Scholar 

  74. Menzel A. Modelling of anisotropic growth in biological tissues: a new approach and computational aspects. Biomech Model Mechanobiol. 2005;3(3):147–71. https://doi.org/10.1007/s10237-004-0047-6.

    Article  CAS  PubMed  Google Scholar 

  75. Schriefl AJ, Reinisch AJ, Sankaran S, Pierce DM, Holzapfel GA. Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues. J R Soc Interface. 2012;9:3081–93. https://doi.org/10.1098/rsif.2012.0339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comperative study of material models. J Elast. 2000;61:1–48.

    Article  Google Scholar 

  77. Sauren AAHJ. The mechanical behaviour of the aortic valve. PhD Thesis Eindhoven: Technische Hogeschool Eindhoven. 1981. https://doi.org/10.6100/IR94978.

  78. Sander EA, Barocas VH, Tranquillo RT. Initial fiber alignment pattern alters extracellular matrix synthesis in fibroblast-populated fibrin gel cruciforms and correlates with predicted tension. Ann Biomed Eng. 2011;39(2):714–29. https://doi.org/10.1007/s10439-010-0192-2.

    Article  CAS  PubMed  Google Scholar 

  79. Meshel AS, Wei Q, Adelstein RS, Sheetz MP. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol. 2005;7(2):157–64. https://doi.org/10.1038/ncb1216.

    Article  CAS  PubMed  Google Scholar 

  80. Wang JH-C, Jia F, Gilbert TW, Woo SL-Y. Cell orientation determines the alignment of cell-produced collagenous matrix. J Biomech. 2003;36(1):97–102. https://doi.org/10.1016/S0021-9290(02)00233-6.

    Article  PubMed  Google Scholar 

  81. Burridge K, Wittchen ES. The tension mounts: stress fibers as force-generating mechanotransducers. J Cell Biol. 2013;200(1):9–19. https://doi.org/10.1083/jcb.201210090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  83. Foolen J, Deshpande VS, Kanters FMW, Baaijens FPT. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials. 2012;33(30):7508–18. https://doi.org/10.1016/j.biomaterials.2012.06.103.

    Article  CAS  PubMed  Google Scholar 

  84. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter. 2008;4(9):1836. https://doi.org/10.1039/b804103b.

    Article  CAS  Google Scholar 

  85. Van Vlimmeren MAA, Driessen-Mol A, Oomens CWJ, Baaijens FPT. Passive and active contributions to generated force and retraction in heart valve tissue engineering. Biomech Model Mechanobiol. 2012;11(7):1015–27. https://doi.org/10.1007/s10237-011-0370-7.

    Article  PubMed  Google Scholar 

  86. Kaunas R, Usami S, Chien S. Regulation of stretch-induced JNK activation by stress fiber orientation. Cell Signal. 2006;18(11):1924–31. https://doi.org/10.1016/j.cellsig.2006.02.008.

    Article  CAS  PubMed  Google Scholar 

  87. Tondon A, Hsu HJ, Kaunas R. Dependence of cyclic stretch-induced stress fiber reorientation on stretch waveform. J Biomech. 2012;45(5):728–35. https://doi.org/10.1016/j.jbiomech.2011.11.012.

    Article  PubMed  Google Scholar 

  88. Wang JH. Substrate deformation determines actin cytoskeleton reorganization: a mathematical modeling and experimental study. J Theor Biol. 2000;202(1):33–41. https://doi.org/10.1006/jtbi.1999.1035.

    Article  CAS  PubMed  Google Scholar 

  89. Faust U, Hampe N, Rubner W, Kirchgeßner N, Safran S, Hoffmann B, et al. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain. PLoS One. 2011;6(12):e28963. https://doi.org/10.1371/journal.pone.0028963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Obbink-Huizer C, Oomens CWJ, Loerakker S, Foolen J, Bouten CVC, Baaijens FPT. Computational model predicts cell orientation in response to a range of mechanical stimuli. Biomech Model Mechanobiol. 2014;13(1):227–36. https://doi.org/10.1007/s10237-013-0501-4.

    Article  PubMed  Google Scholar 

  91. Tondon A, Kaunas R. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS One. 2014;9(2):e89592. https://doi.org/10.1371/journal.pone.0089592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lamers E, Frank Walboomers X, Domanski M, te Riet J, van Delft FCMJM, Luttge R, et al. The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials. 2010;31(12):3307–16. https://doi.org/10.1016/j.biomaterials.2010.01.034.

    Article  CAS  PubMed  Google Scholar 

  93. Foolen J, Janssen-van den Broek MWJT, Baaijens FPT. Synergy between Rho signaling and matrix density in cyclic stretch-induced stress fiber organization. Acta Biomater. 2014;10(5):1876–85. https://doi.org/10.1016/j.actbio.2013.12.001.

    Article  CAS  PubMed  Google Scholar 

  94. De Jonge N, Kanters FMW, Baaijens FPT, Bouten CVC. Strain-induced collagen organization at the micro-level in fibrin-based engineered tissue constructs. Ann Biomed Eng. 2013;41(4):763–74. https://doi.org/10.1007/s10439-012-0704-3.

    Article  PubMed  Google Scholar 

  95. Prodanov L, te Riet J, Lamers E, Domanski M, Luttge R, van Loon JJWA, et al. The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials. 2010;31(30):7758–65. https://doi.org/10.1016/j.biomaterials.2010.06.050.

    Article  CAS  PubMed  Google Scholar 

  96. Niklason LE, Yeh AT, Calle EA, Bai Y, Valentín A, Humphrey JD. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc Natl Acad Sci U S A. 2010;107(8):3335–9. https://doi.org/10.1073/pnas.0907813106.

    Article  PubMed  Google Scholar 

  97. Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci. 1938;126:136–95.

    Article  Google Scholar 

  98. Deshpande VS, McMeeking RM, Evans AG. A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci USA. 2006;103(38):14015–20.

    Article  CAS  Google Scholar 

  99. Kaunas R, Hsu H-J. A kinematic model of stretch-induced stress fiber turnover and reorientation. J Theor Biol. 2009;257(2):320–30. https://doi.org/10.1016/j.jtbi.2008.11.024.

    Article  PubMed  Google Scholar 

  100. Hsu H-J, Lee C-F, Kaunas R. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS One. 2009;4(3):e4853. https://doi.org/10.1371/journal.pone.0004853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kaunas R, Hsu HJ, Deguchi S. Sarcomeric model of stretch-induced stress fiber reorganization. Cell Health Cytoskelet. 2011;3(1):13–22. https://doi.org/10.2147/CHC.S14984.

    Article  CAS  Google Scholar 

  102. Vernerey FJ, Farsad M. A constrained mixture approach to mechano-sensing and force generation in contractile cells. J Mech Behav Biomed Mater. 2011;4(8):1683–99. https://doi.org/10.1016/j.jmbbm.2011.05.022.

    Article  PubMed  Google Scholar 

  103. Foucard L, Vernerey FJ. A thermodynamical model for stress-fiber organization in contractile cells. Appl Phys Lett. 2012;100(1):13702–137024. https://doi.org/10.1063/1.3673551.

    Article  CAS  PubMed  Google Scholar 

  104. Vigliotti A, Ronan W, Baaijens FPT, Deshpande VS. A thermodynamically motivated model for stress-fiber reorganization. Biomech Model Mechanobiol. 2016;15:761–89. https://doi.org/10.1007/s10237-015-0722-9.

    Article  CAS  PubMed  Google Scholar 

  105. Deshpande VS, McMeeking RM, Evans AG. A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc R Soc A Math Phys Eng Sci. 2007;463(2079):787–815. https://doi.org/10.1098/rspa.2006.1793.

    Article  CAS  Google Scholar 

  106. Wei Z, Deshpande VS, McMeeking RM, Evans AG. Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. J Biomech Eng. 2008;130(3):031009–1. https://doi.org/10.1115/1.2907745.

    Article  PubMed  Google Scholar 

  107. Deshpande VS, Mrksich M, McMeeking RM, Evans AG. A bio-mechanical model for coupling cell contractility with focal adhesion formation. J Mech Phys Solids. 2008;56(4):1484–510. https://doi.org/10.1016/j.jmps.2007.08.006.

    Article  CAS  Google Scholar 

  108. Pathak A, McMeeking RM, Evans AG, Deshpande VS. An analysis of the cooperative mechano-sensitive feedback between intracellular signaling, focal adhesion development, and stress fiber contractility. J Appl Mech. 2011;78(4):041001. https://doi.org/10.1115/1.4003705.

    Article  CAS  Google Scholar 

  109. Pathak A, Deshpande VS, McMeeking RM, Evans AG. The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J R Soc Interface. 2008;5(22):507–24. https://doi.org/10.1098/rsif.2007.1182.

    Article  PubMed  Google Scholar 

  110. Ronan W, Deshpande VS, McMeeking RM, McGarry JP. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion. Biomech Model Mechanobiol. 2014;13(2):417–35. https://doi.org/10.1007/s10237-013-0506-z.

    Article  PubMed  Google Scholar 

  111. Vigliotti A, Mcmeeking RM, Deshpande VS. Simulation of the cytoskeletal response of cells on grooved or patterned substrates. Interface. 2015;12:20141320. https://doi.org/10.1098/rsif.2014.1320.

    Article  PubMed  Google Scholar 

  112. Ristori T, Vigliotti A, Baaijens FPT, Loerakker S, Deshpande VS. Prediction of cell alignment on cyclically strained grooved substrates. Biophys J. 2016;111(10):2274–85. https://doi.org/10.1016/j.bpj.2016.09.052.

    Article  CAS  Google Scholar 

  113. Breen EC. Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J Appl Physiol. 2000;88:203–9.

    Article  CAS  Google Scholar 

  114. Butt R, Bishop JE. Mechanical load enhances the stimulatory effect of PDGF on pulmonary artery fibroblast procollagen synthesis. Chest. 1998;114(1):25S. https://doi.org/10.1378/chest.114.1.

    Article  PubMed  Google Scholar 

  115. Yang G, Crawford RC, Wang JH-C. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech. 2004;37(10):1543–50. https://doi.org/10.1016/j.jbiomech.2004.01.005.

    Article  PubMed  Google Scholar 

  116. Visse R. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39. https://doi.org/10.1161/01.RES.0000070112.80711.3D.

    Article  CAS  PubMed  Google Scholar 

  117. Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors. Invest New Drugs. 1997;15(1):61–75.

    Article  CAS  Google Scholar 

  118. Shelton L, Rada JS. Effects of cyclic mechanical stretch on extracellular matrix synthesis by human scleral fibroblasts. Exp Eye Res. 2007;84(2):314–22. https://doi.org/10.1016/j.exer.2006.10.004.

    Article  CAS  PubMed  Google Scholar 

  119. Yang G, Im H-J, Wang JH-C. Repetitive mechanical stretching modulates IL-1β induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene. 2005;363:166–72. https://doi.org/10.1016/j.gene.2005.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bhole AP, Flynn BP, Liles M, Saeidi N, Dimarzio CA, Ruberti JW. Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: implications for load-bearing matrix growth and stability. Philos Trans R Soc A Math Phys Eng Sci. 2009;367(1902):3339–62. https://doi.org/10.1098/rsta.2009.0093.

    Article  CAS  Google Scholar 

  121. Huang C, Yannas IV. Mechanochemical studies of enzymatic degradation of insoluble collagen fibers. J Biomed Mater Res. 1977;11(1):137–54. https://doi.org/10.1002/jbm.820110113.

    Article  CAS  PubMed  Google Scholar 

  122. Ruberti JW, Hallab NJ. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem Biophys Res Commun. 2005;336(2):483–9. https://doi.org/10.1016/j.bbrc.2005.08.128.

    Article  CAS  PubMed  Google Scholar 

  123. Wyatt KE-K, Bourne JW, Torzilli PA. Deformation-dependent enzyme mechanokinetic cleavage of type I collagen. J Biomech Eng. 2009;131(5):051004. https://doi.org/10.1115/1.3078177.

    Article  PubMed  PubMed Central  Google Scholar 

  124. van Vlimmeren MAA, Driessen-Mol A, Oomens CWJ, Baaijens FPT. Model system to quantify stress generation, compaction, and retraction in engineered heart valve tissue. Tissue Eng Part C Methods. 2011;17(10):983–91. https://doi.org/10.1089/ten.tec.2011.0070.

    Article  CAS  PubMed  Google Scholar 

  125. Rausch MK, Kuhl E. On the effect of prestrain and residual stress in thin biological membranes. J Mech Phys Solids. 2013;61(9):1955–69. https://doi.org/10.1016/j.jmps.2013.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Grenier G, Rémy-Zolghadri M, Larouche D, Gauvin R, Baker K, Bergeron F, et al. Tissue reorganization in response to mechanical load increases functionality. Tissue Eng. 2005;11(1–2):90–100. https://doi.org/10.1089/ten.2005.11.90.

    Article  CAS  PubMed  Google Scholar 

  127. Soares ALF, Stekelenburg M, Baaijens FPT. Remodeling of the collagen fiber architecture due to compaction in small vessels under tissue engineered conditions. J Biomech Eng. 2011;133(7):071002. https://doi.org/10.1115/1.4003870.

    Article  PubMed  Google Scholar 

  128. Nagel T, Kelly DJ. Remodelling of collagen fibre transition stretch and angular distribution in soft biological tissues and cell-seeded hydrogels. Biomech Model Mechanobiol. 2012;11(3–4):325–39. https://doi.org/10.1007/s10237-011-0313-3.

    Article  PubMed  Google Scholar 

  129. Foolen J, van Donkelaar CC, Soekhradj-Soechit S, Ito K. European Society of Biomechanics S.M. Perren Award 2010: an adaptation mechanism for fibrous tissue to sustained shortening. J Biomech. 2010;43(16):3168–76. https://doi.org/10.1016/j.jbiomech.2010.07.040.

    Article  PubMed  Google Scholar 

  130. Valentín A, Cardamone L, Baek S, Humphrey JD. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc Interface. 2009;6(32):293–306. https://doi.org/10.1098/rsif.2008.0254.

    Article  PubMed  Google Scholar 

  131. Valentín A, Humphrey JD, Holzapfel GA. A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int J Numer Method Biomed Eng. 2013;29(8):822–49. https://doi.org/10.1002/cnm.2555.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Baek S, Rajagopal KR, Humphrey JD. A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng. 2006;128(1):142. https://doi.org/10.1115/1.2132374.

    Article  CAS  PubMed  Google Scholar 

  133. Baek S, Valentín A, Humphrey JD. Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations. Ann Biomed Eng. 2007;35(9):1498–509. https://doi.org/10.1007/s10439-007-9322-x.

    Article  CAS  PubMed  Google Scholar 

  134. Miller KS, Khosravi R, Breuer CK, Humphrey JD. A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation. Acta Biomater. 2015;11:283–94. https://doi.org/10.1016/j.actbio.2014.09.046.

    Article  CAS  PubMed  Google Scholar 

  135. Khosravi R, Miller KS, Best CA, Shih YC, Lee Y-U, Yi T, et al. Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation. Tissue Eng Part A. 2015;21:1529–38. https://doi.org/10.1089/ten.tea.2014.0524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Heck TAM, Wilson W, Foolen J, Cilingir AC, Ito K, van Donkelaar CC. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction. J Biomech. 2015;48(5):823–31. https://doi.org/10.1016/j.jbiomech.2014.12.023.

    Article  CAS  PubMed  Google Scholar 

  137. van Donkelaar CC, Heck TAM, Wilson W, Foolen J, Ito K. Versatility of a collagen adaptation model that includes strain-dependent degeneration and cell traction. Vol. 1A: Abdominal aortic aneurysms; active and reactive soft matter; atherosclerosis; biofluid mechanics; education; biotransport phenomena; bone, joint and spine mechanics; brain injury; cardiac mechanics; cardiovascular devices, fluids and imaging, C. ASME; 2013. p. V01AT02A003. https://doi.org/10.1115/SBC2013-14214.

  138. Ellsmere JC, Khanna RA, Lee JM. Mechanical loading of bovine pericardium accelerates enzymatic degradation. Biomaterials. 1999;20(v):1143–50. https://doi.org/10.1016/S0142-9612(99)00013-7.

    Article  CAS  PubMed  Google Scholar 

  139. Lee EJ, Holmes JW, Costa KD. Remodeling of engineered tissue anisotropy in response to altered loading conditions. Ann Biomed Eng. 2008;36(8):1322–34. https://doi.org/10.1007/s10439-008-9509-9.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hu J-J, Humphrey JD, Yeh AT. Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy. Tissue Eng Part A. 2009;15(7):1553–64. https://doi.org/10.1089/ten.tea.2008.0287.

    Article  CAS  PubMed  Google Scholar 

  141. Soares ALF, Oomens CWJ, Baaijens FPT. A computational model to describe the collagen orientation in statically cultured engineered tissues. Comput Methods Biomech Biomed Engin. 2014;17:251–62. https://doi.org/10.1080/10255842.2012.680192.

    Article  CAS  PubMed  Google Scholar 

  142. Loerakker S, Obbink-Huizer C, Baaijens FPT. A physically motivated constitutive model for cell-mediated compaction and collagen remodeling in soft tissues. Biomech Model Mechanobiol. 2014;13(5):985–1001. https://doi.org/10.1007/s10237-013-0549-1.

    Article  PubMed  Google Scholar 

  143. Loerakker S, Ristori T, Baaijens FPT. A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. J Mech Behav Biomed Mater. 2016;58:173–87. https://doi.org/10.1016/j.jmbbm.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  144. Ristori T, Obbink-Huizer C, Oomens CWJ, Baaijens FPT, Loerakker S. Efficient computational simulation of actin stress fiber remodeling. Comput Methods Biomech Biomed Engin. 2016;19(12):1347–58. https://doi.org/10.1080/10255842.2016.1140748.

    Article  CAS  Google Scholar 

  145. Humphrey JD, Rajagopal KR. A constrained mixture model for growth and remodeling of soft tissues. Math Model Methods Appl Sci. 2002;12(03):407–30. https://doi.org/10.1142/S0218202502001714.

    Article  Google Scholar 

  146. Kuhl E. Growing matter: a review of growth in living systems. J Mech Behav Biomed Mater. 2014;29:529–43. https://doi.org/10.1016/j.jmbbm.2013.10.009.

    Article  PubMed  Google Scholar 

  147. Kuhl E, Maas R, Himpel G, Menzel A. Computational modeling of arterial wall growth. Biomech Model Mechanobiol. 2007;6(5):321–31. https://doi.org/10.1007/s10237-006-0062-x.

    Article  CAS  PubMed  Google Scholar 

  148. Zöllner AM, Abilez OJ, Böl M, Kuhl E. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis. PLoS One. 2012;7(10):e45661. https://doi.org/10.1371/journal.pone.0045661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zöllner AM, Buganza Tepole A, Gosain AK, Kuhl E. Growing skin: tissue expansion in pediatric forehead reconstruction. Biomech Model Mechanobiol. 2012;11(6):855–67. https://doi.org/10.1007/s10237-011-0357-4.

    Article  PubMed  Google Scholar 

  150. Göktepe S, Acharya SNS, Wong J, Kuhl E. Computational modeling of passive myocardium. Int J Numer Method Biomed Eng. 2011;27(1):1–12. https://doi.org/10.1002/cnm.1402.

    Article  Google Scholar 

  151. Werfel J, Krause S, Bischof AG, Mannix RJ, Tobin H, Bar-Yam Y, et al. How changes in extracellular matrix mechanics and gene expression variability might combine to drive cancer progression. PLoS One. 2013;8(10):e76122. https://doi.org/10.1371/journal.pone.0076122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rouillard AD, Holmes JW. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction. Prog Biophys Mol Biol. 2014;115(2–3):235–43. https://doi.org/10.1016/j.pbiomolbio.2014.06.010.

    Article  PubMed  Google Scholar 

  153. Rouillard AD, Holmes JW. Mechanical regulation of fibroblast migration and collagen remodelling in healing myocardial infarcts. J Physiol. 2012;590(Pt 18):4585–602. https://doi.org/10.1113/jphysiol.2012.229484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fomovsky GM, Holmes JW. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am J Physiol Heart Circ Physiol. 2010;298(1):H221–8. https://doi.org/10.1152/ajpheart.00495.2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Loerakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ristori, T., van Kelle, A.J., Baaijens, F.P.T., Loerakker, S. (2018). Biomechanics and Modeling of Tissue-Engineered Heart Valves. In: Sacks, M., Liao, J. (eds) Advances in Heart Valve Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-01993-8_16

Download citation

Publish with us

Policies and ethics