Skip to main content

Hormonal Regulation of Cold Stress Response

  • Chapter
  • First Online:
Cold Tolerance in Plants

Abstract

Phytohormones play an important role in every aspect of plant growth and development. Studies of hormonal biosynthesis, signaling, and transportation pathway facilitate our understanding for the basic developmental mechanisms. As a sessile organism, inability of plants to escape the adverse conditions is manifested through the alteration of growth parameters. These growth parameters are mainly regulated through phytohormone content, perception, and transport. Hormonal perception and regulation as a response of biotic and abiotic stresses have been studied from the model plant Arabidopsis thaliana to crop plants. In the era of uncertain climate condition, temperature stress (both high and low) has become a major limiting factor for plant growth and crop productivity. Recent progress in hormonal study revealed important roles of majority of the phytohormones in low-temperature stress response. However, the mechanistic explanation of responses of different hormones under cold stress is far from understood. In this chapter, we tried to provide a comprehensive summary of our existing knowledge linking hormones and cold stress and discuss about the possible mechanistic basis of response pathways and the future research direction that may help to develop cold-resistant crop varieties to meet the upcoming global food crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824

    Article  CAS  PubMed  Google Scholar 

  • Bakshi A, Shemansky JM, Chang C, Binder BM (2015) History of research on the plant hormone ethylene. J Plant Growth Regul 34:809–827

    Article  CAS  Google Scholar 

  • Banerjee A, Wani SH, Roychoudhury A (2017) Epigenetic control of plant cold responses. Front Plant Sci 8:1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188:48–59

    Article  PubMed  CAS  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143

    Article  CAS  Google Scholar 

  • Belkhadir Y, Yang L, Hetzel J, Dangl JL, Chory J (2014) The growth–defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends Biochem Sci 39:447–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:1427

    Article  PubMed Central  CAS  Google Scholar 

  • Burg SP (1968) Ethylene, plant senescence and abscission. Plant Physiol 43:1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalá R, López-Cobollo R, Castellano MM, Angosto T, Alonso JM, Ecker JR, Salinas J (2014) The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:3326–3342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catalá R, Salinas J (2015) The Arabidopsis ethylene overproducer mutant eto1-3 displays enhanced freezing tolerance. Plant Signal Behav 10:e989768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux J-P (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  CAS  PubMed  Google Scholar 

  • Chen C-C, Liang C-S, Kao A-L, Yang C-C (2010) HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. J Exp Bot 61:3305–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1769:295–307

    Article  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Ciardi JA, Deikman J, Orzolek MD (1997) Increased ethylene synthesis enhances chilling tolerance in tomato. Physiol Plant 101:333–340

    Article  CAS  Google Scholar 

  • Clouse SD (2015) A history of brassinosteroid research from 1970 through 2005: thirty-five years of phytochemistry, physiology, genes, and mutants. J Plant Growth Regul 34:828–844

    Article  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JD, Slovin JP, Hendrickson AM (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8:197–199

    Article  CAS  PubMed  Google Scholar 

  • Cuevas JC et al (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis Book 9:e0156

    Article  PubMed  PubMed Central  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2016) Gene expression and functional analyses in brassinosteroidmediated stress tolerance. Plant Biotechnol J 14:419–432

    Article  PubMed  CAS  Google Scholar 

  • Dong C-J, Li L, Shang Q-M, Liu X-Y, Zhang Z-G (2014) Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240:687–700

    Article  CAS  PubMed  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earley K et al (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enders TA, Strader LC (2015) Auxin activity: past, present, and future. Am J Bot 102:180–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    Article  CAS  Google Scholar 

  • Fu X, Liu H, Xu J, Tang J, Shang X (2014) Primary metabolite mobilization and hormonal regulation during seed dormancy release in Cornus japonica var. chinensis. Scand J For Res 29:542–551

    Article  Google Scholar 

  • Gomez-Roldan V et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z (2014) Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnol J 12:601–612

    Article  CAS  PubMed  Google Scholar 

  • Gusta L, Trischuk R, Weiser C (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24:308–318

    Article  CAS  Google Scholar 

  • Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57:606–614

    Article  CAS  PubMed  Google Scholar 

  • Hong JH et al (2017) A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 170:102–113 e114.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh T-H, Lee J-T, Yang P-T, Chiu L-H, Y-y C, Wang Y-C, Chan M-T (2002) Heterology expression of the ArabidopsisC-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Shi H, Hu Z, Liu A, Amombo E, Chen L, Fu J (2017) ABA is involved in regulation of cold stress response in Bermudagrass. Front Plant Sci 8:1613

    Article  PubMed  PubMed Central  Google Scholar 

  • Ioio RD et al (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384

    Article  CAS  Google Scholar 

  • Jaillais Y, Belkhadir Y, Balsemão-Pires E, Dangl JL, Chory J (2011) Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc Natl Acad Sci 108:8503–8507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaillais Y, Vert G (2016) Brassinosteroid signaling and BRI1 dynamics went underground. Curr Opin Plant Biol 33:92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Cho C, Lee MR, Van Binh N, Kim J (2016) CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 regulate lateral root development and response to cold stress in Arabidopsis. Plant Cell. https://doi.org/10.1105/tpc.15.00909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Kim J (2012) Arabidopsis response regulator 1 (ARR1) and Arabidopsis histidine phosphotransfer protein 2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol. https://doi.org/10.1104/pp.112.207621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeon J et al (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YP et al (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant 148:133–145

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Hwang J-U, Lee M, Kim Y-Y, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107:2355–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapulnik Y, Koltai H (2014) Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol 166:560–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth Regul 24:319–344

    Article  CAS  Google Scholar 

  • Kieber JJ, Schaller GE (2018) Cytokinin signaling in plant development. Development 145:dev149344

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376

    Article  CAS  PubMed  Google Scholar 

  • Kosová K et al (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    Article  PubMed  CAS  Google Scholar 

  • Kuromori T et al (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci 107:2361–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavy M, Estelle M (2016) Mechanisms of auxin signaling. Development 143:3226–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee B-h, Henderson DA, Zhu J-K (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Seo PJ (2015) The MYB96–HHP module integrates cold and abscisic acid signaling to activate the CBF–COR pathway in Arabidopsis. Plant J 82:962–977

    Article  CAS  PubMed  Google Scholar 

  • Leyser O (2018) Auxin signaling. Plant Physiol 176:465–479

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S (2017) BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol Plant 10:545–559

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  CAS  PubMed  Google Scholar 

  • Löfke C, Zwiewka M, Heilmann I, Van Montagu MC, Teichmann T, Friml J (2013) Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci 110:3627–3632

    Article  PubMed  PubMed Central  Google Scholar 

  • Majláth I et al (2012) Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plant 145:296–314

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K et al (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashiguchi K et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci 108:18512–18517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mega R et al (2015) Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.). Sci Rep 5:13819

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller CO, Skoog F, Okumura F, Von Saltza M, Strong F (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division1, 2. J Am Chem Soc 78:1375–1380

    Article  CAS  Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH, Strong F (1955) Kinetin, a cell division factor from deoxyribonucleic acid1. J Am Chem Soc 77:1392–1392

    Article  CAS  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Ohta M (2010) SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J Plant Physiol 167:555–560

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    Article  CAS  PubMed  Google Scholar 

  • Nadjafi F, Bannayan M, Tabrizi L, Rastgoo M (2006) Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. J Arid Environ 64:542–547

    Article  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5

    Google Scholar 

  • Oliveira G, Peñuelas J (2005) Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. Plant Ecol 175:179–191

    Article  Google Scholar 

  • Rahman A (2013) Auxin: a regulator of cold stress response. Physiol Plant 147:28–35

    Article  CAS  PubMed  Google Scholar 

  • Richter R, Bastakis E, Schwechheimer C (2013) Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol 162:1992–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter R, Behringer C, Müller IK, Schwechheimer C (2010) The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev 24:2093–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, Van Der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  PubMed  Google Scholar 

  • Salanenka Y, Verstraeten I, Löfke C, Tabata K, Naramoto S, Glanc M, Friml J (2018) Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc Natl Acad Sci:201721760. https://doi.org/10.1073/pnas.1721760115

    Article  CAS  Google Scholar 

  • Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565–2577

    Article  CAS  PubMed  Google Scholar 

  • Scott IM, Clarke SM, Wood JE, Mur LA (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan DP et al (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129

    PubMed  PubMed Central  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-a ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Yang S (2014) ABA regulation of the cold stress response in plants. In: Abscisic acid: metabolism, transport and signaling. Springer, Dordrecht, pp 337–363

    Google Scholar 

  • Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Kumar U, Singh S, Gupta C, Singh M, Kushwaha S (2012) Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants 18:229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  • Strader LC, Bartel B (2008) A new path to auxin. Nat Chem Biol 4:337

    Article  CAS  PubMed  Google Scholar 

  • Street IH et al (2016) Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development 143:3982–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X et al (2016) Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Sci Rep 6:24066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takatsuka H, Umeda M (2015) Epigenetic control of cell division and cell differentiation in the root apex. Front Plant Sci 6:1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Y et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tivendale ND, Cohen JD (2015) Analytical history of auxin. J Plant Growth Regul 34:708–722

    Article  CAS  Google Scholar 

  • Tsuchisaka A et al (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109:15–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara M et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195

    Article  CAS  PubMed  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. Tomato DC3000. Mol Plant-Microbe Interact 20:955–965

    Article  CAS  PubMed  Google Scholar 

  • Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

    Article  CAS  PubMed  Google Scholar 

  • Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JP, Schuerman P, Woeste K, Brandstatter I, Kieber JJ (1998a) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149:417–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998b) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci 95:4766–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2017) Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genomics 18:538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Wu J (2013) The essential role of jasmonic acid in plant–herbivore interactions–using the wild tobacco Nicotiana attenuata as a model. J Genet Genomics 40:597–606

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4:162–176

    Article  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Zhao H, Liu W, Li L, He Y (2009a) Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regul 57:211

    Article  CAS  Google Scholar 

  • Xia X-J et al (2009b) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  • Xie Y et al (2018) An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytol 218:201–218

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Kuroda K, Jitsuyama Y, Takezawa D, Arakawa K, Fujikawa S (2002) Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215:770–778

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamuro C, Zhu J-K, Yang Z (2016) Epigenetic modifications and plant hormone action. Mol Plant 9:57–70

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Lu X, Ma B, Chen S-Y, Zhang J-S (2015) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant 8:495–505

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Cao S, Zheng Y, Jiang Y (2012) Combined salicylic acid and ultrasound treatments for reducing the chilling injury on peach fruit. J Agric Food Chem 60:1209–1212

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang L, Ko EE, Shao K, Qiao H (2018) Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. Plant Cell. https://doi.org/10.1105/tpc.17.00671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F et al (2017) EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc Natl Acad Sci 114:10274–10279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Xu M, Wu L, Shen C, Ma H, Lin J (2014) CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. Plant Mol Biol 85:259–275

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-Y, Sae-Seaw J, Wang Z-Y (2013) Brassinosteroid signalling. Development 140:1615–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci 105:4945–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2015) Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant Cell Physiol 56:727–736

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Research in Abidur Rahman’s lab is funded by several grants by JSPS Kakenhi and Iwate University. Arif Ashraf was supported by MEXT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abidur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashraf, M.A., Rahman, A. (2018). Hormonal Regulation of Cold Stress Response. In: Wani, S., Herath, V. (eds) Cold Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-01415-5_4

Download citation

Publish with us

Policies and ethics