Skip to main content

Genetically Engineering Cold Stress-Tolerant Crops: Approaches and Challenges

  • Chapter
  • First Online:
Cold Tolerance in Plants

Abstract

Low temperature is a major environmental constraint in high-latitude and high-altitude regions that adversely affects global crop productivity. In response to low-temperature stress, many plant species exhibit various injury symptoms such as chlorosis, necrosis, and growth retardation and ultimately lethality. In contrast, cold stress-tolerant species survive and grow under low temperatures. An incremental improvement in low-temperature stress tolerance is required to develop high-yielding cultivars of crops for enhancing agricultural productivity under low-temperature regimes. Low-temperature stress tolerance is a very complex phenomenon which involves cross talks between different development and stress response regulatory networks. Plants show differential responses toward low-temperature stress which is the result of orchestrated regulation of gene expression mediated by epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms. Differential expression of cold-regulated (COR) genes under low temperatures is regulated by inducer of C-repeat binding factor expression (ICE)–CBF transcriptional pathway which is a major regulatory pathway of cold acclimation in diverse plant species. Small noncoding RNAs, viz., micro-RNAs (miRNAs) and small interfering RNAs (siRNAs), play significant role in post-transcriptional gene silencing. Progress in whole-genome and transcriptome sequencing, functional genomics, and QTLs mapping in diverse crops have provided deep insight into the complex mechanisms of cold acclimation and freezing tolerance. Conventional breeding methods showed limited success in improving cold stress tolerance in different crops through interspecific or intergeneric hybridization. This chapter covers recent advances in plant genomics that lead to the identification of various regulatory networks of low-temperature stress tolerance and highlights the progress of genetic engineering approach in designing cold-tolerant and economically important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281(49):37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2017) Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene 11:199–204

    Article  CAS  Google Scholar 

  • Banerjee A, Wani SH, Roychoudhury A (2017) Epigenetic control of plant cold responses. Front Plant Sci 8:1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann K (2017) Stress responses: membrane-to-nucleus signals modulate plant cold tolerance. Nat Rev Mol Cell Biol 18(5):276–277

    Article  CAS  PubMed  Google Scholar 

  • Bouchabke-Coussa O, Quashie ML, Seoane-Redondo J, Fortabat MN, Gery C, Yu A, Linderme D, Trouverie J, Granier F, Téoulé E, Durand-Tardif M (2008) ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance. BMC Plant Biol 8(1):125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catala R (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell Online 15(12):2940–2951

    Article  CAS  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417(2):892–896

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chen X, Chen D, Li J, Zhang Y, Wang A (2015) A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biol 15(1):132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Wang L, Wang H, Sun R, You L, Zheng Y, Yuan Y, Li D (2018) Identification and characterization of a plastidial ω -3 fatty acid desaturase EgFAD8 from oil palm (Elaeis guineensis Jacq.) and its promoter response to light and low temperature. PLoS One 13(4):e0196693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. In: Plant stress tolerance. Humana Press, New York, pp 39–55

    Chapter  Google Scholar 

  • Crimp SJ, Zheng B, Khimashia N, Gobbett DL, Chapman S, Howden M, Nicholls N (2016) Recent changes in southern Australian frost occurrence: implications for wheat production risk. Crop Pasture Sci 67(8):801–811

    Article  Google Scholar 

  • De Palma M, Grillo S, Massarelli I, Costa A, Balogh G, Vigh L, Leone A (2008) Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants. Mol Breed 21(1):15–26

    Article  CAS  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell Online 21(3):972–984

    Article  CAS  Google Scholar 

  • Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee BH, Zhu JK (2006) A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 26(24):9533–9543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CJ, Cao N, Zhang ZG, Shang QM (2016) Characterization of the fatty acid desaturase genes in cucumber: structure, phylogeny, and expression patterns. PLoS One 11(3):e0149917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J (2013) A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 1:tpc-112

    Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217(2):290–298

    CAS  PubMed  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2(5):381–387

    Article  CAS  PubMed  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002a) Heterology expression of the ArabidopsisC-repeat/dehydration response element binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant physiology, 129(3):1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002b) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology, 130(2):618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang L, Zhao L, Li J, He S, Zhou K, Yang F, Huang M, Jiang L, Li L (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS One 6(7):e22132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA (2016) The DEAD-box RNA helicase AtRH7/PRH75 participates in pre-rRNA processing, plant development and cold tolerance in Arabidopsis. Plant Cell Physiol 57(1):174–191

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Do Choi Y, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131(2):516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochemistry 117:76–89

    Article  CAS  PubMed  Google Scholar 

  • Jha UC, Bohra A, Jha R (2017) Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36(1):1–35

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Wang Y, Cloix C, Li K, Jenkins GI, Wang S, Shang Z, Shi Y, Yang S, Li X (2015) The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Genet 11(9):e1005471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia Y, Ding Y, Shi Y, Zhang X, Gong Z, Yang S (2016) The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212(2):345–353

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20(7):1775–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103(2):267–277

    Article  CAS  Google Scholar 

  • Khodakovskaya M, McAvoy R, Peters J, Wu H, Li Y (2006) Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω -3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta 223(5):1090–1100

    Article  CAS  PubMed  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518

    Article  CAS  PubMed  Google Scholar 

  • Kim YD (2016) Improved cold tolerance by transformation with soybean SCOF-1 gene in Populus alba. J Agric Life Sci 50(3):43–53

    Article  Google Scholar 

  • Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H (2006) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35(2):506–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75(3):364–376

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Lee M, Lee JH, Lee HJ, Park CM (2015) The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89(1–2):187–201

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Kim MD, Park SC, Jeong JC, Kwak SS, Lee HS (2016) Transgenic potato plants expressing the cold-inducible transcription factor SCOF-1 display enhanced tolerance to freezing stress. Plant Breed 135(4):513–518

    Article  CAS  Google Scholar 

  • Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim JY, Chung WS (2017) Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res 45(11):6613–6627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S (2008) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot 59(4):891–905

    Article  CAS  PubMed  Google Scholar 

  • Koc I, Filiz E, Tombuloglu H (2015) Assessment of miRNA expression profile and differential expression pattern of target genes in cold-tolerant and cold-sensitive tomato cultivars. Biotechnol Biotechnol Equip 29(5):851–860

    Article  CAS  Google Scholar 

  • Kovtum CWL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–3005

    Article  Google Scholar 

  • Kumar S, Malik J, Thakur P, Kaistha S, Sharma KD, Upadhyaya HD, Berger JD, Nayyar H (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 33:779–787

    Article  CAS  Google Scholar 

  • Lee H (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21(11):2692–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Kapoor A, Zhu J, Zhu JK (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18(7):1736–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC (2018) Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Mol Biotechnol 1:1–2

    Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou J (2018) MAPping kinase regulation of ICE1 in freezing tolerance. Trends Plant Sci 23(2):91–93

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Li B, Yang JH, Sui N, Yang XM, Meng QW (2008) Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress. Photosynthetica 46(2):185

    Article  CAS  Google Scholar 

  • Liu C, Wu Y, Wang X (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235(6):1157–1169

    Article  CAS  PubMed  Google Scholar 

  • Lopez MM, Makhatadze GI (2000) Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1479(1–2):196–202

    Article  CAS  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160(6):1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Maleki M, Ghorbanpour M (2018) Cold tolerance in plants: molecular machinery deciphered. In: Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Elsevier Science & Technology, San Diego, pp 57–71

    Chapter  Google Scholar 

  • Man L, Xiang D, Wang L, Zhang W, Wang X, Qi G (2017) Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice. Protoplasma 254(2):945–956

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3):5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zincfinger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101:6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi S, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    Article  CAS  Google Scholar 

  • Mzid R, Zorrig W, Ayed RB, Hamed KB, Ayadi M, Damak Y, Lauvergeat V, Hanana M (2018) The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum. 3 Biotech 8(6):277

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144(1):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461(3):205–210

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Wang J, Hu H, Chen Y, An J, Cai J, Sun R, Sheng Z, Liu X, Lin S (2016) Cross-talk between freezing response and signaling for regulatory transcriptions of MIR475b and its targets by miR475b promoter in Populus suaveolens. Sci Rep 6:20648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci 104(52):21002–21007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palusa SG, Ali GS, Reddy AS (2007) Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J 49(6):1091–1107

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lim CJ, Shen M, Park HJ, Cha JY, Iniesto E, Rubio V, Mengiste T, Zhu JK, Bressan RA, Lee SY (2018) Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci U S A 17:201721241

    Google Scholar 

  • Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol 133(2):901–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podgorska A, Ostaszewska M, Gardeström P, Rasmusson AG, SZAL B (2015) In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant. Plant Cell Environ 38(1):224–237

    Article  CAS  PubMed  Google Scholar 

  • Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991

    Article  CAS  PubMed  Google Scholar 

  • Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S (2014) Differential acetylation of histone H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and transcription activation during cold stress. PLoS One 9(6):e100343

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakamoto A, Valverde R, Chen TH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22(5):449–453

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M, Sakakibara H (2014) Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol 1:113

    Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (ed) (2017) Plant stress physiology. CABI, Boston

    Google Scholar 

  • Shen Y, Wu X, Liu D, Song S, Liu D, Wang H (2016) Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula. Biochem Biophys Res Commun 474(2):271–276

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Yang S (2014) ABA regulation of the cold stress response in plants. In: Abscisic acid: metabolism, transport and signaling. Springer, Dordrecht, pp 337–363

    Google Scholar 

  • Shi H, Qian Y, Tan DX, Reiter RJ, He C (2015) Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res 59(3):334–342

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274(5):1192–1201

    Article  CAS  PubMed  Google Scholar 

  • Shu Y, Liu Y, Li W, Song L, Zhang J, Guo C (2016) Genome-wide investigation of MicroRNAs and their targets in response to freezing stress in Medicago sativa L, based on high-throughput sequencing. G3-Genes Genomes Genet 1:g3-115

    Google Scholar 

  • Singh R, Parihar P, Singh S, Singh MP, Singh VP, Prasad SM (2017) Micro RNAs and nitric oxide cross talk in stress tolerance in plants. Plant Growth Regul 83(2):199–205

    Article  CAS  Google Scholar 

  • Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153(1):145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamminen I, Mäkelä P, Heino P, Palva ET (2001) Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J 25:1–8

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC, Lamb CR, Engler JA, Hemerly AS, Ferreira PC (2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35(3):502–512

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    Article  CAS  PubMed  Google Scholar 

  • Vaultier M-N, Cantrel C, Vergnolle C, Justin A-M, Demandre C, Benhassaine-Kesri G, Çiçek D, Zachowski A, Ruelland E (2006) Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in cells. FEBS Lett 580(17):4218–4223

    Article  CAS  PubMed  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41(2):195–211

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-J, Zhang Z-G, He X-J, Zhou H-L, Wen Y-X, Dai J-X, Zhang J-S, Chen S-Y (2003) A rice transcription factor OsbHLH1 is involved in cold stress response. TAG Theor Appl Genet 107(8):1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Casas-Mollano JA, Xu J, Riethoven JJ, Zhang C, Cerutti H (2015) Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. Proc Natl Acad Sci 19:201423325

    Google Scholar 

  • Wang DZ, Jin YN, Ding XH, Wang WJ, Zhai SS, Bai LP, Guo ZF (2017) Gene regulation and signal transduction in the ICE–CBF–COR signaling pathway during cold stress in plants. Biochem Mosc 82(10):1103–1117

    Article  CAS  Google Scholar 

  • Wani SH, Sah SK, Sanghera G, Hussain W, Singh NB (2016) Genetic engineering for cold stress tolerance in crop plants. Adv Genome Sci 4:173–201

    Article  Google Scholar 

  • Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M (2018) Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). Plant Mol Biol 97:469

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(suppl 1):S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161(3):1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Yang G, Zhang J, Wang Y, Zhang T, Wang N, Jiang S, Zhang Z, Chen X (2018) Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus. Biochem Biophys Res Commun 500(2):405–410

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li D, Mao D, Liu XU, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of micro RNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36(12):2207–2218

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Sun Z, Li C, Zhao X, Li M, Deng R, Huang Y, Zhao H, Chen H, Wu Q (2018) Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. Plant Physiol Biochem 125:85–94

    Article  CAS  PubMed  Google Scholar 

  • Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136(1):2862–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai H, Bai X, Zhu Y, Li Y, Cai H, Ji W, Ji Z, Liu X, Liu X, Li J (2010) A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochem Biophys Res Commun 394:1018–1023

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Yang JS, Guo SJ, Meng JJ, Zhang YL, Wan SB, He QW, Li XG (2011) Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biol 13(2):362–367

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X (2014) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14(1):271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Dolferuf R, Darvey N (2008) Precision breeding of cold tolerant rice. IREC Farm Newsl 177:12–13

    Google Scholar 

  • Zhao C, Lang Z, Zhu JK (2015a) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20(8):466–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Zhang S, Yang T, Zeng Z, Huang Z, Liu Q, Wang X, Leach J, Leung H, Liu B (2015b) Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiol Plant 154(3):381–394

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu JK (2016) Mutational evidence for the critical role of CBF genes in cold acclimation in Arabidopsis. Plant Physiol 1:00533

    Google Scholar 

  • Zhao Q, Xiang X, Liu D, Yang A, Wang Y (2018) Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Front Plant Sci 9:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6(5):486–503

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK, Hasegawa PM (2005) HOS10 encodes an R2R3- type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci 102(28):9966–9971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Xiong AS, Peng RH, Xu J, Jin XF, Memg XR, Quan-Hong Y (2010) Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol Biol Rep 37:961–966

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Rohit Joshi acknowledges the Dr. DS Kothari Postdoctoral Fellowship from the University Grant Commission, Government of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, R., Singh, B., Chinnusamy, V. (2018). Genetically Engineering Cold Stress-Tolerant Crops: Approaches and Challenges. In: Wani, S., Herath, V. (eds) Cold Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-01415-5_10

Download citation

Publish with us

Policies and ethics