Skip to main content
Log in

Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Thermal hysteresis proteins (Thps) known as antifreeze proteins for their antifreeze activity, depress the freezing point of water below the melting point in many polar marine fishes, terrestrial arthropods and plants. For the purpose of breeding cold-resistant plants, we designed to introduce the Thp gene into the plants. The physiological and biochemical effect of high-lever expression of the modified Choristoneura fumiferana Thp (ThpI) in Arabidopsis thaliana plants was analyzed. Under low temperature stress, the ThpI transgenic plants exhibited stronger growth than wild-type plants. The elevated cold tolerance of the ThpI over-expressing plants was confirmed by the changes of electrolyte leakage activity, malonyldialdehyde and proline contents. These results preliminarily showed that the Thp possibly be used to enhance the low temperature-tolerant ability of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Devries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    Article  CAS  PubMed  Google Scholar 

  2. Graether SP, Kuiper MJ, Gagne SM, Walker VK, Jia Z, Davies PL (2000) b-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 325:325–328

    Google Scholar 

  3. Urrutia ME, Duman JG, Knight CA (1992) Plant thermal hysteresis proteins. Biochim Biophys Acta 1121:199–206

    CAS  PubMed  Google Scholar 

  4. Levitt J (1980) Responses of plants to environmental stresses. In: Kozlowski TT (ed) Physiological ecology. Academic Press, New York pp 23–56

  5. Mantyla E, Lang V, Palva ET (1995) Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LTI78 and RAB18 proteins in Arabidopsis. Plant Physiol 107:141–148

    PubMed  Google Scholar 

  6. Ryu SB, Costa A, Xin X, Li PH (1995) Induction of cold hardiness by salt stress involves synthesis of cold- and abscisic acid- responsive proteins in potato (Solanum commersonii Dun). Plant Cell Physiol 36:1245–1251

    CAS  Google Scholar 

  7. Lee SP, Chen THH (1993) Molecular biology of plant cold hardiness development. In: Li PH, Christersson L (eds) Advances in plant cold hardiness. CRC Press, Boca Raton, pp 1–29

    Google Scholar 

  8. Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328

    Article  Google Scholar 

  9. Duman JG (1994) Purification and characterization of thermal hysteresis proteins from a plant, the bittersweet nightshade, Solanum dulcamara. Biochim Biophys Acta 1206:129–135

    CAS  PubMed  Google Scholar 

  10. Griffith M, Ala P, Yang DSC, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 10:593–596

    Article  Google Scholar 

  11. Hon WC, Griffith M, Chong P, Yang DSC (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale) leaves. Plant Physiol 104:971–980

    CAS  PubMed  Google Scholar 

  12. Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lilliford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282:115–117

    Article  CAS  PubMed  Google Scholar 

  13. Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman JG (2002) Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol 50:333–344

    Article  CAS  PubMed  Google Scholar 

  14. Georges F, Saleem M, Cutler AJ (1990) Design and cloning of a synthetic gene for the flounder antifreeze protein and its expression in plant cells. Gene 91:159–165

    Article  CAS  PubMed  Google Scholar 

  15. Hightower R, Baden C, Pennzes E, Lund P, Dunsmier P (1991) Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 17:1013–1021

    Article  CAS  PubMed  Google Scholar 

  16. Kenward KD, Altschuler M, Hildebrand D, Davies PL (1993) Accumulation of type I fish antifreeze protein in transgenic tobacco is cold-specific. Plant Mol Biol 23:377–385

    Article  CAS  PubMed  Google Scholar 

  17. Wallis JG, Wave HY, Guerra DJ (1997) Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol 35:323–330

    Article  CAS  PubMed  Google Scholar 

  18. Cornelissen BJ, Hooft Van Huijduijnen RA, Bol JF (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321:531–532

    Article  CAS  PubMed  Google Scholar 

  19. Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequence. Nucl Acids Res 32:e98

    Article  PubMed  Google Scholar 

  20. Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang KK (2007) Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. Clin Vaccine Immunol 14:464–469

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Henriques R, Lin SS (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  23. Zhu B, Xiong AS, Peng RH, Xu J, Zhou J, Xu JT, Jin XF, Zhang Y, Hou XL, Yao QH (2008) Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. BMB reports 41(5):382–387

    CAS  PubMed  Google Scholar 

  24. Alferez F, Pozo L, Burns JK (2006) Physiological changes associated with senescence and abscission in mature citrus fruit induced by 5-chloro-3-methyl-4-nitro-1H-pyrazole and ethephon application. Physiol Plant 127:66–73

    Article  CAS  Google Scholar 

  25. Havaux M, Lutz C, Grimm B (2003) Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol 132:300–310

    Article  CAS  PubMed  Google Scholar 

  26. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline in water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  27. Peng RH, Xiong AS, Yao QH (2006) A direct and efficient PAGE-mediated overlap extension method for gene multiple-site mutagenesis. Appl Microbiol Biotechnol 73:234–240

    Article  CAS  PubMed  Google Scholar 

  28. Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797

    Article  CAS  PubMed  Google Scholar 

  29. Lafuente MT, Belver A, Guye MG, Saltveit ME (1991) Effect of temperature conditioning on chilling injury of cucumber cotyledons. Possible role of abscisic acid and heat shock proteins. Plant Physiol 95:443–449

    Article  CAS  PubMed  Google Scholar 

  30. Esterbauer H, Schauer RJ, Zololner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  31. Chen MQ, Wei HB, Cao JW, Liu RJ, Wang YL, Zheng CY (2007) Expression of bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers os-motolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  32. Hale MG, Orcutt DM (1987) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  33. Guy CL, Niemi KJ, Brambl R (1985) Alteredgene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82:3673–3677

    Article  CAS  PubMed  Google Scholar 

  34. Thomashow MF (1990) Molecular genetics of cold acclimation in higher plants. Adv Genet 28:99–131

    Article  CAS  Google Scholar 

  35. Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Article  CAS  PubMed  Google Scholar 

  36. Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots!. Plant Physiol 125:89–93

    Article  CAS  PubMed  Google Scholar 

  37. Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47:291–305

    Article  CAS  Google Scholar 

  38. Hoshino T, Odaira M, Yoshida M, Tsuda S (1999) Physiological and biochemical significance of antifreeze substances in plants. J Plant Res 112:255–261

    Article  CAS  Google Scholar 

  39. Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101–106

    Article  CAS  PubMed  Google Scholar 

  40. DeVries AL (1986) Antifreeze glycopeptides and peptides: interactions with ice and water. Meth Enzymol 127:293–303

    Article  CAS  PubMed  Google Scholar 

  41. DeVries AL, Cheng CHC (1992) The role of antifreeze glycopeptides and peptides in the survival of cold-water fishes. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life. Springer, Berlin, pp 301–315

    Google Scholar 

  42. Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    Article  CAS  PubMed  Google Scholar 

  43. James GW, Wang HY, Daniel JG (1997) Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol 35:323–330

    Article  Google Scholar 

  44. Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnof N (ed) Environment and plant metabolism: flexibility and acclimation. Bios Scientific Publishers, Oxford, pp 217–243

    Google Scholar 

  45. Monk LS, Fagerstedt KV, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Plant Physiol 76:456–459

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Shanghai and National Natural Science Foundation (30670179, 30800602, 08ZR1417200); 863 Program (2006AA10Z117, 2006AA06Z358, 2008AA10Z401); Shanghai Project for ISTC (08540706500); The Key Project Fund of the Shanghai Municipal Committee of Agriculture (No. 2008-7-5) and Shanghai Rising-Star Program (08QH14021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Hong Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Xiong, AS., Peng, RH. et al. Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol Biol Rep 37, 961–966 (2010). https://doi.org/10.1007/s11033-009-9759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9759-0

Keywords

Navigation