Skip to main content

Nuclear Imaging to Assess Infarction, Reperfusion, No-Reflow, and Viability

  • Chapter
  • First Online:
Management of Myocardial Reperfusion Injury

Abstract

Thrombolytic therapy and primary percutaneous coronary have improved the survival of patients with acute myocardial infarction. However, this superior survival leads to an increased prevalence of left ventricular systolic dysfunction and development of heart failure at follow-up. Nuclear imaging permits comprehensive evaluation of patients with coronary artery disease. In the setting of acute myocardial infarction, 99mTc-sestamibi SPECT provides information on myocardium at risk, infarct size and myocardial salvage, well-known measures of the efficacy of reperfusion therapy, and important prognostic markers. In addition, nuclear imaging permits the assessment of no-reflow phenomenon that may take place during thrombolysis or percutaneous revascularization techniques. Timely detection of this phenomenon may help to select the most appropriate therapies to improve the microcirculation of the infarcted areas and, consequently, to improve the contractile function of the myocardium at follow-up. Furthermore, nuclear imaging plays a central role in the evaluation of ischemic heart failure patients with a substantial amount of dysfunctional but viable myocardium who may benefit from coronary revascularization with significant improvements in left ventricular function, heart failure symptoms, and prognosis. This chapter will review the role of nuclear imaging in acute myocardial infarction, with special focus on the relevance of this technique to assess the efficacy of reperfusion therapy. In addition, a detailed appraisal of multimodality imaging for noninvasive assessment of hibernating myocardium will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gheorghiade M, Sopko G, De LL, et al. Navigating the crossroads of coronary artery disease and heart failure. Circulation. 2006;114:1202–13.

    Article  PubMed  Google Scholar 

  2. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117:103–14.

    Article  PubMed  Google Scholar 

  3. Bonow RO. Prognostic assessment in coronary artery disease: role of radionuclide angiography. J Nucl Cardiol. 1994;1:280–91.

    Article  PubMed  CAS  Google Scholar 

  4. Gibbons RJ, Christian TF, Hopfenspirger M, Hodge DO, Bailey KR. Myocardium at risk and infarct size after thrombolytic therapy for acute myocardial infarction: implications for the design of randomized trials of acute intervention. J Am Coll Cardiol. 1994;24:616–23.

    Article  PubMed  CAS  Google Scholar 

  5. Risk stratification and survival after myocardial infarction. Multicenter Postinfarction Research Group. N Engl J Med. 1983;309:331–6.

    Google Scholar 

  6. Smalling RW, Bode C, Kalbfleisch J, et al. More rapid, complete, and stable coronary thrombolysis with bolus administration of reteplase compared with alteplase infusion in acute myocardial infarction. RAPID Investigators. Circulation. 1995;91:2725–32.

    Article  PubMed  CAS  Google Scholar 

  7. Jaffe R, Charron T, Puley G, Dick A, Strauss BH. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation. 2008;117:3152–6.

    Article  PubMed  Google Scholar 

  8. Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol. 2000;36:1202–9.

    Article  PubMed  CAS  Google Scholar 

  9. Rezkalla SH, Kloner RA. No-reflow phenomenon. Circulation. 2002;105:656–62.

    Article  PubMed  Google Scholar 

  10. Bonow RO. The hibernating myocardium: implications for management of congestive heart failure. Am J Cardiol. 1995;75(3):17A–25.

    Article  PubMed  CAS  Google Scholar 

  11. Dilsizian V, Bonow RO, Cannon III RO, et al. The effect of coronary artery bypass grafting on left ventricular systolic function at rest: evidence for preoperative subclinical myocardial ischemia. Am J Cardiol. 1988;61:1248–54.

    Article  PubMed  CAS  Google Scholar 

  12. Elefteriades JA, Tolis Jr G, Levi E, Mills LK, Zaret BL. Coronary artery bypass grafting in severe left ventricular dysfunction: excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol. 1993;22:1411–7.

    Article  PubMed  CAS  Google Scholar 

  13. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117:211–21.

    Article  PubMed  CAS  Google Scholar 

  14. Antman EM, Van de WF. Pharmacoinvasive therapy: the future of treatment for ST-elevation myocardial infarction. Circulation. 2004;109:2480–6.

    Article  PubMed  Google Scholar 

  15. Braunwald E. Myocardial reperfusion, limitation of infarct size, reduction of left ventricular dysfunction, and improved survival. Should the paradigm be expanded? Circulation. 1989;79:441–4.

    Article  PubMed  CAS  Google Scholar 

  16. Burns RJ, Gibbons RJ, Yi Q, et al. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol. 2002;39:30–6.

    Article  PubMed  Google Scholar 

  17. Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ, Gibbons RJ. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation. 1995;92:334–41.

    Article  PubMed  CAS  Google Scholar 

  18. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76:44–51.

    Article  PubMed  CAS  Google Scholar 

  19. Gibbons RJ, Miller TD, Christian TF. Infarct size measured by single photon emission computed tomographic imaging with (99m)Tc-sestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation. 2000;101:101–8.

    Article  PubMed  CAS  Google Scholar 

  20. De Coster PM, Wijns W, Cauwe F, Robert A, Beckers C, Melin JA. Area-at-risk determination by technetium-99m-hexakis-2-methoxyisobutyl isonitrile in experimental reperfused myocardial infarction. Circulation. 1990;82:2152–62.

    Article  PubMed  Google Scholar 

  21. Sinusas AJ, Trautman KA, Bergin JD, et al. Quantification of area at risk during coronary occlusion and degree of myocardial salvage after reperfusion with technetium-99m methoxyisobutyl isonitrile. Circulation. 1990;82:1424–37.

    Article  PubMed  CAS  Google Scholar 

  22. Feiring AJ, Johnson MR, Kioschos JM, Kirchner PT, Marcus ML, White CW. The importance of the determination of the myocardial area at risk in the evaluation of the outcome of acute myocardial infarction in patients. Circulation. 1987;75:980–7.

    Article  PubMed  CAS  Google Scholar 

  23. Gibbons RJ, Verani MS, Behrenbeck T, et al. Feasibility of tomographic 99mTc-hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation. 1989;80:1277–86.

    Article  PubMed  CAS  Google Scholar 

  24. O’Connor MK, Hammell T, Gibbons RJ. In vitro validation of a simple tomographic technique for estimation of percentage myocardium at risk using methoxyisobutyl isonitrile technetium 99m (sestamibi). Eur J Nucl Med. 1990;17:69–76.

    Article  PubMed  Google Scholar 

  25. Christian TF, Schwartz RS, Gibbons RJ. Determinants of infarct size in reperfusion therapy for acute myocardial infarction. Circulation. 1992;86:81–90.

    Article  PubMed  CAS  Google Scholar 

  26. Klarich KW, Christian TF, Higano ST, Gibbons RJ. Variability of myocardium at risk for acute myocardial infarction. Am J Cardiol. 1999;83:1191–5.

    Article  PubMed  CAS  Google Scholar 

  27. Christian TF, Gibbons RJ, Gersh BJ. Effect of infarct location on myocardial salvage assessed by technetium-99m isonitrile. J Am Coll Cardiol. 1991;17:1303–8.

    Article  PubMed  CAS  Google Scholar 

  28. Verani MS, Jeroudi MO, Mahmarian JJ, et al. Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium-99m hexakis 2-methoxyisobutyl isonitrile. J Am Coll Cardiol. 1988;12:1573–81.

    Article  PubMed  CAS  Google Scholar 

  29. Maes AF, Borgers M, Flameng W, et al. Assessment of myocardial viability in chronic coronary artery disease using technetium-99m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol. 1997;29:62–8.

    Article  PubMed  CAS  Google Scholar 

  30. Medrano R, Lowry RW, Young JB, et al. Assessment of myocardial viability with 99mTc sestamibi in patients undergoing cardiac transplantation. A scintigraphic/pathological study. Circulation. 1996;94:1010–7.

    Article  PubMed  CAS  Google Scholar 

  31. Ibrahim T, Nekolla SG, Hornke M, et al. Quantitative measurement of infarct size by contrast-enhanced magnetic resonance imaging early after acute myocardial infarction: comparison with single-photon emission tomography using Tc99m-sestamibi. J Am Coll Cardiol. 2005;45:544–52.

    Article  PubMed  Google Scholar 

  32. Christian TF, Gitter MJ, Miller TD, Gibbons RJ. Prospective identification of myocardial stunning using technetium-99m sestamibi-based measurements of infarct size. J Am Coll Cardiol. 1997;30:1633–40.

    Article  PubMed  CAS  Google Scholar 

  33. Miller TD, Hodge DO, Sutton JM, et al. Usefulness of technetium-99m sestamibi infarct size in predicting posthospital mortality following acute myocardial infarction. Am J Cardiol. 1998;81:1491–3.

    Article  PubMed  CAS  Google Scholar 

  34. Schomig A, Kastrati A, Dirschinger J, et al. Coronary stenting plus platelet glycoprotein IIb/IIIa blockade compared with tissue plasminogen activator in acute myocardial infarction. Stent versus Thrombolysis for Occluded Coronary Arteries in Patients with Acute Myocardial Infarction Study Investigators. N Engl J Med. 2000;343:385–91.

    Article  PubMed  CAS  Google Scholar 

  35. Ndrepepa G, Mehilli J, Schwaiger M, et al. Prognostic value of myocardial salvage achieved by reperfusion therapy in patients with acute myocardial infarction. J Nucl Med. 2004;45:725–9.

    PubMed  Google Scholar 

  36. Dibra A, Mehilli J, Dirschinger J, et al. Thrombolysis in myocardial infarction myocardial perfusion grade in angiography correlates with myocardial salvage in patients with acute myocardial infarction treated with stenting or thrombolysis. J Am Coll Cardiol. 2003;41:925–9.

    Article  PubMed  Google Scholar 

  37. Bekkers SC, Yazdani SK, Virmani R, Waltenberger J. Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol. 2010;55:1649–60.

    Article  PubMed  Google Scholar 

  38. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–508.

    Article  PubMed  CAS  Google Scholar 

  39. Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54:281–92.

    Article  PubMed  Google Scholar 

  40. Galiuto L, Natale L, Leccisotti L, et al. Non-invasive imaging of microvascular damage. J Nucl Cardiol. 2009;16:811–31.

    Article  PubMed  CAS  Google Scholar 

  41. Tan KT. Pathology, imaging and treatment of cardiac microvascular obstruction. Thromb Res. 2010;125:107–9.

    Article  PubMed  CAS  Google Scholar 

  42. Hamada S, Nakamura S, Sugiura T, et al. Early detection of the no-reflow phenomenon in reperfused acute myocardial infarction using technetium-99m tetrofosmin imaging. Eur J Nucl Med. 1999;26:208–14.

    Article  PubMed  CAS  Google Scholar 

  43. Kondo M, Nakano A, Saito D, Shimono Y. Assessment of “microvascular no-reflow phenomenon” using technetium-99m macroaggregated albumin scintigraphy in patients with acute myocardial infarction. J Am Coll Cardiol. 1998;32:898–903.

    Article  PubMed  CAS  Google Scholar 

  44. Schofer J, Montz R, Mathey DG. Scintigraphic evidence of the “no reflow” phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol. 1985;5:593–8.

    Article  PubMed  CAS  Google Scholar 

  45. Taki J, Matsunari I. Metabolic imaging using SPECT. Eur J Nucl Med Mol Imaging. 2007;34:S34–48.

    Article  PubMed  CAS  Google Scholar 

  46. Shimizu Y, Kumita S, Cho K, et al. Evaluation of no-reflow phenomenon using 201TlCl/123I-BMIPP dual-isotope myocardial SPECT. J Nippon Med Sch. 2006;73:258–64.

    Article  PubMed  CAS  Google Scholar 

  47. Bax JJ, Beanlands RS, Klocke FJ, et al. Diagnostic and clinical perspectives of fusion imaging in cardiology: is the total greater than the sum of its parts? Heart. 2007;93:16–22.

    Article  PubMed  CAS  Google Scholar 

  48. Jeremy RW, Links JM, Becker LC. Progressive failure of coronary flow during reperfusion of myocardial infarction: documentation of the no reflow phenomenon with positron emission tomography. J Am Coll Cardiol. 1990;16:695–704.

    Article  PubMed  CAS  Google Scholar 

  49. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26:147–86.

    Article  PubMed  CAS  Google Scholar 

  50. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32:375–410.

    Article  PubMed  Google Scholar 

  51. Diamond GA, Forrester JS, deLuz PL, Wyatt HL, Swan HJ. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J. 1978;95:204–9.

    Article  PubMed  CAS  Google Scholar 

  52. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72:V123–35.

    Article  PubMed  CAS  Google Scholar 

  53. Depre C, Vanoverschelde JL, Gerber B, Borgers M, Melin JA, Dion R. Correlation of functional recovery with myocardial blood flow, glucose uptake, and morphologic features in patients with chronic left ventricular ischemic dysfunction undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1997;113:371–8.

    Article  PubMed  CAS  Google Scholar 

  54. Elsasser A, Muller KD, Skwara W, Bode C, Kubler W, Vogt AM. Severe energy deprivation of human hibernating myocardium as possible common pathomechanism of contractile dysfunction, structural degeneration and cell death. J Am Coll Cardiol. 2002;39:1189–98.

    Article  PubMed  Google Scholar 

  55. Rahimtoola SH, Dilsizian V, Kramer CM, Marwick TH, Vanoverschelde JL. Chronic ischemic left ventricular dysfunction: from pathophysiology to imaging and its integration into clinical practice. JACC Cardiovasc Imaging. 2008;1:536–55.

    Article  PubMed  Google Scholar 

  56. Schinkel AF, Bax JJ, Poldermans D. Clinical assessment of myocardial hibernation. Heart. 2005;91:111–7.

    Article  PubMed  Google Scholar 

  57. Geleijnse ML, Krenning BJ, Nemes A, et al. Incidence, pathophysiology, and treatment of complications during dobutamine-atropine stress echocardiography. Circulation. 2010;121:1756–67.

    Article  PubMed  Google Scholar 

  58. Bountioukos M, Schinkel AF, Bax JJ, et al. Pulsed-wave tissue Doppler quantification of systolic and diastolic function of viable and nonviable myocardium in patients with ischemic cardiomyopathy. Am Heart J. 2004;148:1079–84.

    Article  PubMed  Google Scholar 

  59. Rizzello V, Schinkel AF, Bax JJ, et al. Individual prediction of functional recovery after coronary revascularization in patients with ischemic cardiomyopathy: the scar-to-biphasic model. Am J Cardiol. 2003;91:1406–9.

    Article  PubMed  Google Scholar 

  60. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  PubMed  CAS  Google Scholar 

  61. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.

    Article  PubMed  CAS  Google Scholar 

  62. Anagnostopoulos C, Henein MY, Underwood SR. Non-invasive investigations. Br Med Bull. 2001;59:29–44.

    Article  PubMed  CAS  Google Scholar 

  63. Schinkel AF, Bax JJ, Valkema R, et al. Effect of diabetes mellitus on myocardial 18F-FDG SPECT using acipimox for the assessment of myocardial viability. J Nucl Med. 2003;44:877–83.

    PubMed  Google Scholar 

  64. Velazquez EJ, Lee KL, Deja MA, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364:1607–16.

    Article  PubMed  CAS  Google Scholar 

  65. Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.

    Article  PubMed  CAS  Google Scholar 

  66. Nelson C, Marwick TH. Clinical decision-making and myocardial viability: current perspectives. Intern Med J. 2005;35:118–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

The Department of Cardiology received grants from Biotronik, Medtronic, Boston Scientific Corporation, Lantheus Medical Imaging, St. Jude Medical, GE Healthcare, and Edwards Lifesciences. Dr. Victoria Delgado received consulting fees from Medtronic and St. Jude Medical. Dr. Kai-Hang Yiu is financially supported by the Hong Kong Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Delgado M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Delgado, V., Schinkel, A.F.L., Yiu, KH., Bax, J.J. (2012). Nuclear Imaging to Assess Infarction, Reperfusion, No-Reflow, and Viability. In: Kaski, J., Hausenloy, D., Gersh, B., Yellon, D. (eds) Management of Myocardial Reperfusion Injury. Springer, London. https://doi.org/10.1007/978-1-84996-019-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-019-9_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-018-2

  • Online ISBN: 978-1-84996-019-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics