Skip to main content

Advertisement

Log in

Abstract

Introduction

In normal condition, the heart obtains more than two-thirds of its energy from the oxidative metabolism of long chain fatty acids, although a wide variety of substrates such as glucose, lactate, ketone bodies and amino acids are also utilised. In ischaemic myocardium, on the other hand, oxidative metabolism of free fatty acid is suppressed and anaerobic glucose metabolism plays a major role in residual oxidative metabolism. Therefore, metabolic imaging can be an important technique for the assessment of various cardiac diseases and conditions.

Materials and methods

In SPECT, several iodinated fatty acid traces have been introduced and studied. Of these, 123I-labelled 15-(p-iodophenyl)3-R, S-methylpentadecanoic acid (BMIPP) has been the most commonly used tracer in clinical studies, especially in some of the European countries and Japan.

Results and discussion

In this review article, several fatty acid tracers for SPECT are characterised, and the mechanism of uptake and clinical utility of BMIPP are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 1981;23:321–36.

    PubMed  CAS  Google Scholar 

  2. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 1989;32:217–38.

    PubMed  CAS  Google Scholar 

  3. Hwang EH, Yamashita A, Takemori H, Taki J, Nakajima K, Bunko H, et al. Absent myocardial I-123 BMIPP uptake in a family. Ann Nucl Med 1996;10:445–8.

    PubMed  CAS  Google Scholar 

  4. Hashimoto J, Koseki S, Kinoshita F, Kubo A, Iwanaga S, Mitamura H, et al. Absent myocardial accumulation of two different radioiodinated pentadecanoic acids. Ann Nucl Med 1998;12:43–6.

    PubMed  CAS  Google Scholar 

  5. Tanaka T, Okamoto F, Sohmiya K, Kawamura K. Lack of myocardial iodine-123 15-(p-iodiphenyl)-3-R,S-methylpentadecanoic acid (BMIPP) uptake and CD36 abnormality-CD36 deficiency and hypertrophic cardiomyopathy. Jpn Circ J 1997;61:724–5.

    PubMed  CAS  Google Scholar 

  6. Hwang EH, Taki J, Yasue S, Fujimoto M, Taniguchi M, Matsunari I, et al. Absent myocardial iodine-123-BMIPP uptake and platelet/monocyte CD36 deficiency. J Nucl Med 1998;39:1681–4.

    PubMed  CAS  Google Scholar 

  7. Yoshizumi T, Nozaki S, Fukuchi K, Yamasaki K, Fukuchi T, Maruyama T, et al. Pharmacokinetics and metabolism of 123I-BMIPP fatty acid analog in healthy and CD36-deficient subjects. J Nucl Med 2000;41:1134–8.

    PubMed  CAS  Google Scholar 

  8. Watanabe K, Ohta Y, Toba K, Ogawa Y, Hanawa H, Hirokawa Y, et al. Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency. Ann Nucl Med 1998;12:261–6.

    PubMed  CAS  Google Scholar 

  9. Fukuchi K, Nozaki S, Yoshizumi T, Hasegawa S, Uehara T, Nakagawa T, et al. Enhanced myocardial glucose use in patients with a deficiency in long-chain fatty acid transport (CD36 deficiency). J Nucl Med 1999;40:239–43.

    PubMed  CAS  Google Scholar 

  10. Kudoh T, Tamaki N, Magata Y, Konishi J, Nohara R, Iwasaki A, et al. Metabolism substrate with negative myocardial uptake of iodine-123-BMIPP. J Nucl Med 1997;38:548–53.

    PubMed  CAS  Google Scholar 

  11. Nozaki S, Tanaka T, Yamashita S, Sohmiya K, Yoshizumi T, Okamoto F, et al. CD36 mediates long-chain fatty acid transport in human myocardium: complete myocardial accumulation defect of radiolabeled long-chain fatty acid analog in subjects with CD36 deficiency. Mol Cell Biochem 1999;192:129–35.

    PubMed  CAS  Google Scholar 

  12. Tanaka T, Nakata T, Oka T, Ogawa T, Okamoto F, Kusaka Y, et al. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. J Lipid Res 2001;42:751–9.

    PubMed  CAS  Google Scholar 

  13. Brinkmann JF, Abumrad NA, Ibrahimi A, van der Vusse GJ, Glatz JF. New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem J 2002;367:561–70.

    PubMed  CAS  Google Scholar 

  14. Robinson GD Jr, Lee AW. Radioiodinated fatty acids for heart imaging: iodine monochloride addition compared with iodide replacement labeling. J Nucl Med 1975;16:17–21.

    PubMed  CAS  Google Scholar 

  15. Poe ND, Robinson GD Jr, Graham LS, MacDonald NS. Experimental basis of myocardial imaging with 123I-labeled hexadecenoic acid. J Nucl Med 1976;17:1077–82.

    PubMed  CAS  Google Scholar 

  16. Poe ND, Robinson GD Jr, Zielinski FW, Cabeen WR Jr, Smith JW, Gomes AS. Myocardial imaging with 123I-hexadecenoic acid. Radiology 1977;124:419–24.

    PubMed  CAS  Google Scholar 

  17. Visser FC, van Eenige MJ, Westera G, Den Hollander W, Duwel CM, van der Wall EE, et al. Metabolic fate of radioiodinated heptadecanoic acid in the normal canine heart. Circulation 1985;72:565–71.

    PubMed  CAS  Google Scholar 

  18. Freundlieb C, Hock A, Vyska K, Feinendegen LE, Machulla HJ, Stocklin G. Myocardial imaging and metabolic studies with [17-123I]iodoheptadecanoic acid. J Nucl Med 1980;21:1043–50.

    PubMed  CAS  Google Scholar 

  19. Machulla HJ, Marsmann M, Dutschka K. Biochemical concept and synthesis of a radioiodinated phenylfatty acid for in vivo metabolic studies of the myocardium. Eur J Nucl Med 1980;5:171–3.

    PubMed  CAS  Google Scholar 

  20. Reske SN, Sauer W, Machulla HJ, Winkler C. 15(p-[123I]Iodophenyl)pentadecanoic acid as tracer of lipid metabolism: comparison with [1-14C]palmitic acid in murine tissues. J Nucl Med 1984;25:1335–42.

    PubMed  CAS  Google Scholar 

  21. Caldwell JH, Martin GV, Link JM, Krohn KA, Bassingthwaighte JB. Iodophenylpentadecanoic acid–myocardial blood flow relationship during maximal exercise with coronary occlusion. J Nucl Med 1990;31:99–105.

    PubMed  CAS  Google Scholar 

  22. Ercan M, Senekowitsch R, Bauer R, Reidel G, Kriegel H, Pabst HW. In vivo and in vitro studies with omega-[rho-123I-phenyl]-pentadecanoic acid in rats. Int J Appl Radiat Isot 1983;34:1519–24.

    PubMed  CAS  Google Scholar 

  23. Rellas JS, Corbett JR, Kulkarni P, Morgan C, Devous MD Sr, Buja LM, et al. Iodine-123 phenylpentadecanoic acid: detection of acute myocardial infarction and injury in dogs using an iodinated fatty acid and single-photon emission tomography. Am J Cardiol 1983;52:1326–32.

    PubMed  CAS  Google Scholar 

  24. Goodman MM, Kirsch G, Knapp FF Jr. Synthesis and evaluation of radioiodinated terminal p-iodophenyl-substituted alpha- and beta-methyl-branched fatty acids. J Med Chem 1984;27:390–7.

    PubMed  CAS  Google Scholar 

  25. Knapp FF Jr, Ambrose KR, Goodman MM. New radioiodinated methyl-branched fatty acids for cardiac studies. Eur J Nucl Med 1986;12 Suppl:S39–44.

    PubMed  Google Scholar 

  26. Sloof GW, Visser FC, van Lingen A, Bax JJ, Eersels J, Teule GJ, et al. Evaluation of heart-to-organ ratios of 123I-BMIPP and the dimethyl-substituted 123I-DMIPP fatty acid analogue in humans. Nucl Med Commun 1997;18:1065–70.

    PubMed  CAS  Google Scholar 

  27. Chouraqui P, Maddahi J, Henkin R, Karesh SM, Galie E, Berman DS. Comparison of myocardial imaging with iodine-123-iodophenyl-9-methyl pentadecanoic acid and thallium-201-chloride for assessment of patients with exercise-induced myocardial ischemia. J Nucl Med 1991;32:447–52.

    PubMed  CAS  Google Scholar 

  28. Hashimoto J, Kubo A, Iwasaki R, Fujii H, Kunieda E, Iwanaga S, et al. Scintigraphic evaluation of myocardial ischaemia using a new fatty acid analogue: iodine-123-labelled 15-(p-iodophenyl)-9-(R,S)-methylpentadecanoic acid (9MPA). Eur J Nucl Med 1999;26:887–93.

    PubMed  CAS  Google Scholar 

  29. Fujiwara S, Takeishi Y, Tojo T, Yamaoka M, Nitobe J, Takahashi K, et al. Fatty acid imaging with 123I-15-(p-iodophenyl)-9-R,S-methylpentadecanoic acid in acute coronary syndrome. J Nucl Med 1999;40:1999–2006.

    PubMed  CAS  Google Scholar 

  30. Fukuchi K, Hasegawa S, Ito Y, Yamaguchi H, Yoshioka J, Uehara T, et al. Detection of coronary artery disease by iodine-123-labeled iodophenyl-9-methyl pentadecanoic acid SPECT: comparison with thallium-201 and iodine-123 BMIPP SPECT. Ann Nucl Med 2000;14:11–6.

    PubMed  CAS  Google Scholar 

  31. Ambrose KR, Owen BA, Goodman MM, Knapp FF Jr. Evaluation of the metabolism in rat hearts of two new radioiodinated 3-methyl-branched fatty acid myocardial imaging agents. Eur J Nucl Med 1987;12:486–91.

    PubMed  CAS  Google Scholar 

  32. Fujibayashi Y, Nohara R, Hosokawa R, Okuda K, Yonekura Y, Tamaki N, et al. Metabolism and kinetics of iodine-123-BMIPP in canine myocardium. J Nucl Med 1996;37:757–61.

    PubMed  CAS  Google Scholar 

  33. Hosokawa R, Nohara R, Fujibayashi Y, Okuda K, Ogino M, Hata T, et al. Myocardial kinetics of iodine-123-BMIPP in canine myocardium after regional ischemia and reperfusion: implications for clinical SPECT. J Nucl Med 1997;38:1857–63.

    PubMed  CAS  Google Scholar 

  34. Hosokawa R, Nohara R, Fujibayashi Y, Okuda K, Ogino M, Hata T, et al. Metabolic fate of iodine 123 BMIPP in canine myocardium after administration of etomoxir. J Nucl Med 1996;37:1836–40.

    PubMed  CAS  Google Scholar 

  35. Fox KA, Abendschein DR, Ambos HD, Sobel BE, Bergmann SR. Efflux of metabolized and nonmetabolized fatty acid from canine myocardium. Implications for quantifying myocardial metabolism tomographically. Circ Res 1985;57:232–43.

    PubMed  CAS  Google Scholar 

  36. Duwel CM, Visser FC, van Eenige MJ, Roos JP. Variables of myocardial backdiffusion, determined with 17-iodo-131 heptadecanoic acid in the normal dog heart. Mol Cell Biochem 1989;88:191–4.

    PubMed  CAS  Google Scholar 

  37. Fujibayashi Y, Yonekura Y, Takemura Y, Wada K, Matsumoto K, Tamaki N, et al. Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S)methylpentadecanoic acid (BMIPP), in relation to ATP concentration. J Nucl Med 1990;31:1818–22.

    PubMed  CAS  Google Scholar 

  38. Nohara R, Okuda K, Ogino M, Hosokawa R, Tamaki N, Konishi J, et al. Evaluation of myocardial viability with iodine-123-BMIPP in a canine model. J Nucl Med 1996;37:1403–7.

    PubMed  CAS  Google Scholar 

  39. Matsunari I, Saga T, Taki J, Akashi Y, Hirai J, Wakasugi T, et al. Kinetics of iodine-123-BMIPP in patients with prior myocardial infarction: assessment with dynamic rest and stress images compared with stress thallium-201 SPECT. J Nucl Med 1994;35:1279–85.

    PubMed  CAS  Google Scholar 

  40. Kobayashi H, Kusakabe K, Momose M, Okawa T, Inoue S, Iguchi N, et al. Evaluation of myocardial perfusion and fatty acid uptake using a single injection of iodine-123-BMIPP in patients with acute coronary syndromes. J Nucl Med 1998;39:1117–22.

    PubMed  CAS  Google Scholar 

  41. Miller DD, Gill JB, Livni E, Elmaleh DR, Aretz T, Boucher CA, et al. Fatty acid analogue accumulation: a marker of myocyte viability in ischemic-reperfused myocardium. Circ Res 1988;63:681–92.

    PubMed  CAS  Google Scholar 

  42. Schwaiger M, Schelbert HR, Keen R, Vinten-Johansen J, Hansen H, Selin C, et al. Retention and clearance pf C-11 palmitic acid in ischemic and reperfused canine myocardium. J Am Coll Cardiol 1985;6:311–20.

    Article  PubMed  CAS  Google Scholar 

  43. Nishimura T, Sago M, Kihara K, Oka H, Shimonagata T, Katabuchi T, et al. Fatty acid myocardial imaging using 123I-beta-methyl-iodophenyl pentadecanoic acid (BMIPP): comparison of myocardial perfusion and fatty acid utilization in canine myocardial infarction (occlusion and reperfusion model). Eur J Nucl Med 1989;15:341–5.

    PubMed  CAS  Google Scholar 

  44. Noriyasu K, Mabuchi M, Kuge Y, Morita K, Tsukamoto T, Kohya T, et al. Serial changes in BMIPP uptake in relation to thallium uptake in the rat myocardium after ischaemia. Eur J Nucl Med Mol Imaging 2003;30:1644–50.

    PubMed  CAS  Google Scholar 

  45. Higuchi T, Taki J, Nakajima K, Kinuya S, Namura M, Tonami N. Time course of discordant BMIPP and thallium uptake after ischemia and reperfusion in a rat model. J Nucl Med 2005;46:172–5.

    PubMed  Google Scholar 

  46. Ito K, Sugihara H, Kawasaki T, Katoh S, Azuma A, Nakagawa M. Dynamic changes in cardiac fatty acid metabolism in the stunned human myocardium. Ann Nucl Med 2001;15:343–50.

    PubMed  CAS  Google Scholar 

  47. Takahashi N, Ishida Y, Hirose Y, Kawano S, Fukuoka S, Hayashida K, et al. [Detection of myocardial 123I-BMIPP distribution abnormality in patients with ischemic heart disease based on normal data file in bull’s-eye polar map]. Kaku Igaku 1995;32:1089–98.

    PubMed  CAS  Google Scholar 

  48. Taki J, Nakajima K, Matsunari I, Bunko H, Takada S, Tonami N. Impairment of regional fatty acid uptake in relation to wall motion and thallium-201 uptake in ischaemic but viable myocardium: assessment with iodine-123-labelled beta-methyl-branched fatty acid. Eur J Nucl Med 1995;22:1385–92.

    PubMed  CAS  Google Scholar 

  49. Ueshima K, Miyakawa T, Taniguchi Y, Nishiyama O, Musha T, Saitoh M, et al. The incidence of discrepant regional myocardial uptake between 201 thallium and 123 I-BMIPP SPECT in patients with coronary heart disease. Int J Cardiovasc Imaging 2002;18:273–8.

    PubMed  Google Scholar 

  50. Tamaki N, Kawamoto M, Yonekura Y, Fujibayashi Y, Takahashi N, Konishi J, et al. Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: assessment with emission tomography using an iodinated branched fatty acid analog. J Nucl Med 1992;33:659–67.

    PubMed  CAS  Google Scholar 

  51. Dobbeleir AA, Hambye AS, Franken PR. Influence of methodology on the presence and extent of mismatching between 99mTc-MIBI and 123I-BMIPP in myocardial viability studies. J Nucl Med 1999;40:707–14.

    PubMed  CAS  Google Scholar 

  52. Franken PR, De Geeter F, Dendale P, Demoor D, Block P, Bossuyt A. Abnormal free fatty acid uptake in subacute myocardial infarction after coronary thrombolysis: correlation with wall motion and inotropic reserve. J Nucl Med 1994;35:1758–65.

    PubMed  CAS  Google Scholar 

  53. Ito T, Tanouchi J, Kato J, Morioka T, Nishino M, Iwai K, et al. Recovery of impaired left ventricular function in patients with acute myocardial infarction is predicted by the discordance in defect size on 123I-BMIPP and 201Tl SPET images. Eur J Nucl Med 1996;23:917–23.

    PubMed  CAS  Google Scholar 

  54. Hashimoto A, Nakata T, Tsuchihashi K, Tanaka S, Fujimori K, Iimura O. Postischemic functional recovery and BMIPP uptake after primary percutaneous transluminal coronary angioplasty in acute myocardial infarction. Am J Cardiol 1996;77:25–30.

    PubMed  CAS  Google Scholar 

  55. Franken PR, Dendale P, De Geeter F, Demoor D, Bossuyt A, Block P. Prediction of functional outcome after myocardial infarction using BMIPP and sestamibi scintigraphy. J Nucl Med 1996;37:718–22.

    PubMed  CAS  Google Scholar 

  56. Naruse H, Arii T, Kondo T, Morita M, Ohyanagi M, Iwasaki T, et al. Clinical usefulness of iodine 123-labeled fatty acid imaging in patients with acute myocardial infarction. J Nucl Cardiol 1998;5:275–84.

    PubMed  CAS  Google Scholar 

  57. Nishimura T, Nishimura S, Kajiya T, Sugihara H, Kitahara K, Imai K, et al. Prediction of functional recovery and prognosis in patients with acute myocardial infarction by 123I-BMIPP and 201Tl myocardial single photon emission computed tomography: a multicenter trial. Ann Nucl Med 1998;12:237–48.

    PubMed  CAS  Google Scholar 

  58. Hambye AS, Vervaet A, Dobbeleir A, Dendale P, Franken P. Prediction of functional outcome by quantification of sestamibi and BMIPP after acute myocardial infarction. Eur J Nucl Med 2000;27:1494–500.

    PubMed  CAS  Google Scholar 

  59. Katsunuma E, Kurokawa S, Takahashi M, Fukuda N, Kurosawa T, Izumi T. Usefulness of BMIPP SPECT to evaluate myocardial viability, contractile reserve and coronary stenotic progression after reperfusion in acute myocardial infarction. Jpn Heart J 2001;42:435–49.

    PubMed  CAS  Google Scholar 

  60. Seki H, Toyama T, Higuchi K, Kasama S, Ueda T, Seki R, et al. Prediction of functional improvement of ischemic myocardium with (123I-BMIPP SPECT and 99mTc-tetrofosmin SPECT imaging: a study of patients with large acute myocardial infarction and receiving revascularization therapy. Circ J 2005;69:311–9.

    PubMed  Google Scholar 

  61. Furutani Y, Shiigi T, Nakamura Y, Nakamura H, Harada M, Yamamoto T, et al. Quantification of area at risk in acute myocardial infarction by tomographic imaging. J Nucl Med 1997;38:1875–82.

    PubMed  CAS  Google Scholar 

  62. Kawai Y, Tsukamoto E, Nozaki Y, Kishino K, Kohya T, Tamaki N. Use of 123I-BMIPP single-photon emission tomography to estimate areas at risk following successful revascularization in patients with acute myocardial infarction. Eur J Nucl Med 1998;25:1390–5.

    PubMed  CAS  Google Scholar 

  63. Mochizuki T, Murase K, Higashino H, Miyagawa M, Sugawara Y, Kikuchi T, et al. Ischemic “memory image” in acute myocardial infarction of 123I-BMIPP after reperfusion therapy: a comparison with 99mTc-pyrophosphate and 201Tl dual-isotope SPECT. Ann Nucl Med 2002;16:563–8.

    PubMed  Google Scholar 

  64. Tamaki N, Tadamura E, Kudoh T, Hattori N, Inubushi M, Konishi J. Recent advances in nuclear cardiology in the study of coronary artery disease. Ann Nucl Med 1997;11:55–66.

    PubMed  CAS  Google Scholar 

  65. Kawamoto M, Tamaki N, Yonekura Y, Tadamura E, Fujibayashi Y, Magata Y, et al. Combined study with I-123 fatty acid and thallium-201 to assess ischemic myocardium: comparison with thallium redistribution and glucose metabolism. Ann Nucl Med 1994;8:47–54.

    PubMed  CAS  Google Scholar 

  66. Tateno M, Tamaki N, Yukihiro M, Kudoh T, Hattori N, Tadamura E, et al. Assessment of fatty acid uptake in ischemic heart disease without myocardial infarction. J Nucl Med 1996;37:1981–5.

    PubMed  CAS  Google Scholar 

  67. Suzuki A, Takada Y, Nagasaka M, Kato R, Watanabe T, Shimokata K, et al. Comparison of resting beta-methyl-iodophenyl pentadecanoic acid (BMIPP) and thallium-201 tomography using quantitative polar maps in patients with unstable angina. Jpn Circ J 1997;61:133–8.

    PubMed  CAS  Google Scholar 

  68. Takeishi Y, Fujiwara S, Atsumi H, Takahashi K, Sukekawa H, Tomoike H. Iodine-123-BMIPP imaging in unstable angina: a guide for interventional strategy. J Nucl Med 1997;38:1407–11.

    PubMed  CAS  Google Scholar 

  69. Takeishi Y, Sukekawa H, Saito H, Nishimura S, Shibu T, Sasaki Y, et al. Impaired myocardial fatty acid metabolism detected by 123I-BMIPP in patients with unstable angina pectoris: comparison with perfusion imaging by 99mTc-sestamibi. Ann Nucl Med 1995;9:125–30.

    PubMed  CAS  Google Scholar 

  70. Kawai Y, Tsukamoto E, Nozaki Y, Morita K, Sakurai M, Tamaki N. Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain. J Am Coll Cardiol 2001;38:1888–94.

    PubMed  CAS  Google Scholar 

  71. Nakajima K, Shimizu K, Taki J, Uetani Y, Konishi S, Tonami N, et al. Utility of iodine-123-BMIPP in the diagnosis and follow-up of vasospastic angina. J Nucl Med 1995;36:1934–40.

    PubMed  CAS  Google Scholar 

  72. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, et al. Impaired fatty acid uptake in ischemic but viable myocardium identified by thallium-201 reinjection. Am Heart J 1996;131:458–65.

    PubMed  CAS  Google Scholar 

  73. Tamaki N, Ohtani H, Yonekura Y, Nohara R, Kambara H, Kawai C, et al. Significance of fill-in after thallium-201 reinjection following delayed imaging: comparison with regional wall motion and angiographic findings. J Nucl Med 1990;31:1617–23.

    PubMed  CAS  Google Scholar 

  74. Ohtani H, Tamaki N, Yonekura Y, Mohiuddin IH, Hirata K, Ban T, et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990;66:394–9.

    PubMed  CAS  Google Scholar 

  75. Dilsizian V, Bateman TM, Bergmann SR, Des Prez R, Magram MY, Goodbody AE, et al. Metabolic imaging with beta-methyl-p-[123I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 2005;112:2169–74.

    PubMed  Google Scholar 

  76. Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, et al. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 2003;92:1233–9.

    PubMed  CAS  Google Scholar 

  77. Camici PG, Rimoldi OE. Myocardial blood flow in patients with hibernating myocardium. Cardiovasc Res 2003;57:302–11.

    PubMed  CAS  Google Scholar 

  78. Gerber BL, Vanoverschelde JL, Bol A, Michel C, Labar D, Wijns W, et al. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation 1996;94:651–9.

    PubMed  CAS  Google Scholar 

  79. Kageyama H, Morita K, Katoh C, Tsukamoto T, Noriyasu K, Mabuchi M, et al. Reduced 123I-BMIPP uptake implies decreased myocardial flow reserve in patients with chronic stable angina. Eur J Nucl Med Mol Imaging 2006;33:6–12.

    PubMed  CAS  Google Scholar 

  80. Udelson JE, Bonow RO, Dilsizian V. The historical and conceptual evolution of radionuclide assessment of myocardial viability. J Nucl Cardiol 2004;11:318–34.

    PubMed  Google Scholar 

  81. Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V. [18F]fluorodeoxyglucose single photon emission computed tomography: can it replace PET and thallium SPECT for the assessment of myocardial viability. Circulation 1998; 39:843–50.

    PubMed  CAS  Google Scholar 

  82. Tamaki N, Tadamura E, Kawamoto M, Magata Y, Yonekura Y, Fujibayashi Y, et al. Decreased uptake of iodinated branched fatty acid analog indicates metabolic alterations in ischemic myocardium. J Nucl Med 1995;36:1974–80.

    PubMed  CAS  Google Scholar 

  83. Hambye AS, Vaerenberg MM, Dobbeleir AA, Van den Heuvel PA, Franken PR. Abnormal BMIPP uptake in chronically dysfunctional myocardial segments: correlation with contractile response to low-dose dobutamine. J Nucl Med 1998;39:1845–50.

    PubMed  CAS  Google Scholar 

  84. Hambye AS, Dobbeleir AA, Vervaet AM, Van den Heuvel PA, Franken PR. BMIPP imaging to improve the value of sestamibi scintigraphy for predicting functional outcome in severe chronic ischemic left ventricular dysfunction. J Nucl Med 1999;40:1468–76.

    PubMed  CAS  Google Scholar 

  85. Kudoh T, Tadamura E, Tamaki N, Hattori N, Inubushi M, Kubo S, et al. Iodinated free fatty acid and 201T1 uptake in chronically hypoperfused myocardium: histologic correlation study. J Nucl Med 2000;41:293–6.

    PubMed  CAS  Google Scholar 

  86. Taki J, Nakajima K, Matsunari I, Bunko H, Takata S, Kawasuji M, et al. Assessment of improvement of myocardial fatty acid uptake and function after revascularization using iodine-123-BMIPP. J Nucl Med 1997;38:1503–10.

    PubMed  CAS  Google Scholar 

  87. Sato H, Iwasaki T, Toyama T, Kaneko Y, Inoue T, Endo K, et al. Prediction of functional recovery after revascularization in coronary artery disease using 18F-FDG and 123I-BMIPP SPECT. Chest 2000;117:65–72.

    PubMed  CAS  Google Scholar 

  88. Tamaki N, Tadamura E, Kudoh T, Hattori N, Yonekura Y, Nohara R, et al. Prognostic value of iodine-123 labelled BMIPP fatty acid analogue imaging in patients with myocardial infarction. Eur J Nucl Med 1996;23:272–9.

    PubMed  CAS  Google Scholar 

  89. Nakata T, Kobayashi T, Tamaki N, Kobayashi H, Wakabayashi T, Shimoshige S, et al. Prognostic value of impaired myocardial fatty acid uptake in patients with acute myocardial infarction. Nucl Med Commun 2000;21:897–906.

    PubMed  CAS  Google Scholar 

  90. Nanasato M, Hirayama H, Ando A, Isobe S, Nonokawa M, Kinoshita Y, et al. Incremental predictive value of myocardial scintigraphy with 123I-BMIPP in patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Eur J Nucl Med Mol Imaging 2004;31:1512–21.

    PubMed  Google Scholar 

  91. Fukuzawa S, Ozawa S, Shimada K, Sugioka J, Inagaki M. Prognostic values of perfusion-metabolic mismatch in Tl-201 and BMIPP scintigraphic imaging in patients with chronic coronary artery disease and left ventricular dysfunction undergoing revascularization. Ann Nucl Med 2002;16:109–15.

    PubMed  Google Scholar 

  92. Chikamori T, Fujita H, Nanasato M, Toba M, Nishimura T. Prognostic value of I-123 15-(p-iodophenyl)-3-(R,S) methylpentadecanoic acid myocardial imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 2005;12:172–8.

    PubMed  Google Scholar 

  93. Nohara R, Hosokawa R, Hirai T, Okuda K, Ogino M, Fujibayashi Y, et al. Effect of metabolic substrate on BMIPP metabolism in canine myocardium. J Nucl Med 1998;39:1132–7.

    PubMed  CAS  Google Scholar 

  94. Kurata C, Wakabayashi Y, Shouda S, Mikami T, Takei Y, Tawarahara K, et al. Influence of blood substrate levels on myocardial kinetics of iodine-123-BMIPP. J Nucl Med 1997;38:1079–84.

    PubMed  CAS  Google Scholar 

  95. Matsuki T, Tamaki N, Nakata T, Doi A, Takahashi H, Iwata M, et al. Prognostic value of fatty acid imaging in patients with angina pectoris without prior myocardial infarction: comparison with stress thallium imaging. Eur J Nucl Med Mol Imaging 2004;31:1585–91.

    PubMed  Google Scholar 

  96. Yonekura Y, Brill AB, Som P, Yamamoto K, Srivastava SC, Iwai J, et al. Regional myocardial substrate uptake in hypertensive rats: a quantitative autoradiographic measurement. Science 1985;227:1494–6.

    PubMed  CAS  Google Scholar 

  97. Kubota K, Som P, Oster ZH, Brill AB, Goodman MM, Knapp FF Jr, et al. Detection of cardiomyopathy in an animal model using quantitative autoradiography. J Nucl Med 1988;29:1697–703.

    PubMed  CAS  Google Scholar 

  98. Kurata C, Kobayashi A, Yamazaki N. Dual tracer autoradiographic study with thallium-201 and radioiodinated fatty acid in cardiomyopathic hamsters. J Nucl Med 1989;30:80–7.

    PubMed  CAS  Google Scholar 

  99. Yamamoto K, Som P, Brill AB, Yonekura Y, Srivastava SC, Meinken GE, et al. Dual tracer autoradiographic study of beta-methyl-(1-14C) heptadecanoic acid and 15-p-(131I)-iodophenyl-beta-methylpentadecanoic acid in normotensive and hypertensive rats. J Nucl Med 1986;27:1178–83.

    PubMed  CAS  Google Scholar 

  100. Kagaya Y, Kanno Y, Takeyama D, Ishide N, Maruyama Y, Takahashi T, et al. Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation 1990;81:1353–61.

    PubMed  CAS  Google Scholar 

  101. Kurata C, Tawarahara K, Taguchi T, Aoshima S, Kobayashi A, Yamazaki N, et al. Myocardial emission computed tomography with iodine-123-labeled beta-methyl-branched fatty acid in patients with hypertrophic cardiomyopathy. J Nucl Med 1992;33:6–13.

    PubMed  CAS  Google Scholar 

  102. Taki J, Nakajima K, Bunko H, Shimizu M, Taniguchi M, Hisada K. 123I-labelled BMIPP fatty acid myocardial scintigraphy in patients with hypertropic cardiomyopathy: SPECT comparison with stress 201Tl. Nucl Med Commun 1993;14:181–8.

    PubMed  CAS  Google Scholar 

  103. Takeishi Y, Chiba J, Abe S, Tonooka I, Komatani A, Tomoike H. Heterogeneous myocardial distribution of iodine-123 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) in patients with hypertrophic cardiomyopathy. Eur J Nucl Med 1992;19:775–82.

    PubMed  CAS  Google Scholar 

  104. Ohtsuki K, Sugihara H, Kuribayashi T, Nakagawa M. Impairment of BMIPP accumulation at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. J Nucl Med 1999;40:2007–13.

    PubMed  CAS  Google Scholar 

  105. Nishimura T, Nagata S, Uehara T, Morozumi T, Ishida Y, Nakata T, et al. Prognosis of hypertrophic cardiomyopathy: assessment by 123I-BMIPP (beta-methyl-p-(123I)iodophenyl pentadecanoic acid) myocardial single photon emission computed tomography. Ann Nucl Med 1996;10:71–8.

    Article  PubMed  CAS  Google Scholar 

  106. Shimizu M, Ino H, Okeie K, Emoto Y, Yamaguchi M, Yasuda T, et al. Cardiac dysfunction and long-term prognosis in patients with nonobstructive hypertrophic cardiomyopathy and abnormal 123I-15-(p-iodophenyl)-3(R,S)-methylpentadecanoic acid myocardial scintigraphy. Cardiology 2000;93:43–9.

    PubMed  CAS  Google Scholar 

  107. O’Gara PT, Bonow RO, Maron BJ, Damske BA, Van Lingen A, Bacharach SL, et al. Myocardial perfusion abnormalities in patients with hypertrophic cardiomyopathy: assessment with thallium-201 emission computed tomography. Circulation 1987;76:1214–23.

    PubMed  CAS  Google Scholar 

  108. von Dohlen TW, Prisant LM, Frank MJ. Significance of positive or negative thallium-201 scintigraphy in hypertrophic cardiomyopathy. Am J Cardiol 1989;64:498–503.

    Google Scholar 

  109. Cannon RO 3rd, Dilsizian V, O’Gara PT, Udelson JE, Schenke WH, Quyyumi A, et al. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy. Circulation 1991;83:1660–7.

    PubMed  Google Scholar 

  110. Matsuo S, Nakamura Y, Takahashi M, Mitsunami K, Kinoshita M. Myocardial metabolic abnormalities in hypertrophic cardiomyopathy assessed by iodine-123-labeled beta-methyl-branched fatty acid myocardial scintigraphy and its relation to exercise-induced ischemia. Jpn Circ J 1998;62:167–72.

    PubMed  CAS  Google Scholar 

  111. Ishida Y, Nagata S, Uehara T, Yasumura Y, Fukuchi K, Miyatake K. Clinical analysis of myocardial perfusion and metabolism in patients with hypertrophic cardiomyopathy by single photon emission tomography and positron emission tomography. J Cardiol 2001;37(Suppl 1):121–8.

    PubMed  Google Scholar 

  112. Tadamura E, Kudoh T, Hattori N, Inubushi M, Magata Y, Konishi J, et al. Impairment of BMIPP uptake precedes abnormalities in oxygen and glucose metabolism in hypertrophic cardiomyopathy. J Nucl Med 1998;39:390–6.

    PubMed  CAS  Google Scholar 

  113. Shimonagata T, Nishimura T, Uehara T, Hayashida K, Kumita S, Ohno A, et al. Discrepancies between myocardial perfusion and free fatty acid metabolism in patients with hypertrophic cardiomyopathy. Nucl Med Commun 1993;14:1005–13.

    PubMed  CAS  Google Scholar 

  114. Nishimura T, Uehara T, Shimonagata T, Nagata S, Haze K. Clinical results with beta-methyl-p-(123I)iodophenylpentadecanoic acid, single-photon emission computed tomography in cardiac disease. J Nucl Cardiol 1994;1:S65–71.

    PubMed  CAS  Google Scholar 

  115. Nakata T, Tanaka S, Hamagami S, Miyamoto K, Oh-hori K, Iimura O. Detection of impaired fatty acid metabolism and dyskinesis in hypertrophic cardiomyopathy with iodine-123-BMIPP. J Nucl Med 1996;37:1679–81.

    PubMed  CAS  Google Scholar 

  116. Narita M, Kurihara T. Is I-123-beta-methyl-p-iodophenyl-methylpentadecanoic acid imaging useful to evaluate asymptomatic patients with hypertrophic cardiomyopathy? I-123 BMIPP imaging to evaluate asymptomatic hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 2003;19:499–510.

    PubMed  Google Scholar 

  117. Hashimoto Y, Yamabe H, Yokoyama M. Myocardial defect detected by 123I-BMIPP scintigraphy and left ventricular dysfunction in patients with idiopathic dilated cardiomyopathy. Ann Nucl Med 1996;10:225–30.

    PubMed  CAS  Google Scholar 

  118. Yazaki Y, Isobe M, Takahashi W, Kitabayashi H, Nishiyama O, Sekiguchi M, et al. Assessment of myocardial fatty acid metabolic abnormalities in patients with idiopathic dilated cardiomyopathy using 123I BMIPP SPECT: correlation with clinicopathological findings and clinical course. Heart 1999;81:153–9.

    PubMed  CAS  Google Scholar 

  119. Yoshinaga K, Tahara M, Torii H, Kihara K. Predicting the effects on patients with dilated cardiomyopathy of beta-blocker therapy, by using iodine-123 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) myocardial scintigraphy. Ann Nucl Med 1998;12:341–7.

    PubMed  CAS  Google Scholar 

  120. Yoshinaga K, Tahara M, Torii H, Akimoto M, Kihara K, Tei C. Myocardial scintigraphy using iodine-123 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid predicts the response to beta-blocker therapy in patients with dilated cardiomyopathy but does not reflect therapeutic effect. J Cardiol 2000;35:343–51.

    PubMed  CAS  Google Scholar 

  121. Ito T, Hoshida S, Nishino M, Aoi T, Egami Y, Takeda T, et al. Relationship between evaluation by quantitative fatty acid myocardial scintigraphy and response to beta-blockade therapy in patients with dilated cardiomyopathy. Eur J Nucl Med 2001;28:1811–6.

    PubMed  CAS  Google Scholar 

  122. Kim Y, Sawada Y, Fujiwara G, Chiba H, Nishimura T. Therapeutic effect of co-enzyme Q10 on idiopathic dilated cardiomyopathy: assessment by iodine-123 labelled 15-(p-iodophenyl)-3(R,S)-methylpentadecanoic acid myocardial single-photon emission tomography. Eur J Nucl Med 1997;24:629–34.

    PubMed  CAS  Google Scholar 

  123. Ishida Y, Yasumura Y, Nagaya N, Fukuchi K, Komamura K, Takamiya M, et al. Myocardial imaging with 123I-BMIPP in patients with congestive heart failure. Int J Card Imaging 1999;15:71–7.

    PubMed  CAS  Google Scholar 

  124. Kawai S, Suzuki H, Yamaguchi H, Tanaka K, Sawada H, Aizawa T, et al. Ampulla cardiomyopathy (‘Takotusbo’ cardiomyopathy)-reversible left ventricular dysfunction: with ST segment elevation. Jpn Circ J 2000;64:156–9.

    PubMed  CAS  Google Scholar 

  125. Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, et al. Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina pectoris-myocardial infarction investigations in Japan. J Am Coll Cardiol 2001;38:11–8.

    PubMed  CAS  Google Scholar 

  126. Kurisu S, Inoue I, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, et al. Myocardial perfusion and fatty acid metabolism in patients with tako-tsubo-like left ventricular dysfunction. J Am Coll Cardiol 2003;41:743–8.

    PubMed  CAS  Google Scholar 

  127. Ito K, Sugihara H, Kinoshita N, Azuma A, Matsubara H. Assessment of Takotsubo cardiomyopathy (transient left ventricular apical ballooning) using 99mTc-tetrofosmin, 123I-BMIPP, 123I-MIBG and 99mTc-PYP myocardial SPECT. Ann Nucl Med 2005;19:435–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Taki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taki, J., Matsunari, I. Metabolic imaging using SPECT. Eur J Nucl Med Mol Imaging 34 (Suppl 1), 34–48 (2007). https://doi.org/10.1007/s00259-007-0439-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0439-9

Keywords

Navigation