Skip to main content

Hyperspectral Microscopy for Characterization of Gold Nanoparticles in Biological Media and Cells for Toxicity Assessment

  • Protocol
  • First Online:
Nanomaterial Interfaces in Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1025))

Abstract

Nanoparticles (NPs) are being implemented in a wide range of applications, and it is critical to proactively investigate their toxicity. Due to the extensive range of NPs being produced, in vitro studies are a valuable approach for toxicity screening. Key information required to support in vitro toxicity assessments include NP stability in biologically relevant media and fate once exposed to cells. Hyperspectral microscopy is a sensitive, real-time technique that combines the use of microscopy and spectroscopy for the measurement of the reflectance spectrum at individual pixels in a micrograph. This method has been used extensively for molecular imaging with plasmonic NPs as contrast agents (Aaron et al., Opt Express 16:2153−2167, 2008; Kumar et al., Nano Lett 7:1338−1343, 2007; Wax and Sokolov, Laser Photon Rev 3:146−158, 2009; Curry et al., Opt Express 14:6535–6542, 2006; Curry et al., J Biomed Opt 13:014022, 2008; Cognet et al., Proc Natl Acad Sci U S A 100:11350–11355, 2003; Sokolov et al., Cancer Res 63:1999–2004, 2003; Sönnichsen et al., Nat Biotechnol 23:741−745, 2005; Nusz et al., Anal Chem 80:984–989, 2008) and/or sensors (Nusz et al., Anal Chem 80:984–989, 2008; Ungureanu et al., Sens Actuators B 150:529−536, 2010; McFarland and Van Duyne, Nano Lett 3:1057−1062, 2003; Galush et al., Nano Lett 9:2077−2082, 2009; El-Sayed et al., Nano Lett 5:829–834, 2005). Here we describe an approach for using hyperspectral microscopy to characterize the agglomeration and stability of plasmonic NPs in biological media and their interactions with cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lux Research (2011) Global nanotech spending. Presented at EuroNanoForum 2011 conference, 30 May 2011. http://www.euronanoforum2011.eu/wp-content/uploads/2011/09/enf2011_support-commercialisation_raje_fin.pdf. Accessed 14 Sept 2012

  2. Reijnders L (2012) Human health hazards of persistent inorganic and carbon nanoparticles. J Mater Sci 47:5061–5073

    Article  CAS  Google Scholar 

  3. Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  4. Yu K, Grabinski CM, Schrand AM et al (2009) Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11:15–24

    Article  CAS  Google Scholar 

  5. Murdock RC, Braydich-Stolle L, Schrand AM et al (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–252

    Article  CAS  Google Scholar 

  6. Grabinski CM, Braydich-Stolle LK, Lafdi KL et al (2007) Effect of particle dimension on biocompatibility of carbon-based nanomaterials. Carbon 45:2828–2835

    Article  CAS  Google Scholar 

  7. Braydich-Stolle LK, Schaeublin NM, Murdock RC et al (2008) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374

    Article  Google Scholar 

  8. Grabinski CM (2008) Biocompatibility of carbon-based nanomaterials. Master’s thesis, University of Dayton

    Google Scholar 

  9. Grabinski C, Schaeublin N, Wijaya A et al (2011) Effect of gold nanorod surface chemistry on cellular interactions in vitro. ACS Nano 5:2870–2879

    Article  CAS  Google Scholar 

  10. Schaeublin NM, Braydich-Stolle LK, Schrand AM et al (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410–420

    Article  CAS  Google Scholar 

  11. Lapotko DO, Lukianova EK, Chizhik SA (2007) Methods for monitoring and imaging nanoparticles in cells. Proc SPIE-Int Soc Opt Eng 6447(644703):1–10

    Google Scholar 

  12. Hussain SM, Braydich-Stolle LK, Schrand AM et al (2009) Toxicity evaluation for safe use of nanoparticles: recent achievements and technical challenges. Adv Mater 21:1549–1559

    Article  CAS  Google Scholar 

  13. Teeguarden JG, Hinderliter PM, Orr G et al (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312

    Article  CAS  Google Scholar 

  14. Nel AE, Madler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  15. Walkey CD, Olsen JB, Guo H et al (2011) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147

    Article  Google Scholar 

  16. Kah J, Zubieta A, Saavedra R et al (2012) Stability of gold nanorods passivated with amphiphilic ligands. Langmuir 28:8834–8844

    Article  CAS  Google Scholar 

  17. Nusz GJ, Marinakos SM, Curry AC et al (2008) Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem 80:984–989

    Article  CAS  Google Scholar 

  18. Mukhopadhyay A, Grabinski CM, Afrooz AN et al (2012) Effect of gold nanosphere surface chemistry on protein adsorption and cell uptake in vitro. Appl Biochem Biotechnol 167:327–337

    Article  CAS  Google Scholar 

  19. Schrand AM, Schlager JJ, Dai K et al (2010) Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat Protoc 5:744–757

    Article  CAS  Google Scholar 

  20. Skebo JS, Grabinski CM, Schrand AM et al (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26:135–141

    Article  CAS  Google Scholar 

  21. Aaron J, de la Rosa E, Travis K et al (2008) Polarization microscopy with stellated gold nanoparticles for robust, in-situ monitoring of biomolecules. Opt Express 16:2153–2167

    Article  CAS  Google Scholar 

  22. Kumar S, Harrison N, Richards-Kortum R et al (2007) Plasmonic nanosensors for imaging intracellular biomarkers in live cells. Nano Lett 7:1338–1343

    Article  CAS  Google Scholar 

  23. Wax A, Sokolov K (2009) Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photon Rev 3:146–158

    Article  CAS  Google Scholar 

  24. Curry A, Hwang WL, Wax A (2006) Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture. Opt Express 14:6535–6542

    Article  Google Scholar 

  25. Curry AC, Crow M, Wax A (2008) Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles. J Biomed Opt 13:014022

    Article  Google Scholar 

  26. Cognet L, Tardin C, Boyer D et al (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci U S A 100:11350–11355

    Article  CAS  Google Scholar 

  27. Sokolov K, Follen M, Aaron J et al (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004

    CAS  Google Scholar 

  28. Sönnichsen C, Reinhard BM, Liphardt J et al (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745

    Article  Google Scholar 

  29. Ungureanu F, Wasserberg D, Yang N et al (2010) Immunosensing by colorimetric darkfield microscopy of individual gold nanoparticle-conjugates. Sens Actuators B 150:529–536

    Article  CAS  Google Scholar 

  30. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  31. Galush WJ, Shelby SA, Mulvihil MJ et al (2009) A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett 9:2077–2082

    Article  CAS  Google Scholar 

  32. El-Sayed H, Huang XH, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  CAS  Google Scholar 

  33. White B, Strawbridge A, Grabinski CM et al (2012) Hyperspectral imaging (HSI) to evaluate the interaction of optically active nanoparticles in biological media and cells. Accepted to BIOS

    Google Scholar 

  34. Yguerabide J, Yguerabide EE (1998) Light scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications:I. Theory. Anal Biochem 262:137–156

    Article  CAS  Google Scholar 

  35. Mock J, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491

    Article  CAS  Google Scholar 

  36. Haiss W, Nguyen TKT, Aveyard J et al (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  37. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, Berlin

    Book  Google Scholar 

  38. Grabar KC, Smith PC, Musick MD et al (1996) Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture. J Am Chem Soc 118:1148–1153

    Article  CAS  Google Scholar 

  39. Orendorf CJ, Sau TK, Murphy CJ (2006) Shape-dependent plasmon-resonant gold nanoparticles. Small 2:636–639

    Article  Google Scholar 

  40. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  Google Scholar 

  41. Sönnichsen C, Geier S, Hecker NE et al (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949–2951

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Air Force Surgeon General and the Air Force Research Laboratory, Chief Scientist Seedling Program. Christin Grabinski receives a fellowship from the Oak Ridge Institute for Science and Education.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grabinski, C., Schlager, J., Hussain, S. (2013). Hyperspectral Microscopy for Characterization of Gold Nanoparticles in Biological Media and Cells for Toxicity Assessment. In: Bergese, P., Hamad-Schifferli, K. (eds) Nanomaterial Interfaces in Biology. Methods in Molecular Biology, vol 1025. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-462-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-462-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-461-6

  • Online ISBN: 978-1-62703-462-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics