Skip to main content

The TRPP Signaling Module: TRPP2/Polycystin-1 and TRPP2/PKD1L1

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

TRPP ion channels assemble with polycystin-1 family proteins into receptor-channel complexes. TRPP2–Polycystin-1 is required to coordinate renal three-dimensional tissue organization, whereas TRPP2–PKD1L1 is essential for establishment of left–right asymmetry during early embryonic development. The availability of orthologous and heterologous animal models made it feasible not only to characterize the function of single genes, but also to combine gene deficiencies and/or gene overexpression to establish molecular interdependencies. Canonical and noncanonical Wnt signaling have been associated with polycystic kidney disease. Furthermore, PRKCSH and SEC63 have been implicated in TRPP/polycystin protein maturation. Putative targets for therapeutic agents have set the stage for clinical intervention studies. The purpose of this review is to critically summarize recent in vivo evidence and to highlight inconsistencies that should be resolved if an accurate understanding of TRPP channels and polycystins is to be achieved. It is hoped that a deeper understanding of associated phenotypes will help to design rational therapies for autosomal dominant polycystic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196

    Article  PubMed  CAS  Google Scholar 

  2. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. doi:10.1146/annurev.biochem.75.103004.142819

    Article  PubMed  CAS  Google Scholar 

  3. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647. doi:10.1146/annurev.physiol.68.040204.100431

    Article  PubMed  CAS  Google Scholar 

  4. U.S. Renal Data System (2011) Annual data report: atlas of end-stage renal disease in the United States. National Institutes of Health, Bethesda, MD

    Google Scholar 

  5. Longo DL, Harrison TR (2012) Harrison’s principles of internal medicine, 18th edn. McGraw-Hill, New York

    Google Scholar 

  6. Gabow PA, Chapman AB, Johnson AM, Tangel DJ, Duley IT, Kaehny WD, Manco-Johnson M, Schrier RW (1990) Renal structure and hypertension in autosomal dominant polycystic kidney disease. Kidney Int 38: 1177–1180

    Article  PubMed  CAS  Google Scholar 

  7. Hateboer N, v Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353:103–107

    Article  PubMed  CAS  Google Scholar 

  8. King BF, Reed JE, Bergstralh EJ, Sheedy PF, Torres VE (2000) Quantification and longitudinal trends of kidney, renal cyst, and renal parenchyma volumes in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 11:1505–1511

    PubMed  CAS  Google Scholar 

  9. Fick-Brosnahan GM, Belz MM, McFann KK, Johnson AM, Schrier RW (2002) Relationship between renal volume growth and renal function in autosomal dominant polycystic kidney disease: a longitudinal study. Am J Kidney Dis 39:1127–1134

    Article  PubMed  Google Scholar 

  10. Bajwa ZH, Gupta S, Warfield CA, Steinman TI (2001) Pain management in polycystic kidney disease. Kidney Int 60:1631–1644. doi:10.1046/j.1523-1755.2001.00985.x

    Article  PubMed  CAS  Google Scholar 

  11. Bajwa ZH, Sial KA, Malik AB, Steinman TI (2004) Pain patterns in patients with polycystic kidney disease. Kidney Int 66:1561–1569. doi:10.1111/j.1523-1755.2004.00921.x

    Article  PubMed  Google Scholar 

  12. Grantham JJ, Chapman AB, Torres VE (2006) Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol 1:148–157

    Article  PubMed  Google Scholar 

  13. Kelleher CL, McFann KK, Johnson AM, Schrier RW (2004) Characteristics of hypertension in young adults with autosomal dominant polycystic kidney disease compared with the general U.S. population. Am J Hypertens 17:1029–1034. doi:10.1016/j.amjhyper. 2004.06.020

    Article  PubMed  Google Scholar 

  14. Bae KT, Zhu F, Chapman AB, Torres VE, Grantham JJ, Guay-Woodford LM, Baumgarten DA, King BF, Wetzel LH, Kenney PJ, Brummer ME, Bennett WM, Klahr S, Meyers CM, Zhang X, Thompson PA, Miller JP (2006) Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin J Am Soc Nephrol 1:64–69. doi:10.2215/CJN.00080605

    Article  PubMed  Google Scholar 

  15. Danaci M, Akpolat T, Baştemir M, Sarikaya S, Akan H, Selçuk MB, Cengiz K (1998) The prevalence of seminal vesicle cysts in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 13:2825–2828

    Article  PubMed  CAS  Google Scholar 

  16. Wijdicks EF, Torres VE, Schievink WI (2000) Chronic subdural hematoma in autosomal dominant polycystic kidney disease. Am J Kidney Dis 35:40–43

    Article  PubMed  CAS  Google Scholar 

  17. Hossack KF, Leddy CL, Johnson AM, Schrier RW, Gabow PA (1988) Echocardiographic findings in autosomal dominant polycystic kidney disease. N Engl J Med 319:907–912

    Article  PubMed  CAS  Google Scholar 

  18. Schievink WI, Huston J, Torres VE, Marsh WR (1995) Intracranial cysts in autosomal dominant polycystic kidney disease. J Neurosurg 83:1004–1007. doi:10.3171/jns.1995.83.6.1004

    Article  PubMed  CAS  Google Scholar 

  19. Hadimeri H, Lamm C, Nyberg G (1998) Coronary aneurysms in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 9:837–841

    PubMed  CAS  Google Scholar 

  20. Lumiaho A, Ikäheimo R, Miettinen R, Niemitukia L, Laitinen T, Rantala A, Lampainen E, Laakso M, Hartikainen J (2001) Mitral valve prolapse and mitral regurgitation are common in patients with polycystic kidney disease type 1. Am J Kidney Dis 38:1208–1216

    Article  PubMed  CAS  Google Scholar 

  21. Leung GKK, Fan YW (2005) Chronic subdural haematoma and arachnoid cyst in autosomal dominant polycystic kidney disease (ADPKD). J Clin Neurosci 12:817–819. doi:10.1016/j.jocn.2004.09.025

    Article  PubMed  Google Scholar 

  22. Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13:2384–2398

    Article  PubMed  CAS  Google Scholar 

  23. Grantham JJ (2008) Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359:1477–1485

    Article  PubMed  CAS  Google Scholar 

  24. Harris PC, Torres VE (2011) Polycystic Kidney Disease, Autosomal Dominant. In: Pagon RA, Bird TD, Dolan CR, et al., editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1246/. Sept 2011

  25. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  PubMed  CAS  Google Scholar 

  26. Reeders ST, Breuning MH, Davies KE, Nicholls RD, Jarman AP, Higgs DR, Pearson PL, Weatherall DJ (1985) A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature 317:542–544

    Article  PubMed  CAS  Google Scholar 

  27. (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium. Cell 77:881–894

    Google Scholar 

  28. (1995) Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. Cell 81:289–298

    Google Scholar 

  29. Peters DJ, Sandkuijl LA (1992) Genetic heterogeneity of polycystic kidney disease in Europe. Contrib Nephrol 97:128–139

    PubMed  CAS  Google Scholar 

  30. Dobin A, Kimberling WJ, Pettinger W, Bailey-Wilson JE, Shugart YY, Gabow P (1993) Segregation analysis of autosomal dominant polycystic kidney disease, Genet. Epidemiol 10:189–200

    CAS  Google Scholar 

  31. Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:2143–2160

    Article  PubMed  CAS  Google Scholar 

  32. Barua M, Cil O, Paterson AD, Wang K, He N, Dicks E, Parfrey P, Pei Y (2009) Family history of renal disease severity predicts the mutated gene in ADPKD. J Am Soc Nephrol 20:1833–1838

    Article  PubMed  CAS  Google Scholar 

  33. Daoust MC, Reynolds DM, Bichet DG, Somlo S (1995) Evidence for a third genetic locus for autosomal dominant polycystic kidney disease. Genomics 25:733–736

    Article  PubMed  CAS  Google Scholar 

  34. Bogdanova N, Dworniczak B, Dragova D, Todorov V, Dimitrakov D, Kalinov K, Hallmayer J, Horst J, Kalaydjieva L (1995) Genetic heterogeneity of polycystic kidney disease in Bulgaria. Hum Genet 95:645–650

    Article  PubMed  CAS  Google Scholar 

  35. de Almeida S, de Almeida E, Peters D, Pinto JR, Távora I, Lavinha J, Breuning M, Prata MM (1995) Autosomal dominant polycystic kidney disease: evidence for the existence of a third locus in a Portuguese family. Hum Genet 96:83–88

    Article  PubMed  Google Scholar 

  36. Turco AE, Clementi M, Rossetti S, Tenconi R, Pignatti PF (1996) An Italian family with autosomal dominant polycystic kidney disease unlinked to either the PKD1 or PKD2 gene. Am J Kidney Dis 28:759–761

    Article  PubMed  CAS  Google Scholar 

  37. Paterson AD, Pei Y (1998) Is there a third gene for autosomal dominant polycystic kidney disease? Kidney Int 54:1759–1761

    Article  PubMed  CAS  Google Scholar 

  38. Bergmann C, Brüchle NO, Frank V, Rehder H, Zerres K (2008) Perinatal deaths in a family with autosomal dominant polycystic kidney disease and a PKD2 mutation. N Engl J Med 359:318–319

    Article  PubMed  CAS  Google Scholar 

  39. Menezes LF, Onuchic LF (2006) Molecular and cellular pathogenesis of autosomal recessive polycystic kidney disease. Braz J Med Biol Res 39:1537–1548

    Article  PubMed  CAS  Google Scholar 

  40. Sweeney WE, Avner ED (2006) Molecular and cellular pathophysiology of autosomal recessive polycystic kidney disease (ARPKD). Cell Tissue Res 326:671–685

    Article  PubMed  CAS  Google Scholar 

  41. Torra R, Badenas C, Darnell A, Nicolau C, Volpini V, Revert L, Estivill X (1996) Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J Am Soc Nephrol 7:2142–2151

    PubMed  CAS  Google Scholar 

  42. Magistroni R, He N, Wang K, Andrew R, Johnson A, Gabow P, Dicks E, Parfrey P, Torra R, San-Millan JL, Coto E, van Dijk M, Breuning M, Peters D, Bogdanova N, Ligabue G, Albertazzi A, Hateboer N, Demetriou K, Pierides A, Deltas C, St George-Hyslop P, Ravine D, Pei Y (2003) Genotype-renal function correlation in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 14:1164–1174

    Article  PubMed  Google Scholar 

  43. Gabow PA, Johnson AM, Kaehny WD, Kimberling WJ, Lezotte DC, Duley IT, Jones RH (1992) Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int 41:1311–1319

    Article  PubMed  CAS  Google Scholar 

  44. Rossetti S, Burton S, Strmecki L, Pond GR, San Millán JL, Zerres K, Barratt TM, Ozen S, Torres VE, Bergstralh EJ, Winearls CG, Harris PC (2002) The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J Am Soc Nephrol 13:1230–1237

    Article  PubMed  CAS  Google Scholar 

  45. Harris PC, Bae KT, Rossetti S, Torres VE, Grantham JJ, Chapman AB, Guay-Woodford LM, King BF, Wetzel LH, Baumgarten DA, Kenney PJ, Consugar M, Klahr S, Bennett WM, Meyers CM, Zhang QJ, Thompson PA, Zhu F, Miller JP (2006) Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 17:3013–3019

    Article  PubMed  CAS  Google Scholar 

  46. Paterson AD, Wang KR, Lupea D, St George-Hyslop P, Pei Y (2002) Recurrent fetal loss associated with bilineal inheritance of type 1 autosomal dominant polycystic kidney disease. Am J Kidney Dis 40:16–20

    Article  PubMed  Google Scholar 

  47. Boulter C, Mulroy S, Webb S, Fleming S, Brindle K, Sandford R (2001) Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci USA 98:12174–12179. doi: 10.1073/pnas.211191098

    Article  PubMed  CAS  Google Scholar 

  48. Lu W, Shen X, Pavlova A, Lakkis M, Ward CJ, Pritchard L, Harris PC, Genest DR, Perez-Atayde AR, Zhou J (2001) Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet 10:2385–2396

    Article  PubMed  CAS  Google Scholar 

  49. Muto S, Aiba A, Saito Y, Nakao K, Nakamura K, Tomita K, Kitamura T, Kurabayashi M, Nagai R, Higashihara E, Harris PC, Katsuki M, Horie S (2002) Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1. Hum Mol Genet 11:1731–1742

    Article  PubMed  CAS  Google Scholar 

  50. Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943

    Article  PubMed  CAS  Google Scholar 

  51. Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24:75–78. doi:10.1038/71724

    Article  PubMed  CAS  Google Scholar 

  52. Wu G, Tian X, Nishimura S, Markowitz GS, D’Agati V, Park JH, Yao L, Li L, Geng L, Zhao H, Edelmann W, Somlo S (2002) Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet 11:1845–1854

    Article  PubMed  CAS  Google Scholar 

  53. Pei Y, Paterson AD, Wang KR, He N, Hefferton D, Watnick T, Germino GG, Parfrey P, Somlo S, St George-Hyslop P (2001) Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Am J Hum Genet 68: 355–363

    Article  PubMed  CAS  Google Scholar 

  54. Persu A, Duyme M, Pirson Y, Lens XM, Messiaen T, Breuning MH, Chauveau D, Levy M, Grünfeld J-P, Devuyst O (2004) Comparison between siblings and twins supports a role for modifier genes in ADPKD. Kidney Int 66:2132–2136. doi:10.1111/ j.1523-1755.2004.66003.x

    Article  PubMed  CAS  Google Scholar 

  55. Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, Lee SH, Cai Y, Geng L, Crews CM, Somlo S (2011) A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat Genet 43:639–647

    Article  PubMed  CAS  Google Scholar 

  56. Takakura A, Contrino L, Zhou X, Bonventre JV, Sun Y, Humphreys BD, Zhou J (2009) Renal injury is a third hit promoting rapid development of adult polycystic. Hum Mol Genet 18:2523–2531. doi:10.1093/hmg/ddp147

    Article  PubMed  CAS  Google Scholar 

  57. Bastos AP, Piontek K, Silva AM, Martini D, Menezes LF, Fonseca JM, Fonseca II, Germino GG, Onuchic LF (2009) Pkd1 haploinsufficiency increases renal damage and induces microcyst formation. J Am Soc Nephrol 20:2389–2402. doi:10.1681/ASN.2008040435

    Article  PubMed  CAS  Google Scholar 

  58. Prasad S, McDaid JP, Tam FW, Haylor JL, Ong AC (2009) Pkd2 dosage influences cellular repair responses following ischemia-reperfusion. Am J Pathol 175:1493–1503. doi:10.2353/ajpath.2009.090227

    Article  PubMed  CAS  Google Scholar 

  59. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183. doi:10.1038/ng0697-179

    Article  PubMed  CAS  Google Scholar 

  60. Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 94:6965–6970

    Article  PubMed  CAS  Google Scholar 

  61. Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J (2004) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18:740–742. doi:10.1096/fj.03-0319fje

    PubMed  CAS  Google Scholar 

  62. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994. doi:10.1038/35050128

    Article  PubMed  CAS  Google Scholar 

  63. Giamarchi A, Feng S, Rodat-Despoix L, Xu Y, Bubenshchikova E, Newby LJ, Hao J, Gaudioso C, Crest M, Lupas AN, Honoré E, Williamson MP, Obara T, Ong ACM, Delmas P (2010) A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO J 29:1176–1191. doi:10.1038/emboj.2010.18

    Article  PubMed  CAS  Google Scholar 

  64. Köttgen M (2007) TRPP2 and autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1772:836–850. doi:10.1016/j.bbadis.2007.01.003

    Article  PubMed  CAS  Google Scholar 

  65. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millán JL, Gamble V, Harris PC (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10:151–160. doi:10.1038/ng0695-151

    Article  PubMed  CAS  Google Scholar 

  66. Nims N, Vassmer D, Maser RL (2003) Transmembrane domain analysis of polycystin-1, the product of the polycystic kidney disease-1 (PKD1) gene: evidence for 11 membrane-spanning domains. Biochemistry 42:13035–13048. doi:10.1021/bi035074c

    Article  PubMed  CAS  Google Scholar 

  67. Yuasa T, Venugopal B, Weremowicz S, Morton CC, Guo L, Zhou J (2002) The sequence, expression, and chromosomal localization of a novel polycystic kidney disease 1-like gene, PKD1L1, in human. Genomics 79:376–386. doi:10.1006/geno. 2002.6719

    Article  PubMed  CAS  Google Scholar 

  68. Li A, Tian X, Sung S-W, Somlo S (2003) Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics 81:596–608

    Article  PubMed  CAS  Google Scholar 

  69. Sutton KA, Jungnickel MK, Ward CJ, Harris PC, Florman HM (2006) Functional characterization of PKDREJ, a male germ cell-restricted polycystin. J Cell Physiol 209:493–500. doi:10.1002/jcp. 20755

    Article  PubMed  CAS  Google Scholar 

  70. Zhou J (2009) Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 71:83–113. doi:10.1146/annurev.physiol.70.113006.100621

    Article  PubMed  CAS  Google Scholar 

  71. Hofherr A, Köttgen M (2011) TRPP channels and polycystins. Adv Exp Med Biol 704:287–313

    Article  PubMed  CAS  Google Scholar 

  72. Cantiello HF (2004) Regulation of calcium signaling by polycystin-2. Am J Physiol Renal Physiol 286:F1012–F1029. doi:10.1152/ajprenal.00181.2003

    Article  PubMed  CAS  Google Scholar 

  73. Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M (2004) Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 322:1374–1383. doi:10.1016/j.bbrc.2004.08.044

    Article  PubMed  CAS  Google Scholar 

  74. Wu G, Hayashi T, Park JH, Dixit M, Reynolds DM, Li L, Maeda Y, Cai Y, Coca-Prados M, Somlo S (1998) Identification of PKD2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. Genomics 54:564–568. doi:10.1006/geno.1998.5618

    Article  PubMed  CAS  Google Scholar 

  75. Nomura H, Turco AE, Pei Y, Kalaydjieva L, Schiavello T, Weremowicz S, Ji W, Morton CC, Meisler M, Reeders ST, Zhou J (1998) Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J Biol Chem 273: 25967–25973

    Article  PubMed  CAS  Google Scholar 

  76. Veldhuisen B, Spruit L, Dauwerse HG, Breuning MH, Peters DJ (1999) Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet 7:860–872. doi:10.1038/sj.ejhg.5200383

    Article  PubMed  CAS  Google Scholar 

  77. Guo L, Schreiber TH, Weremowicz S, Morton CC, Lee C, Zhou J (2000) Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. Genomics 64:241–251. doi:10.1006/geno.2000.6131

    Article  PubMed  CAS  Google Scholar 

  78. Boron WF, Boulpaep EL (2009) Medical physiology. A cellular and molecular approach, 2nd edn. Elsevier Saunders, Philadelphia, PA

    Google Scholar 

  79. Reeders ST (1992) Multilocus polycystic disease. Nat Genet 1:235–237. doi:10.1038/ng0792-235

    Article  PubMed  CAS  Google Scholar 

  80. Pei Y (2001) A “two-hit” model of cystogenesis in autosomal dominant polycystic kidney disease? Trends Mol Med 7:151–156

    Article  PubMed  CAS  Google Scholar 

  81. Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979–987

    Article  PubMed  CAS  Google Scholar 

  82. Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF, Klinger KW, Landes G, Germino GG (1998) Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell 2:247–251

    Article  PubMed  CAS  Google Scholar 

  83. Menezes LF, Germino GG (2009) Polycystic kidney disease, cilia, and planar polarity. Methods Cell Biol 94:273–297. doi:10.1016/S0091-679X(08)94014-0

    Article  PubMed  CAS  Google Scholar 

  84. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG (2007) A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 13:1490–1495. doi:10.1038/nm1675

    Article  PubMed  CAS  Google Scholar 

  85. Baert L (1978) Hereditary polycystic kidney disease (adult form): a microdissection study of two cases at an early stage of the disease. Kidney Int 13:519–525

    Article  PubMed  CAS  Google Scholar 

  86. Carone FA, Makino H, Kanwar YS (1988) Basement membrane antigens in renal polycystic disease. Am J Pathol 130:466–471

    PubMed  CAS  Google Scholar 

  87. Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D, Caplan MJ, Somlo S, Cantley LG (2011) Macrophages promote cyst growth in polycystic kidney disease. J Am Soc Nephrol 22:1809–1814

    Article  PubMed  CAS  Google Scholar 

  88. Woo D (1995) Apoptosis and loss of renal tissue in polycystic kidney diseases. N Engl J Med 333:18–25

    Article  PubMed  CAS  Google Scholar 

  89. Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13:1153–1160

    PubMed  CAS  Google Scholar 

  90. Wodarczyk C, Distefano G, Rowe I, Gaetani M, Bricoli B, Muorah M, Spitaleri A, Mannella V, Ricchiuto P, Pema M, Castelli M, Casanova AE, Mollica L, Banzi M, Boca M, Antignac C, Saunier S, Musco G, Boletta A (2010) Nephrocystin-1 forms a complex with polycystin-1 via a polyproline motif/SH3 domain interaction and regulates the apoptotic response in mammals. PLoS One 5:e12719. doi:10.1371/journal.pone.0012719

    Article  PubMed  CAS  Google Scholar 

  91. Grantham JJ, Geiser JL, Evan AP (1987) Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int 31: 1145–1152

    Article  PubMed  CAS  Google Scholar 

  92. Evan AP, Gardner KD, Bernstein J (1979) Polypoid and papillary epithelial hyperplasia: a potential cause of ductal obstruction in adult polycystic disease. Kidney Int 16:743–750

    Article  PubMed  CAS  Google Scholar 

  93. Shibazaki S, Yu Z, Nishio S, Tian X, Thomson RB, Mitobe M, Louvi A, Velazquez H, Ishibe S, Cantley LG, Igarashi P, Somlo S (2008) Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum Mol Genet 17:1505–1516

    Article  PubMed  CAS  Google Scholar 

  94. Grantham JJ (1990) Polycystic kidney disease: neoplasia in disguise. Am J Kidney Dis 15:110–116

    PubMed  CAS  Google Scholar 

  95. Ye M, Grantham JJ (1993) The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med 329:310–313

    Article  PubMed  CAS  Google Scholar 

  96. Perrone RD (1985) In vitro function of cyst epithelium from human polycystic kidney. J Clin Invest 76:1688–1691

    Article  PubMed  CAS  Google Scholar 

  97. Sutters M, Germino GG (2003) Autosomal dominant polycystic kidney disease: molecular genetics and pathophysiology. J Lab Clin Med 141:91–101. doi:10.1067/mlc.2003.13

    Article  PubMed  CAS  Google Scholar 

  98. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 103:5466–5471. doi:10.1073/pnas.0509694103

    Article  PubMed  CAS  Google Scholar 

  99. Wu M, Wahl PR, Le Hir M, Wackerle-Men Y, Wuthrich RP, Serra AL (2007) Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res 30:253–259

    Article  PubMed  Google Scholar 

  100. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wüthrich RP (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363:820–829

    Article  PubMed  CAS  Google Scholar 

  101. Walz G, Budde K, Mannaa M, Nürnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Hörl WH, Obermüller N, Arns W, Pavenstädt H, Gaedeke J, Büchert M, May C, Gschaidmeier H, Kramer S, Eckardt K-U (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840

    Article  PubMed  CAS  Google Scholar 

  102. Watnick T, Germino GG (2010) mTOR inhibitors in polycystic kidney disease. N Engl J Med 363:879–881

    Google Scholar 

  103. Torres VE, Meijer E, Bae KT, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang JJ, Czerwiec FS (2011) Rationale and design of the TEMPO (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes) 3-4 Study, Am J Kidney Dis 57: 692–699

    Google Scholar 

  104. Higashihara E, Torres VE, Chapman AB, Grantham JJ, Bae K, Watnick TJ, Horie S, Nutahara K, Ouyang J, Krasa HB, Czerwiec FS (2011) Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience, Clin J Am Soc Nephrol 6:2499–2507

    Google Scholar 

  105. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA (1999) New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 36: 437–446

    PubMed  CAS  Google Scholar 

  106. Hildebrandt F, Attanasio M, Otto E (2009) Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol 20:23–35. doi:10.1681/ASN.2008050456

    Article  PubMed  CAS  Google Scholar 

  107. Turkbey B, Ocak I, Daryanani K, Font-Montgomery E, Lukose L, Bryant J, Tuchman M, Mohan P, Heller T, Gahl WA, Choyke PL, Gunay-Aygun M (2009) Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis (ARPKD/CHF). Pediatr Radiol 39:100–111

    Article  PubMed  Google Scholar 

  108. Wilson PD (2008) Mouse models of polycystic kidney disease. Curr Top Dev Biol 84:311–350. doi:10.1016/S0070-2153(08)00606-6

    Article  PubMed  CAS  Google Scholar 

  109. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337. doi:10.1146/annurev.med.60. 101707.125712

    Article  PubMed  CAS  Google Scholar 

  110. Gerdes JM, Davis EE, Katsanis N (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell 137:32–45. doi:10.1016/j.cell.2009.03.023

    Article  PubMed  CAS  Google Scholar 

  111. Satir P, Pedersen LB, Christensen ST (2010) The primary cilium at a glance. J Cell Sci 123:499–503. doi:10.1242/jcs.050377

    Article  PubMed  CAS  Google Scholar 

  112. Yoder BK, Richards WG, Sweeney WE, Wilkinson JE, Avener ED, Woychik RP (1995) Insertional mutagenesis and molecular analysis of a new gene associated with polycystic kidney disease. Proc Assoc Am Physicians 107: 314–323

    PubMed  CAS  Google Scholar 

  113. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    Article  PubMed  CAS  Google Scholar 

  114. Liu W, Murcia NS, Duan Y, Weinbaum S, Yoder BK, Schwiebert E, Satlin LM (2005) Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 289:F978–F988. doi:10.1152/ajprenal.00260.2004

    Article  PubMed  CAS  Google Scholar 

  115. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543

    Article  PubMed  CAS  Google Scholar 

  116. Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529. doi:10.1146/annurev.physiol.67.040403.101353

    Article  PubMed  CAS  Google Scholar 

  117. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825

    Article  PubMed  CAS  Google Scholar 

  118. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234

    Article  PubMed  CAS  Google Scholar 

  119. Wheatley DN (1995) Primary cilia in normal and pathological tissues. Pathobiology 63:222–238

    Article  PubMed  CAS  Google Scholar 

  120. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  PubMed  CAS  Google Scholar 

  121. Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76. doi:10.1007/s00232-002-1042-4

    Article  PubMed  CAS  Google Scholar 

  122. Inglis PN, Ou G, Leroux MR, Scholey JM (2007) The sensory cilia of Caenorhabditis elegans. WormBook : the online review of C. elegans biology 1–22. doi:10.1895/wormbook.1.126.2

    Google Scholar 

  123. Jenkins PM, McEwen DP, Martens JR (2009) Olfactory cilia: linking sensory cilia function and human disease. Chem Senses 34:451–464. doi:10.1093/chemse/bjp020

    Article  PubMed  CAS  Google Scholar 

  124. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344. doi:10.1038/nrg2774

    Article  PubMed  CAS  Google Scholar 

  125. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127:2347–2355

    PubMed  CAS  Google Scholar 

  126. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney ­disease. Curr Biol 12:R378–R380

    Article  PubMed  CAS  Google Scholar 

  127. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  PubMed  CAS  Google Scholar 

  128. Köttgen M, Hofherr A, Li W, Chu K, Cook S, Montell C, Watnick T (2011) Drosophila sperm swim backwards in the female reproductive tract and are activated via TRPP2 ion channels. PLoS One 6:e20031

    Article  PubMed  CAS  Google Scholar 

  129. Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76:149–168. doi:10.1038/ki.2009.128

    Article  PubMed  Google Scholar 

  130. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301. doi:10.1016/S0140-6736(07)60601-1

    Article  PubMed  Google Scholar 

  131. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O’Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi ARR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK (2011) Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–528

    Article  PubMed  CAS  Google Scholar 

  132. Gao H, Wang Y, Wegierski T, Skouloudaki K, Pütz M, Fu X, Engel C, Boehlke C, Peng H, Kuehn EW, Kim E, Kramer-Zucker A, Walz G (2010) PRKCSH/80K-H, the protein mutated in polycystic liver disease, protects polycystin-2/TRPP2 against HERP-mediated degradation. Hum Mol Genet 19:16–24. doi:10.1093/hmg/ddp463

    Article  PubMed  CAS  Google Scholar 

  133. Skowronek MH, Rotter M, Haas IG (1999) Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog. Biol Chem 380:1133–1138

    Article  PubMed  CAS  Google Scholar 

  134. Gabow PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329: 332–342

    Article  PubMed  CAS  Google Scholar 

  135. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Krönig C, Schermer B, Benzing T, Cabello OA, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543

    Article  PubMed  CAS  Google Scholar 

  136. Fischer E, Legue E, Doyen A, Nato F, Nicolas J-F, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23

    Article  PubMed  CAS  Google Scholar 

  137. Germino GG (2005) Linking cilia to Wnts. Nat Genet 37:455–457

    Article  PubMed  CAS  Google Scholar 

  138. Simons M, Mlodzik M (2008) Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 42: 517–540

    Article  PubMed  CAS  Google Scholar 

  139. Mosimann C, Hausmann G, Basler K (2009) Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10:276–286

    Article  PubMed  CAS  Google Scholar 

  140. Hausmann G, Bänziger C, Basler K (2007) Helping Wingless take flight: how WNT proteins are secreted. Nat Rev Mol Cell Biol 8:331–336

    Article  PubMed  CAS  Google Scholar 

  141. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109

    Article  PubMed  CAS  Google Scholar 

  142. Cabrera CV, Alonso MC, Johnston P, Phillips RG, Lawrence PA (1987) Phenocopies induced with antisense RNA identify the wingless gene. Cell 50:659–663

    Article  PubMed  CAS  Google Scholar 

  143. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50:649–657

    Article  PubMed  CAS  Google Scholar 

  144. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    Article  PubMed  CAS  Google Scholar 

  145. Perantoni AO (2003) Renal development: perspectives on a Wnt-dependent process. Semin Cell Dev Biol 14:201–208

    Article  PubMed  CAS  Google Scholar 

  146. Saadi-Kheddouci S, Berrebi D, Romagnolo B, Cluzeaud F, Peuchmaur M, Kahn A, Vandewalle A, Perret C (2001) Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene 20:5972–5981

    Article  PubMed  CAS  Google Scholar 

  147. Qian C-N, Knol J, Igarashi P, Lin F, Zylstra U, Teh BT, Williams BO (2005) Cystic renal neoplasia following conditional inactivation of apc in mouse renal tubular epithelium. J Biol Chem 280:3938–3945

    Article  PubMed  CAS  Google Scholar 

  148. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LSB, Somlo S, Igarashi P (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 100:5286–5291

    Article  PubMed  CAS  Google Scholar 

  149. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen M-H, Chuang P-T, Reiter JF (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10:70–76

    Article  PubMed  CAS  Google Scholar 

  150. Huang P, Schier AF (2009) Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia, Development 136:3089–3098

    Google Scholar 

  151. Ocbina PJR, Tuson M, Anderson KV (2009) Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo, PLoS ONE 4:e6839

    Google Scholar 

  152. Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, Volpin D, Bressan GM, Piccolo S (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors, Proc Natl Acad Sci USA 100:3299–3304

    Google Scholar 

  153. Gerdes JM, Liu Y, Zaghloul NA, Leitch CC, Lawson SS, Kato M, Beachy PA, Beales PL, DeMartino GN, Fisher S, Badano JL, Katsanis N (2007) Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet 39: 1350–1360

    Article  PubMed  CAS  Google Scholar 

  154. Gong Y, Mo C, Fraser SE (2004) Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430:689–693

    Article  PubMed  CAS  Google Scholar 

  155. Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H (2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 40:1010–1015

    Article  PubMed  CAS  Google Scholar 

  156. Patel V, Li L, Cobo-Stark P, Shao X, Somlo S, Lin F, Igarashi P (2008) Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 17:1578–1590

    Article  PubMed  CAS  Google Scholar 

  157. Nishio S, Tian X, Gallagher AR, Yu Z, Patel V, Igarashi P, Somlo S (2010) Loss of oriented cell division does not initiate cyst formation. J Am Soc Nephrol 21:295–302. doi:10.1681/ASN.2009060603

    Article  PubMed  CAS  Google Scholar 

  158. Steigelman KA, Lelli A, Wu X, Gao J, Lin S, Piontek K, Wodarczyk C, Boletta A, Kim H, Qian F, Germino G, Géléoc GSG, Holt JR, Zuo J (2011) Polycystin-1 is required for stereocilia structure but not for mechanotransduction in inner ear hair cells. J Neurosci 31:12241–12250

    Article  PubMed  CAS  Google Scholar 

  159. Gallagher AR, Esquivel EL, Briere TS, Tian X, Mitobe M, Menezes LF, Markowitz GS, Jain D, Onuchic LF, Somlo S (2008) Biliary and pancreatic dysgenesis in mice harboring a mutation in Pkhd1. Am J Pathol 172:417–429. doi:10.2353/ajpath.2008.070381

    Article  PubMed  CAS  Google Scholar 

  160. Gray RS, Roszko I, Solnica-Krezel L (2011) Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 21:120–133

    Article  PubMed  CAS  Google Scholar 

  161. Itoh K, Brott BK, Bae G-U, Ratcliffe MJ, Sokol SY (2005) Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J Biol 4:3

    Article  PubMed  Google Scholar 

  162. Gao C, Chen Y-G (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22:717–727

    Article  PubMed  CAS  Google Scholar 

  163. Otto EA, Schermer B, Obara T, O’Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34:413–420

    Article  PubMed  CAS  Google Scholar 

  164. Sugiyama N, Tsukiyama T, Yamaguchi TP, Yokoyama T (2011) The canonical Wnt signaling pathway is not involved in renal cyst development in the kidneys of inv mutant mice. Kidney Int 79(9):957–965

    Article  PubMed  CAS  Google Scholar 

  165. Rapola J, Kääriäinen H (1988) Polycystic kidney disease. Morphological diagnosis of recessive and dominant polycystic kidney disease in infancy and childhood. APMIS 96:68–76

    Article  PubMed  CAS  Google Scholar 

  166. Qian Q, Li A, King BF, Kamath PS, Lager DJ, Huston J, Shub C, Davila S, Somlo S, Torres VE (2003) Clinical profile of autosomal dominant polycystic liver disease. Hepatology 37:164–171

    Article  PubMed  Google Scholar 

  167. van Keimpema L, de Koning DB, van Hoek B, van Den Berg AP, van Oijen MGH, de Man RA, Nevens F, Drenth JPH (2011) Patients with isolated polycystic liver disease referred to liver centres: clinical characterization of 137 cases. Liver Int 31:92–98

    Article  PubMed  Google Scholar 

  168. Everson GT, Emmett M, Brown WR, Redmond P, Thickman D (1990) Functional similarities of hepatic cystic and biliary epithelium: studies of fluid constituents and in vivo secretion in response to secretin. Hepatology 11:557–565

    Article  PubMed  CAS  Google Scholar 

  169. Perrone RD, Grubman SA, Rogers LC, Lee DW, Moy E, Murray SL, Torres VE, Jefferson DM (1995) Continuous epithelial cell lines from ADPKD liver cysts exhibit characteristics of intrahepatic biliary epithelium. Am J Physiol 269:G335–G345

    PubMed  CAS  Google Scholar 

  170. Perrone RD, Grubman SA, Murray SL, Lee DW, Alper SL, Jefferson DM (1997) Autosomal dominant polycystic kidney disease decreases anion exchanger activity. Am J Physiol 272:C1748–C1756

    PubMed  CAS  Google Scholar 

  171. Qian Q (2010) Isolated polycystic liver disease. Adv Chronic Kidney Dis 17:181–189

    Article  PubMed  Google Scholar 

  172. Janssen MJ, Waanders E, Woudenberg J, Lefeber DJ, Drenth JPH (2010) Congenital disorders of glycosylation in hepatology: the example of polycystic liver disease. J Hepatol 52:432–440

    Article  PubMed  CAS  Google Scholar 

  173. Reynolds DM, Falk CT, Li A, King BF, Kamath PS, Huston J, Shub C, Iglesias DM, Martin RS, Pirson Y, Torres VE, Somlo S (2000) Identification of a locus for autosomal dominant polycystic liver disease, on chromosome 19p13.2-13.1. Am J Hum Genet 67:1598–1604

    Article  PubMed  CAS  Google Scholar 

  174. Li A, Davila S, Furu L, Qian Q, Tian X, Kamath PS, King BF, Torres VE, Somlo S (2003) Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am J Hum Genet 72:691–703

    Article  PubMed  CAS  Google Scholar 

  175. Drenth JPH, te Morsche RHM, Smink R, Bonifacino JS, Jansen JBMJ (2003) Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat Genet 33:345–347

    Article  PubMed  CAS  Google Scholar 

  176. Davila S, Furu L, Gharavi AG, Tian X, Onoe T, Qian Q, Li A, Cai Y, Kamath PS, King BF, Azurmendi PJ, Tahvanainen P, Kääriäinen H, Höckerstedt K, Devuyst O, Pirson Y, Martin RS, Lifton RP, Tahvanainen E, Torres VE, Somlo S (2004) Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet 36:575–577

    Article  PubMed  CAS  Google Scholar 

  177. Waanders E, Venselaar H, te Morsche RHM, de Koning DB, Kamath PS, Torres VE, Somlo S, Drenth JPH (2010) Secondary and tertiary structure modeling reveals effects of novel mutations in polycystic liver disease genes PRKCSH and SEC63. Clin Genet 78:47–56

    Article  PubMed  CAS  Google Scholar 

  178. Janssen MJ, Waanders E, Te Morsche RHM, Xing R, Dijkman HBPM, Woudenberg J, Drenth JPH (2011) Secondary, somatic mutations might promote cyst formation in patients with autosomal dominant polycystic liver disease. Gastroenterology 141:2056.e2–2063.e2

    Article  CAS  Google Scholar 

  179. Shao X, Somlo S, Igarashi P (2002) Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. J Am Soc Nephrol 13:1837–1846

    Article  PubMed  CAS  Google Scholar 

  180. Yu Y, Ulbrich MH, Li M-H, Buraei Z, Chen X-Z, Ong ACM, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci USA 106:11558–11563. doi:10.1073/pnas.0903684106

    Article  PubMed  CAS  Google Scholar 

  181. Woollatt E, Pine KA, Shine J, Sutherland GR, Iismaa TP (1999) Human Sec63 endoplasmic reticulum membrane protein, map position 6q21. Chromosome Res 7:77

    Article  PubMed  CAS  Google Scholar 

  182. Meyer HA, Grau H, Kraft R, Kostka S, Prehn S, Kalies KU, Hartmann E (2000) Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275:14550–14557

    Article  PubMed  CAS  Google Scholar 

  183. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  184. Deshaies RJ, Sanders SL, Feldheim DA, Schekman R (1991) Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349:806–808

    Article  PubMed  CAS  Google Scholar 

  185. Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA (1995) Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561–570

    Article  PubMed  CAS  Google Scholar 

  186. Matlack KE, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 97:553–564

    Article  PubMed  CAS  Google Scholar 

  187. Vembar SS, Jonikas MC, Hendershot LM, Weissman JS, Brodsky JL (2010) J domain co-chaperone specificity defines the role of BiP during protein translocation. J Biol Chem 285:22484–22494

    Article  PubMed  CAS  Google Scholar 

  188. Oyadomari S, Yun C, Fisher EA, Kreglinger N, Kreibich G, Oyadomari M, Harding HP, Goodman AG, Harant H, Garrison JL, Taunton J, Katze MG, Ron D (2006) Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126:727–739

    Article  PubMed  CAS  Google Scholar 

  189. Braakman I, Bulleid NJ (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80:71–99

    Article  PubMed  CAS  Google Scholar 

  190. Trombetta ES, Simons JF, Helenius A (1996) Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem 271:27509–27516

    Article  PubMed  CAS  Google Scholar 

  191. Gkika D, Mahieu F, Nilius B, Hoenderop JGJ, Bindels RJM (2004) 80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5). J Biol Chem 279:26351–26357

    Article  PubMed  CAS  Google Scholar 

  192. Stigliano ID, Alculumbre SG, Labriola CA, Parodi AJ, D’Alessio C (2011) Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo. Mol Biol Cell 22:1810–1823

    Article  PubMed  CAS  Google Scholar 

  193. Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119:4373–4380

    Article  PubMed  CAS  Google Scholar 

  194. Trombetta ES, Parodi AJ (2003) Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19:649–676

    Article  PubMed  CAS  Google Scholar 

  195. Trombetta ES, Fleming KG, Helenius A (2001) Quaternary and domain structure of glycoprotein processing glucosidase II. Biochemistry 40:10717–10722

    Article  PubMed  CAS  Google Scholar 

  196. Pelletier MF, Marcil A, Sevigny G, Jakob CA, Tessier DC, Chevet E, Menard R, Bergeron JJ, Thomas DY (2000) The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 10:815–827

    Article  PubMed  CAS  Google Scholar 

  197. Treml K, Meimaroglou D, Hentges A, Bause E (2000) The alpha- and beta-subunits are required for expression of catalytic activity in the hetero-dimeric glucosidase II complex from human liver. Glycobiology 10:493–502

    Article  PubMed  CAS  Google Scholar 

  198. Stigliano ID, Caramelo JJ, Labriola CA, Parodi AJ, D’Alessio C (2009) Glucosidase II beta subunit modulates N-glycan trimming in fission yeasts and mammals. Mol Biol Cell 20:3974–3984

    Article  PubMed  CAS  Google Scholar 

  199. Kawaai K, Hisatsune C, Kuroda Y, Mizutani A, Tashiro T, Mikoshiba K (2009) 80K-H interacts with inositol 1,4,5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity. J Biol Chem 284:372–380

    Article  PubMed  CAS  Google Scholar 

  200. Harvey RP (1998) Links in the left/right axial pathway. Cell 94:273–276

    Article  PubMed  CAS  Google Scholar 

  201. Shiratori H, Hamada H (2006) The left-right axis in the mouse: from origin to morphology. Development 133:2095–2104

    Article  PubMed  CAS  Google Scholar 

  202. Srivastava D (1997) Left, right … which way to turn? Nat Genet 17:252–254

    Article  PubMed  CAS  Google Scholar 

  203. Mercola M, Levin M (2001) Left-right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol 17:779–805

    Article  PubMed  CAS  Google Scholar 

  204. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  PubMed  CAS  Google Scholar 

  205. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    Article  PubMed  CAS  Google Scholar 

  206. Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418:96–99

    Article  PubMed  CAS  Google Scholar 

  207. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125:33–45

    Article  PubMed  CAS  Google Scholar 

  208. Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103

    Article  PubMed  CAS  Google Scholar 

  209. Hamada H (2008) Breakthroughs and future challenges in left-right patterning. Dev Growth Differ 50(Suppl 1):S71–S78

    Article  PubMed  CAS  Google Scholar 

  210. Marshall WF, Nonaka S (2006) Cilia: tuning in to the cell’s antenna. Curr Biol 16:R604–R614

    Article  PubMed  CAS  Google Scholar 

  211. Bisgrove BW, Snarr BS, Emrazian A, Yost HJ (2005) Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer’s vesicle are required for specification of the zebrafish left-right axis. Dev Biol 287:274–288. doi:10.1016/j.ydbio.2005.08.047

    Article  PubMed  CAS  Google Scholar 

  212. Schottenfeld J, Sullivan-Brown J, Burdine RD (2007) Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific. Development 134:1605–1615. doi:10.1242/dev.02827

    Article  PubMed  CAS  Google Scholar 

  213. Field S, Riley K-L, Grimes DT, Hilton H, Simon M, Powles-Glover N, Siggers P, Bogani D, Greenfield A, Norris DP (2011) Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2. Development 138:1131–1142

    Article  PubMed  CAS  Google Scholar 

  214. Kamura K, Kobayashi D, Uehara Y, Koshida S, Iijima N, Kudo A, Yokoyama T, Takeda H (2011) Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis. Development 138:1121–1129

    Article  PubMed  CAS  Google Scholar 

  215. Bataille S, Demoulin N, Devuyst O, Audrézet M-P, Dahan K, Godin M, Fontès M, Pirson Y, Burtey S (2011) Association of PKD2 (polycystin 2) mutations with left-right laterality defects. Am J Kidney Dis 58: 456–460

    Article  PubMed  CAS  Google Scholar 

  216. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    Article  PubMed  CAS  Google Scholar 

  217. Karcher C, Fischer A, Schweickert A, Bitzer E, Horie S, Witzgall R, Blum M (2005) Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73:425–432. doi:10.1111/j.1432-0436.2005.00048.x

    Article  PubMed  CAS  Google Scholar 

  218. Qian F, Noben-Trauth K (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflugers Arch 451:277–285. doi:10.1007/s00424-005-1469-4

    Article  PubMed  CAS  Google Scholar 

  219. Moy GW, Mendoza LM, Schulz JR, Swanson WJ, Glabe CG, Vacquier VD (1996) The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1. J Cell Biol 133:809–817

    Article  PubMed  CAS  Google Scholar 

  220. Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, Watnick TJ, Zhou F, Germino GG (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci USA 99:16981–16986. doi:10.1073/pnas.252484899

    Article  PubMed  CAS  Google Scholar 

  221. Yuasa T, Takakura A, Denker BM, Venugopal B, Zhou J (2004) Polycystin-1L2 is a novel G-protein-binding protein. Genomics 84:126–138. doi:10.1016/j.ygeno.2004.02.008

    Article  PubMed  CAS  Google Scholar 

  222. Vogel P, Read R, Hansen GM, Freay LC, Zambrowicz BP, Sands AT (2010) Situs inversus in Dpcd/Poll-/-, Nme7-/-, and Pkd1l1-/- mice. Vet Pathol 47:120–131. doi:10.1177/0300985809353553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Michael Köttgen for helpful ­discussions. He apologizes to those whose work could not be cited due to space limitations. Funding was awarded by the Deutsche Forschungsgemeinschaft (KFO 201) and the Excellence Initiative of the German Federal and State Governments (GSC-4, Spemann Graduate School).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Hofherr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hofherr, A. (2012). The TRPP Signaling Module: TRPP2/Polycystin-1 and TRPP2/PKD1L1. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-077-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-077-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-076-2

  • Online ISBN: 978-1-62703-077-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics