Skip to main content

Agrobacterium tumefaciens-Mediated Stable Transformation of Daucus carota

  • Protocol
  • First Online:
Plant and Food Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2083))

Abstract

Daucus carota L. (carrot) is one of the ten most important vegetables cultivated and consumed worldwide and is a main source of provitamin A. Carrot storage root is rich in dietary fiber, antioxidants, and other nutrients but especially in carotenoids. It has been also used as plant model for studding embryogenesis, as well as the genetic and genomic evolution of carrots and for carotenoid synthesis regulation, among others. Research in carrot often needs genetic transformation. Here we describe a step-by-step protocol on the nuclear and stable transformation of carrot through Agrobacterium tumefaciens and somatic embryogenesis in vitro culture. Somatic embryos, induced by supplementation of Murashige–Skoog medium with the 2,4D hormone, develop into seedlings after 6 months approximately when plants are ready to be transferred to a greenhouse. The protocol has over 85% of transformation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaughan J, Geissler C (2009) The new Oxford book of food plants. OUP, Oxford

    Google Scholar 

  2. Simpson K, Cerda A, Stange C (2016a) Carotenoid biosynthesis in Daucus carota. Subcell Biochem 79:199–217

    Article  CAS  Google Scholar 

  3. FAOSTAT Database on Agriculture (2014). In: food and agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  4. Simon P, Pollak L, Clevidence B, Holden J, Haytowitz D (2009) Plant breeding for human nutritional quality. Plant Breeding Rev 31:325–392

    CAS  Google Scholar 

  5. Kreuger M, Van Holst G (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248

    Article  CAS  Google Scholar 

  6. Quiroz-Figueroa F, Rojas-Herrera R, Galaz-Avalos R, Loyola-Vargas V (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  7. Shiota H, Ko S, Wada S, Otsu C, Tanaka I, Kamada H (2008) A carrot G-box binding factor-type basic region/leucine zipper factor DcBZ1 is involved in abscisic acid signal transduction in somatic embryogenesis. Plant Physiol Biochem 46:550–558

    Article  CAS  Google Scholar 

  8. Guan Y, Ren H, Xie H, Ma Z, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60:207–217

    Article  CAS  Google Scholar 

  9. Xu Z, Tan H, Wang F, Hou X, Xiong A (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database 2014

    Google Scholar 

  10. Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgnórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spoonder D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  Google Scholar 

  11. Ellison S, Luby C, Corak K, Coe K, Senalik D, Iorizzo M, Goldman I, Simon P, Dawson J (2018) Carotenoid presence is associated with the or gene in domesticated carrot. Genetics 210:1497–1508

    Article  CAS  Google Scholar 

  12. Stange C, Fuentes P, Handford M, Pizarro L (2008) Daucus carota as a novel model to evaluate the effect of light on carotenogenic gene expression. Biol Res 41:289–301

    Article  Google Scholar 

  13. Fuentes P, Pizarro L, Moreno J, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Pant Mol Biol 79:47–59

    Article  CAS  Google Scholar 

  14. Moreno J, Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C (2013) Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. PLoS One 8:e58144

    Article  CAS  Google Scholar 

  15. Simpson K, Quiroz L, Rodriguez-Concepción M, Stange C (2016b) Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot (Daucus carota). Front Plant Sci 7:1344

    Article  Google Scholar 

  16. Simpson K, Fuentes P, Quiroz-Iturra L, Flores-Ortiz C, Contreras R, Handford M, Stange C (2018) Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. J Exp Bot 69:4113–4126

    Article  CAS  Google Scholar 

  17. Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    Article  CAS  Google Scholar 

  18. Luchakivskaya Y, Kishchenko O, Gerasymenko I, Olevinskaya Z, Simonenko Y, Spivak M, Kuchuk M (2011) High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant Cell Rep 30:407–415

    Article  CAS  Google Scholar 

  19. Chen W, Punja Z (2002) Transgenic herbicide-and disease-tolerant carrot (Daucus carota L.) plants obtained through agrobacterium-mediated transformation. Plant Cell Rep 20:929–935

    Article  CAS  Google Scholar 

  20. Wally O, Punja Z (2010) Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over-expressing a rice cationic peroxidase. Planta 232:1229–1239

    Article  CAS  Google Scholar 

  21. Klimek-Chodacka M, Oleszkiewicz T, Lowder L, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37(4):575–586

    Article  CAS  Google Scholar 

  22. Scott R, Draper J (1987) Transformation of carrot tissues derived from proembryogenic suspension cells: a useful model system for gene expression studies in plants. Plant Mol Biol 8:265–274

    Article  CAS  Google Scholar 

  23. Pawlicki N, Sangwan R, Sangwan-Norreel B (1992) Factors influencing the agrobacterium tumefaciens-mediated transformation of carrot (Daucus carota L.). Plant Cell Tissue Organ Cult 31:129–139

    Article  CAS  Google Scholar 

  24. Hardegger M, Sturm A (1998) Transformation and regeneration of carrot (Daucus carota L.). Mol Breeding 4:119–127

    Article  CAS  Google Scholar 

  25. Baranski R (2008) Genetic transformation of carrot (Daucus carota) and other Apiaceae species. Trans Plant J 2:18–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Stange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez-Calquin, C., Stange, C. (2020). Agrobacterium tumefaciens-Mediated Stable Transformation of Daucus carota. In: Rodríguez-Concepción, M., Welsch, R. (eds) Plant and Food Carotenoids. Methods in Molecular Biology, vol 2083. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9952-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9952-1_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9951-4

  • Online ISBN: 978-1-4939-9952-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics